Skip to main content
. 2023 Jun 21;25:e44047. doi: 10.2196/44047

Table 2.

Internal and external performances of the 8 different trained models.

Model Internal validation (cross validation), mean (SD) External temporal validation

AUC-ROCa Accuracy (%) Sensitivity (%) Specificity (%) AUC-ROC Accuracy (%) Sensitivity (%) Specificity (%)
LRb 0.670 (0.097) 66.4 (7.1) 76.3 (10.1) 53.7 (9) 0.85 69.2 76.9 61.5
BNCc 0.624 (0.092) 62.1 (7.5) 66.3 (11.5) 55.9 (11.3) 0.83 69.2 69.2 69.2
RFd 0.780 (0.084) 74.7 (7.3) 85.2 (7.1) 61 (11.5) 0.90 84.6 100.0 69.2
GBTe 0.765 (0.092) 73.5 (6.9) 82.2 (7.8) 62.4 (10.8) 0.82 76.9 92.3 61.5
XGBf 0.760 (0.087) 72.2 (7.1) 80.2 (7.8) 62.1 (9.9) 0.82 80.8 92.3 69.2
SVMg 0.723 (0.094) 67.6 (8.3) 81.8 (9.8) 49.1 (13.6) 0.72 61.5 84.6 38.5
KNNh 0.669 (0.089) 63.8 (6.1) 76.2 (9) 48.3 (11.1) 0.76 69.2 84.6 53.8
ANNi (64x32) 0.690 (0.085) 66.7 (7) 77 (8.6) 55.4 (10.9) 0.65 65.0 54.0 77.0

aAUC-ROC: area under the receiver operating characteristic curve.

bLR: logistic regression.

cBNC: Bayesian naive classification.

dRF: random forest.

eGBT: gradient-boosted tree.

fXGB: XGBoost.

gSVM: support vector machine.

hKNN: k-nearest neighbor.

iANN: artificial neural network.