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Abstract
Background: Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase 
(21OH) deficiency is an autosomal recessive inborn error of cortisol biosynthe-
sis, with varying degrees of aldosterone production. There is a continuum of 
phenotypes which generally correlate with genotype and the expected residual 
21OH activity of the less severely impaired allele. CYP21A1P/CYP21A2 chimeric 
genes caused by recombination between CYP21A2 and its highly homologous 
CYP21A1P pseudogene are common in CAH and typically associated with salt-
wasting CAH, the most severe form. Nine chimeras have been described (CH-1 
to CH-9).
Aims: The aim of this study was to genetically evaluate two variant alleles carried 
by a 22-year-old female with the non-salt-wasting simple virilizing form of CAH 
and biallelic 30-kb deletions.
Methods: The haplotypes of the CYP21A2 heterozygous variants, as well as the 
chimeric junction sites, were determined by Sanger sequencing TA clones of an 
allele-specific PCR product.
Results: Genetic testing revealed two rare CYP21A1P/CYP21A2 chimeras: allele 
1 matches the previously described CAH CH-1 chimera but without the P30L var-
iant, and allele 2, termed here as novel CAH CH-10, has a junction site between 
c.293-37 and c.29314, which is expected to retain partial 21OH activity.
Conclusion: These two variant alleles further document the complex nature of 
RCCX modules and highlight that not all CYP21A1P/CYP21A2 chimera severely 
impair 21OH activity.
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1   |   INTRODUCTION

Congenital adrenal hyperplasia (CAH) due to 
21-hydroxylase deficiency (21-OHD, OMIM 201910) 
caused by CYP21A2 defects (OMIM 613815) is an auto-
somal recessive inborn error of cortisol biosynthesis, 
with varying degrees of aldosterone production and 
corticotropin-driven adrenal androgen excess (Merke & 
Auchus, 2020). The majority of individuals are compound 
heterozygotes. The phenotype is determined by the less se-
verely impaired CYP21A2 allele and the expected residual 
21OH activity, with some phenotypic variability described 
in large cohort studies (Finkielstain et al., 2011; Gurgov 
et al., 2017; Krone et al., 2000). The phenotypic spectrum 
is traditionally categorized as classic salt-wasting (SW), 
with marked deficiencies in both cortisol and aldosterone 
and life-threatening if left untreated; classic simple viriliz-
ing (SV), with cortisol deficiency and minimal aldosterone 
production; and the nonclassic (NC) phenotype with mild 
manifestations ranging from asymptomatic to late-onset 
hyperandrogenism. The SW and SV types are termed clas-
sic CAH and result in 46, XX atypical genitalia due to in 
utero excess androgens. Classic CAH is estimated to af-
fect 1 in 15,000; NC CAH is estimated to affect 1 in 200 
(Hannah-Shmouni et al., 2017).

CYP21A2 encoding 21OH is mapped to chromo-
some 6p23.1 in a low copy repeat region termed RCCX 
with homologous genes in tandem: RP1 (STK19) and 
pseudogene RP2 (STK19P); C4A and C4B; CYP21A2 
and pseudogene CYP21A1P; TNXB and pseudogene 
TNXA. These gene pairs are error-prone during meio-
sis with the most common pathogenic outcome CAH. 
Minor conversions from CYP21A1P to CYP21A2 are 
responsible for approximately 60% of CAH alleles; chi-
meric genes, mostly termed “30-kb deletions,” together 
with major conversions, account for 30% (Merke & 
Auchus, 2020). 30-kb deletions are further categorized 
based on junction sites into nine CYP21A1P/CYP21A2 
chimeras (CAH CH-1 to CH-9) (Figure  1) and three 
CYP21A1P-TNXA/TNXB chimeras with deletion of the 
entire CYP21A2 extending to the neighboring TNXB 
(CAH-X CH-1 to CH-3) (Finkielstain et al., 2011; Merke 
& Auchus, 2020). Junction site locations can influence 
gene functionality and the degree of 21OH impairment 
(Keen-Kim et al., 2005). Furthermore, the monoallelic 
presence of a CAH-X chimera disrupts both CYP21A2 
and TNXB which results in hypermobility-type Ehlers-
Danlos syndrome (Merke et al., 2013). The vast major-
ity of “30-kb deletions,” including seven of the nine 
CAH chimeras and all three CAH-X chimeras, are null 
variants associated with a SW phenotype. To date, two 
CAH chimeras (CH-4 and CH-9) due to the location of 
their junction sites correspond to a phenotype which 

straddles the classic SV–NC boundary and are named 
attenuated CAH chimeras (Chen et al., 2012).

Here we report a case of 21-OHD SV CAH due to bial-
lelic 30-kb deletions. We identified two rare CAH chime-
ric genes including a novel attenuated chimera featuring 
a new junction site. Our findings further document the 
variability and complexity of CYP21A2 defects causative 
for 21-OHD CAH.

2   |   MATERIALS AND METHODS

2.1  |  Participants

The subject was enrolled in an ongoing Natural History 
Study at the NIH Clinical Center in Bethesda, MD, USA 
(NCT00250159) and gave written informed consent.

2.2  |  Genetic analyses

CAH genotyping was initially conducted by CLIA-
accredited laboratories with an assay-based multiplex 
mini-sequencing and conversion-specific PCR (MMCP) 
(Esoterix Laboratory Services, Inc), (Keen-Kim et al., 2005) 
and a comprehensive test based on Sanger methodolo-
gies (PreventionGenetics LLC). The haplotypes of the 
CYP21A2 heterozygous variants, as well as the chimeric 
junction sites, were then determined by Sanger sequenc-
ing TA clones of an allele-specific PCR product with prim-
ers CYP779f/Tena32f (Chen et al., 2012) The allele-specific 
PCR, CYP21A2 duplication test, and Sanger sequencing 
were conducted as previously described (Xu et al., 2013). 
The TA cloning was conducted with a TOPO XL complete 
PCR cloning kit (Thermo Fisher Scientific). References for 
CYP21A2 and CYP21A1P were ENSG00000231852.2 and 
ENSG00000204338.4, respectively. CAH pathogenic vari-
ants on CYP21A2 were presented in common names with 
Human Genome Variation Society nomenclature shown 
after their first appearance. A DNASTAR Lasergene soft-
ware (version 17) was used for sequence analysis.

3   |   RESULTS

3.1  |  Clinical findings

A 22-year-old Haitian female presented with atypical gen-
italia at birth. She underwent clitoroplasty at age 3 years, 
and was treated with prednisone and fludrocortisone until 
age 10 years, after which she was off medications with lim-
ited access to care due to a poor social environment. She 
started shaving her face around age 13 years and had no 
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breast development and primary amenorrhea. At 21 years, 
she presented to a community hospital twice with re-
ported possible adrenal crises in the setting of infection 
and inflammation. Physical examination revealed normal 
vital signs, hirsutism of the face and trunk, a deep voice, 
broad shoulders, Tanner 1 breasts, Tanner 5 public hair, 
malar rash. She was started on dexamethasone 0.5 mg and 
fludrocortisone 0.1 mg daily. Rheumatological evaluation 

confirmed a diagnosis of systemic lupus erythematosus 
(SLE) with constitutional symptoms, serositis (pericar-
ditis), Raynaud's of the hands and feet, positive serology 
(ANA, anti-ENA, anti-SmRNP antibody, anti-Smith [SM] 
antibody), low complement, and lymphopenia. Family 
history reported three unaffected older siblings and a 
younger brother with CAH who was positive on newborn 
screening but not on hormone replacement and had never 

F I G U R E  1   CYP21 chimeras and their junction sites. (a) Unequal crossover between CYP21A1P and CYP21A2 during meiosis, 
pseudogenes are shown in muted colors. (b) CAH chimeras, shown in chameleon as the unequal crossover outcome. (c) Schematic of all 
previously known CAH chimeras: gene body of CYP21A1P-origin and CYP21A2-origin are in pink and blue, respectively, and junction sites 
are in purple. The junction site of CAH CH-9, which is only 7 bp in size, is marked with a purple triangle. The variants of CYP21A1P-origin 
commonly used to determine the CAH chimera subtype are marked on CAH CH-8, which carries all of these variants (Chen et al., 2012). 
Genes are shown in scale except TNXB, whose size is 68 kb.
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had an adrenal crisis. Due to social reasons, acquisition of 
genotyping and phenotypic data for family members was 
not available. At our Institution, early morning laboratory 
evaluation showed 17-OHP 32,760 ng/dL, androstenedi-
one 5315 ng/dL [ref 17–175 ng/dL], testosterone 178 ng/
dL [ref 8–60 ng/dL], cortisol 3 μg/dL [ref 5–25 μg /dL], and 
plasma renin activity within the normal range.

3.2  |  Genetic findings

The subject had two indeterminate 21-OHD genetic 
tests from commercial laboratories. Family genotyp-
ing was indicated but unavailable. A MMCP-based test 
suggested biallelic 30-kb deletions. Sanger sequencing 
of CYP779f/Tena32f PCR product detected a cluster of 
pre-coding variants of CYP21A1P origin (c.-210T>C, c.-
199C>T, c.-190dup, c.-126C>T, c.-113G>A, c.-110T>C 
and c.-103A>G), all in homozygous status supporting 
biallelic 30 kb deletion. Compound heterozygous vari-
ants of CYP21A1P origin were also detected, including 
P30L (c.92C>T, p.Pro31Leu), In2G (c.293-13A/C>G) and 
G110Efs (c.332_339del, p.Gly111Valfs*21). The heterozy-
gous status of the compound variants, especially that 
of P30L, did not support the existence of biallelic 30-kb 
deletions.

We conducted TA cloning to differentiate the two al-
leles of the CYP779f/Tena32f PCR product. Plasmids car-
rying each allele were subject to Sanger sequencing. Eight 
plasmid clones were analyzed and two CAH chimera al-
leles (haplotypes) were detected. A CYP21A2 duplication 
test with negative result indicated these two chimeras 
were responsible for the subject's CAH phenotype (data 
not shown). Allele 1 sequence matched chimera CAH 
CH-1 except for the missing the P30L variant; allele 2 
had all variants of CYP21A1P origin spanning from the 
pre-coding region till c.293-38A of intron 2, only 24 bp up-
stream of c.293-13A/C where the In2G (c.293-13A/C>G) 
variant occurs (Figure 2a,b).

4   |   DISCUSSION

We describe a case of 21-OHD CAH due to two rare 
CYP21A1P/CYP21A2 chimeras including a classic CAH 

CH-1 chimera without the usual P30L variant, and a novel 
attenuated chimera termed here CAH CH-10 with a junc-
tion site between c.293-37 and c.293-14 upstream of In2G. 
The subject's unexpected SV phenotype was therefore ex-
plained by her genotype. SLE was not entirely unexpected, 
as 21-OHD has been associated with an increased preva-
lence of autoimmune disorders (Falhammar et al., 2019). 
Our findings further document the complex nature of 
the RCCX module (Carrozza et al.,  2021; Miller,  2020; 
Pignatelli et al.,  2019; Tolba et al.,  2022) and highlight 
that not all CYP21A1P/CYP21A2 chimera severely impair 
21OH activity.

Although there are limited studies of the RCCX 
pseudogenes, CYP21A2-like variants are commonly found 
in CYP21A1P, with those corresponding to P30, V281 
accounting for 24% and 21% of total CYP21A1P alleles 
respectively (Tsai & Lee,  2012). Therefore, if CYP21A2-
like CYP21A1P is involved in unequal crossovers, the re-
sulting chimeras could sometimes be missing P30L and 
V281L (c.844G>T, p.Val282Leu). In fact, a common chi-
mera CAH CH-5 which has all variants of pseudogene 
origin spanning from the pre-coding region to the L307fs 
(c.923dup, p.Leu308Phefs*6) variant is often missing 
V281L (Chen et al., 2012). However, CAH chimeras miss-
ing P30L have been rarely reported. Our large U.S. cohort 
of approximately 500 subjects has only one additional fam-
ily carrying a CAH chimera without P30L (Finkielstain 
et al., 2011). A report from Brazil described an individual 
with 21-OHD carrying a CAH chimera without P30L, but 
the chimera type was not specified (Coeli et al., 2010).

Unlike classic CAH chimeras that null the corre-
sponding CYP21A2 allele, attenuated chimeras cor-
respond mostly to a SV phenotype (Chen et al.,  2012), 
or sometimes a phenotype with severity between NC 
and SV, such as a NC form of early onset (l'Allemand 
et al.,  2000). Two attenuated chimeras, CH-4 and CH-
9, have been reported with junction sites between c.138 
and c.292+45 spanning from exon 1 to intron 2, and 
between c.293-74 and c.293-67 inside intron2, respec-
tively. Both chimeras feature a pseudogene 5’-UTR and 
a P30L variant as the phenotype determinant. Since the 
CYP21A1P promoter is known to be weaker compared 
to that of CYP21A2, the usual phenotype associated 
with an attenuated chimera is classic SV CAH, more 
severe than the NC phenotype typically associated with 

F I G U R E  2   (a) Schematic of two rare CYP21A1P/CYP21A2 chimeras: allele 1 is a classic CAH CH-1 but without P30L, allele 2 is a novel 
attenuated CAH chimera termed CH-10 with junction site between c.293-37 and c.293-14. Pink and blue colors represent CYP21A1P and 
CYP21A2 sequence, respectively, shown in scale. (b) Alignment of CYP21 genes at a locus corresponding to CYP21A2 intron 2 and exon 3, 
CYP21A2 served as the reference and its numbering is shown at the beginning of each row. Conserved DNA residues are shown in black 
while non-conserved are shown in an UGene physiochemical scheme. The junction sites of known attenuated chimeras CH-4 and CH-9 are 
in yellow, and the novel CH-10 is in pink. Dashed lines denote gaps. Remarkable DNA residues are marked on the top with their respective 
cDNA nomenclature numberings, including c.293 to start exon 3 and c.293-13A/C (in red) where In2G (c.293-13A/C>G) occurs.
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P30L. To date, chimeric CYP21A1P/CYP21A2 genes are 
termed chronologically after determination of the junc-
tion sites (Chen et al., 2012). Here we define and name 
CH-10. It is commonly accepted that newly identified 
junction sites of CYP21A1P/CYP21A2 chimeras based 
on an array of variants of pseudogene origin define a 
new chimeric gene, but it is possible that some of these 
chimeras are formed by minor conversion of a previ-
ously described chimera, rather than a deletion or major 
conversion event. However, the likelihood of this mech-
anism should be very low since there are no reports of 
minor conversion events between CYP21A1P/CYP21A2 
chimera types.

Our data suggest that the junction site of attenuated 
chimeras can be anywhere spanning from c.138 (found 
in CH-4) to c.293-14 (found in CH-10) just upstream of 
the In2G site. These junction sites might have been his-
torically under-detected because sequencing analysis 
of TA clones is often needed to overcome the frequent 
insert-deletion interference inside intron 2 in a Sanger 
assay. Attenuated CAH chimeras, previously considered 
rare, might be under-detected by current CYP21A2 test-
ing which commonly excludes the 5’-UTR and thus can 
easily confuse an attenuated chimera with a P30L vari-
ant (Baumgartner-Parzer et al.,  2020), which is some-
times unexplainably associated with a classic phenotype 
(Araujo et al.,  2005; Finkielstain et al.,  2011). A CAH 
genetic platform that includes the promoter might offer 
an explanation for these genotype–phenotype discrep-
ancies. Given that all attenuated CYP21A1P/CYP21A2 
chimeras identified to date include a CYP21A1P 5’-UTR, 
P30L variant, and a junction site between P30L and 
c.293-13A/G (absent of In2G), a unified methodological 
approach should be incorporated into CAH genetic test-
ing. Moreover, our results reinforce that the presence of 
P30L and the absence of In2G correlates with the attenu-
ated phenotype. Finally, our study agrees with a previous 
conclusion that Sanger sequencing of CYP779f/Tena32f 
PCR products offers the most comprehensive genetic test 
of CYP21A2 in terms of testing and profiling chimeras 
(Chen et al., 2012).
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