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Abstract

Lymphoma risk is elevated for relatives with common non-Hodgkin lymphoma (NHL) subtypes, 

suggesting shared genetic susceptibility across subtypes. To evaluate the extent of mutual 

heritability among NHL subtypes and discover novel loci shared among subtypes, we analyzed 

data from eight genome-wide association studies within the InterLymph Consortium, including 

10,629 cases and 9,505 controls. We utilized Association analysis based on SubSETs (ASSET) 

to discover loci for subsets of NHL subtypes and evaluated shared heritability across the genome 

using Genome-wide Complex Trait Analysis (GCTA) and polygenic risk scores. We discovered 17 

genome-wide significant loci (P<5 × 10−8) for subsets of NHL subtypes, including a novel locus at 

10q23.33 (HHEX) (P = 3.27 × 10−9). Most subset associations were driven primarily by only one 

subtype. Genome-wide genetic correlations between pairs of subtypes varied broadly from 0.20 

to 0.86, suggesting substantial heterogeneity in the extent of shared heritability among subtypes. 

Polygenic risk score analyses of established loci for different lymphoid malignancies identified 

strong associations with some NHL subtypes (P<5 × 10−8), but weak or null associations with 

others. Although our analyses suggest partially shared heritability and biological pathways, they 
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reveal substantial heterogeneity among NHL subtypes with each having its own distinct germline 

genetic architecture.

Introduction

Non-Hodgkin lymphoma (NHL) is the most common hematological malignancy worldwide, 

representing 2.8% of all cancers diagnosed.1 It is comprised of over fifty subtypes 

with distinct morphologic, genetic, and clinical features.2 Although all lymphomas arise 

from lymphocytic clones, they have arrested at different stages of development, and the 

etiology of different subtypes may be similar in some aspects and quite unique in others. 

Epidemiologic studies show that some environmental, medical, and lifestyle factors are 

shared across subtypes, but there is also significant heterogeneity in etiology.3 For example, 

human immunodeficiency virus (HIV) infection is strongly associated with an elevated risk 

of NHL, especially AIDS-defining NHL subtypes, such as diffuse large B-cell lymphoma 

(DLBCL), whereas it is not associated with risk of other subtypes, such as mantle cell 

lymphoma and chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL).4 

Family history of lymphoid malignancy is a consistent risk factor for all common NHL 

subtypes, suggesting a shared genetic component.5 Stronger associations have been observed 

for first degree relatives with the same NHL subtype, which could reflect some subtype 

specificity in risk.6

To date, genome-wide association studies (GWAS) have identified over 60 susceptibility 

loci for specific NHL subtypes, including CLL, DLBCL, follicular lymphoma (FL), 

and marginal zone lymphoma (MZL).7–18 These studies suggest some common 

genetic susceptibility regions among subtypes. For example, genetic variants within 

the human leukocyte antigen (HLA) region are associated with multiple lymphoma 

subtypes.7, 9, 13, 18–22 The HLA-B*08:01 allele, which is associated with other immune-

related diseases,23, 24 is associated with an increased risk of both DLBCL and MZL.7, 9 

Outside the HLA region, some genetic loci appear to be shared by NHL subtypes 

(e.g., chromosome 18q21.33 (BCL2) for CLL and FL),8, 10 but the extent of pleiotropy 

and shared heritability is unclear. Some NHL loci are also located in regions where 

variants have been reported for other lymphoid malignancies, such as Hodgkin lymphoma 

(HL), acute lymphoblastic leukemia (ALL), and multiple myeloma (MM). For example, 

germline variants at chromosome 9p21.3 (CDKN2A) have been linked to CLL, MM, and 

ALL,10, 25–27 SNPs within the same linkage disequilibrium block at chromosome 8q24 

have been identified for HL, FL, and DLBCL,7, 8, 21 , and a SNP at 6p25.3 (EXOC2) was 

discovered to be associated with both DLBCL and Waldenström’s macroglobulinemia.7, 28 

These observations suggest that there may be shared genetic factors across lymphoid 

malignancies.

We sought to explore pleiotropy and shared heritability among four common NHL subtypes 

(CLL, DLBCL, FL, and MZL) and to discover new loci that may be associated with 

subgroups of NHL or lymphoid malignancies more generally using data from GWAS.7–10 

Specifically, we sought to identify new loci that previously had not been identified for 

any lymphoma subtype, perhaps because they failed to reach genome-wide significance for 
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any one subtype. We also sought to determine the extent to which different NHL subtypes 

share the same underlying genetic susceptibility. Understanding the genetic architecture of 

NHL subtypes can provide insight into common biological mechanisms as well as pathways 

specific to individual subtypes.

Methods

Study Population

To explore pleiotropy across NHL subtypes and discover new loci for NHL susceptibility, 

we utilized data from eight previous GWAS of NHL within the InterLymph Consortium 

(Supplementary Table 1).7–10, 13, 18, 29–32 NHL subtype was harmonized centrally at the 

InterLymph Data Coordinating Center according to the hierarchical classification proposed 

by the InterLymph Pathology Working Group based on the World Health Organization 

(WHO) classification (2008).33 Across the eight GWAS, there were 3,100 CLL cases, 

3,857 DLBCL cases, 2,847 FL cases, and 825 MZL cases, and 9,505 controls of European 

ancestry (Supplementary Table 2), providing adequate power to detect moderate effects. All 

studies obtained informed consent from participants, and the study was approved by the 

appropriate Institutional Review Boards at each institution. 7–10, 13, 18, 29–32

Genotyping

Genotyping for the eight GWAS was done using Illumina and Affymetrix arrays, and 

standard quality control metrics were applied to each GWAS (Supplementary Table 

3).7–9, 11 Samples with poor call rates, gender discordance, abnormal heterozygosity, or 

of non-European ancestry were excluded, and SNPs with low call rates or Hardy-Weinberg 

equilibrium p-value < 1 × 10−6 were removed. Principal components analysis was used to 

evaluate population stratification for each GWAS (Supplementary Figure 1), and outliers 

were removed. Imputation was conducted separately for each GWAS using the 1000 

Genomes Project version 3 (March 2012 release) as the reference panel. Poorly imputed 

SNPs (INFO score <0.3) and SNPs with minor allele frequency <1% were excluded from 

each study, leaving roughly ~8.5 million SNPs for analysis. The genotype data for the NCI 

NHL GWAS is available at dbGap (phs000802.v2.p1).

Association Testing

Association testing was conducted for each NHL subtype and each GWAS separately using 

SNPTEST version 2, adjusting for age, sex (except for UCSF1/NHS), and significant 

principal components (P<0.05 in null model with age and sex). Lambdas for each study 

are provided in Supplementary Table 3. For NHL subtype with more than one available 

GWAS, meta-analyses were performed using the fixed effects inverse variance method based 

on the beta estimates and standard errors from each GWAS. For each previously published 

susceptibility SNP, we evaluated the risk across the four NHL subtypes.

ASSET: Discovery and Replication of New NHL Loci

To explore pleiotropy among four common NHL subtypes and discover novel loci for unique 

subsets of NHL subtypes, we utilized Association analysis based on SubSETs (ASSET) 

analysis, which explores all possible combinations of subsets and chooses the subset with 
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the maximum test statistic (e.g., most significant p-value).34 The statistical significance of 

the best subset is then adjusted for the optimization (e.g., multiple testing). For the ASSET 

analysis, we used the summary statistics from the subtype-specific analysis or meta-analysis. 

We limited the analysis to SNPs with info score (>0.6) and minor allele frequency ≥ 1% 

and adjusted for the use of shared controls within the analysis. For the discovery, SNPs that 

were at least 500kb from the index SNP of an established locus for any NHL subtype with a 

P<1×10−6 were considered potentially novel loci.

Four potential novel loci from the ASSET analysis with P<1×10−6 (rs11187157, 

rs12127426, rs34517439, rs9421684) were taken forward for replication using TaqMan 

custom genotyping assays (Applied Biosystems). All four SNPs were well imputed in 

the discovery with average info scores of 0.78–0.99 across the different SNP arrays. 

Independent replication of the SNPs was undertaken in 4,468 additional cases, including 

1,404 CLL, 1,259 DLBCL, 1,351 FL and 454 MZL cases, and 2,185 controls of European 

ancestry from four different studies (Supplementary Tables 4 and 5). Genotyping was 

conducted separately at each study center with appropriate quality control metrics. For each 

study, association testing was conducted for each subtype and for each subset identified from 

ASSET, adjusting for age and sex (and Ashkenazi ancestry for MSKCC). The subtype- and 

subset-specific results from the replication studies were meta-analyzed together and with the 

discovery results using an inverse variance fixed effects model.

Meta-Analyses: NHL and other lymphoid malignancies

To discover additional loci for NHL and lymphoid malignancies, we conducted a meta-

analysis of available GWAS, including the eight NHL GWAS. For GWAS with multiple 

NHL subtypes using the same set of controls (e.g., NCI NHL, UCSF2), association testing 

was conducted for all NHL subtypes combined, adjusting for age, sex, and significant 

principal components, in a single analysis and then meta-analyzed with the other GWAS. In 

addition, we obtained association results from previous GWAS meta-analyses of MM and 

HL.35, 36 The MM results included 1,318 cases and 1,480 controls of European ancestry, 

imputed using the 1000 Genomes Project reference panel. The HL results included 1,816 

cases and 7,877 controls of European ancestry, imputed using the HapMap Phase III and 

1000 Genomes Project reference panels. The NHL, MM, and HL GWAS were then meta-

analyzed using a fixed effects meta-analysis.

Heritability Analyses

To estimate the heritability based on common SNPs (both known and unknown) for 

individual NHL subtypes and the shared heritability between NHL subtypes, we utilized 

Genome-wide Complex Trait Analysis (GCTA),37, 38 which quantifies the contribution of a 

set of SNPs to the heritability of a trait on the liability threshold scale. For this analysis, we 

used all genotyped SNPs in the NCI NHL GWAS. Additional quality control metrics were 

implemented to limit cryptic relatedness, and the analysis was adjusted for age, sex, and 

principal components. For interpretability, we transformed our estimates of heritability on 

the liability threshold scale to familial relative risks.39
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Biological Pathways

To explore potential underlying biological pathways, we used Data-driven Expression 

Prioritized Integration for Complex Traits (DEPICT),40 which is a method that 

systematically prioritizes genes, tissues/cell types, and pathways for associated genetic loci 

based on co-regulation and gene expression data from a large compilation of microarrays. 

For each of the four NHL subtypes, we used the most significant independent loci with 

P < 1 × 10−5 from the genome-wide summary statistics (e.g., meta-analysis) and tested 

for gene, tissue/cell type, and pathway enrichment. We used Functional element Overlap 

analysis of the Results of Genome Wide Association Study (GWAS) Experiments 2 

(FORGE2)41 to evaluate cell type-specific enrichment for regulatory elements for NHL 

subtype. FORGE2 utilizes epigenetic data from ENCODE, BLUEPRINT and Roadmap and 

tests for enrichment for overlap with putative functional elements among GWAS SNPs 

compared to a matched set of background SNPs.

Polygenetic risk score analysis

To further explore pleiotropy across NHL subtypes and other lymphoid malignancies, we 

generated polygenic risk scores using the established loci for each lymphoid malignancy 

and tested for association within the eight NHL GWAS. A list of the 119 established loci 

used for generating the polygenic risk scores can be found in Supplementary Table 6. The 

polygenic risk scores were calculated by multiplying the reported beta coefficient for each 

known SNP by the allelic dosage for the SNP and then summing these products across all 

established SNPs for each subtype or lymphoid malignancy. Logistic regression was used to 

test the association between each polygenic risk score and each of the four NHL subtypes, 

adjusting for age, sex, and principal components. Analyses were done separately by subtype 

and GWAS and then meta-analyzed using a fixed effects model.

Results

ASSET: Discovery and Replication

To evaluate pleiotropy across the four NHL subtypes (CLL, DLBCL, FL, and MZL) 

and discover new loci, we conducted an analysis using ASSET34 and data from eight 

genome-wide association studies, including 10,629 cases, and 9,505 controls of European 

ancestry. We discovered enrichment for small p-values for the best subsets at each SNP 

(Supplementary Figure 2). This enrichment was driven largely by the established loci for 

specific subtypes, and removal of SNPs within +/− 500kb of the established loci of the 

four subtypes resulted in substantial attenuation. A total of 17 loci reached genome-wide 

significance (P<5 × 10−8) in the ASSET analysis, many of which were driven primarily by 

one subtype and had been previously reported for that subtype (Supplementary Table 7). The 

10q23.1 locus, which was identified for the subset of DLBCL, FL, and MZL, was novel 

(P=2.40×10−8). Three other promising novel loci with lower significance (P<1×10−6) were 

also noted at 1p31.1, 1q44 and 10q23.33.

The 10q23.1 locus and the three other promising novel loci (P<1×10−6) were taken 

forward for replication in an independent set of 4,468 additional cases and 2,185 controls 

of European ancestry (Supplementary Table 8). Of the four loci, only the 10q23.33 
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locus (rs11187157) replicated and achieved genome-wide significance in the combined 

discovery and replication analysis for the identified subset (OR=1.15, 95%CI: 1.10–1.21, 

P=3.27×10−9) (Table 1, Figure 1). Although ASSET identified the subset containing the 

three subtypes, CLL, FL, and MZL, as the most significant subset, the replication results 

suggested that the association was largely driven by CLL (OR=1.27, 95%CI: 1.14–1.40, 

P=4.36×10−6). Associations for FL and MZL were weaker (OR=1.06, 95% CI: 0.95–3.19, 

P=0.30, and OR=1.06, 95%C: 0.90–3.41, P=0.47, respectively). The 10q23.33 locus reached 

genome-wide significance for CLL, independently of the other subtypes, in the combined 

discovery and replication analysis (OR=1.19, 95% CI: 1.13–1.26, P=2.05×10−10), making it 

a newly discovered locus for CLL.

Meta-analyses

Although ASSET has greater statistical power if there is heterogeneity among the subtypes, 

it can have less power than a standard meta-analysis if the associations across subtypes 

are homogeneous.34 To identify additional new loci for NHL that may have been 

missed in the ASSET analysis, we conducted a standard meta-analysis of the four NHL 

subtypes. We identified 15 loci that reached genome-wide significance using this approach 

(Supplementary Table 9), which is slightly less than what we discovered using ASSET. 

Thirteen of these loci had been previously reported for at least one NHL subtype, and two 

had been identified earlier through the ASSET analysis but failed to replicate.

To discover loci for lymphoid malignancies more generally, we further meta-analyzed 

our NHL results with summary results for MM and HL. We discovered 15 genome-wide 

significant loci in this larger meta-analysis (Supplementary Table 10). Twelve of these 

loci had reached genome-wide significance in our NHL meta-analysis, and 13 had been 

previously reported for at least one lymphoid malignancy. The remaining two loci had been 

discovered previously through the ASSET analysis but failed to replicate (Supplementary 

Table 8).

Shared heritability

Using GCTA,37, 38 we estimated the heritability based on common SNPs of each of the 

four NHL subtypes and NHL overall. The estimated heritability ranged from 0.24 (95%CI: 

0.18–0.30) for CLL to 0.08 (95% CI: 0–0.19) for MZL with an estimate of 0.10 (95% CI: 

0.07–0.14) for the four NHL subtypes combined (Table 2). We transformed our heritability 

estimates to familial relative risks (FRR) and observed FRRs from 2.47 (95% CI: 2.01–

3.00) for CLL to 1.40 (95% CI: 1.15–1.69) for DLBCL. No significant differences in 

heritability were observed by sex. Common variants (MAF > 20%) contributed more to the 

heritability for CLL than for MZL (Supplementary Figure 3). Examination of the genetic 

correlations among the four NHL subtypes revealed a broad range of correlations from 0.20 

to 0.86 (Figure 2a, Supplementary Table 11). Significant positive correlations were observed 

between CLL and MZL (rG=0.70; SE=0.33) and between CLL and DLBCL (rG=0.54; 

SE=0.26).
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Biological pathways

To explore common biological pathways across the four NHL subtypes, we used DEPICT40 

and FORGE2.41 Using FORGE2, we discovered CD20+ cells were enriched for DNase 

I hotspots for FL and CLL, but a different subgroup of B-cells displayed enrichment 

for DLBCL and MZL (Supplementary Figure 4), suggesting that distinct subgroups of 

regulatory elements from different cell types inform NHL etiology. Patterns of gene 

expression by cell/tissue type also varied across NHL subtypes (Supplementary Figure 

5). We observed enrichment for gene expression in multiple cell types and tissues for 

CLL, including cells in blood and immune system (FDR<0.01). Although we did not find 

significant cell/tissue enrichment for the other NHL subtypes, nominal associations were 

observed for T lymphocytes for DLBCL and spleen tissue for MZL among others. When 

we tested for gene sets using DEPICT, we discovered enrichment for gene sets related to 

negative T-cell and thymic selection for DLBCL (FDR<0.05) (Supplementary Table 12). No 

significant gene set enrichment was seen with CLL, FL, or MZL, but nominal associations 

were observed for antigen processing and presentation, MHC class I receptor activity and 

apoptosis for CLL.

Pleiotropy Across Lymphoid Malignancies

To explore pleiotropy among NHL subtypes, we examined the associations between the 

established loci for individual lymphoid malignancies and risk of the four NHL subtypes 

(e.g. CLL, FL, DLBCL, and MZL). Figure 2b shows a heat plot of the associations 

with the sentinel SNP at each established locus based on directional z-scores. Apart 

from CLL (P=0.30), the results for DLBCL, FL and MZL showed more loci with the 

same direction of effect as previously reported for a different lymphoid malignancy than 

would be expected by chance (P=1.47×10−7, P=8.98×10−5, and P=0.0002, respectively). 

All four subtypes displayed more SNPs with the same direction of effect and P<0.05 

than expected by chance (P=0.0002, P=4.46×10−7, P=3.26×10−7, and P=0.01 for CLL, 

DLBCL, FL, and MZL, respectively). After adjustment for multiple testing, 21 SNPs were 

found to be significantly associated with at least one other NHL subtype in addition to 

the lymphoid malignancy originally reported (Supplementary Table 6); however, in most 

cases, this was because the SNP was located near an established locus for that subtype 

and in linkage disequilibrium. Some potentially novel associations for future follow-up 

include chromosome 3p24.1 (rs3806624, EOMES) and FL (OR=1.15, 95%CI: 1.08–1.22, 

P=2.46×10−5) and chromosome 16q23.1 (rs7193541, RFWD3) and CLL (OR=1.11, 95%CI: 

1.05–1.19, P=0.0006).

To further explore across lymphoid malignancies, we generated polygenic risk scores 

comprised of the established loci for each lymphoid malignancy (Supplementary Table 

6) and tested for association with risk for the four NHL subtypes (Table 3). Association 

testing revealed significant shared genetic risk among the DLBCL, FL, and MZL subtypes 

in particular, but no associations with MM or acute lymphoblastic leukemia. Genome-wide 

significant positive associations (P<5×10−8) were observed for polygenic risk scores based 

on the known loci for DLBCL and the risk of FL and MZL and for polygenic risk scores 

of CLL, FL, MZL, and Waldenström Macroglobulinemia (WM) and the risk of DLBCL. 

The polygenic risk score comprised of HL loci was inversely associated with FL risk 
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(P=8.20×10−6), largely due to the strong negative association between the HLA risk alleles 

and FL risk.

Discussion

In this large international collaborative effort within the InterLymph Consortium, we provide 

the first comprehensive evaluation of pleiotropy among four common NHL subtypes. We 

demonstrate that there is some pleiotropy and shared heritability among NHL subtypes; 

however, each subtype appears to have its own distinct genetic architecture. None of 

the genetic loci identified to date appear to be associated with all four NHL subtypes. 

Analyses including other common lymphoid malignancies, MM and HL, further support the 

hypothesis that genetic susceptibility varies by subtype.

We identified one novel locus at chromosome 10q23.33 (rs11187157) for a subset of NHL 

subtypes; however, the association was strongest and genome-wide significant for CLL risk. 

rs11187157 is located approximately 42kb downstream of the hematopoietically expressed 

homeobox (HHEX) gene and 88kb upstream of the exocyst complex component 6 (EXOC6) 

gene. In animal models, HHEX is an important regulator of hematopoietic development 

and is necessary for the maturation and proliferation of the earliest definitive hematopoietic 

progenitors.42 HHEX has been shown to be critical in lymphopoiesis43 and differentially 

active in naïve B-cells, germinal center B-cells, and memory B-cells.44 HHEX is 

overexpressed in leukemia45 and lymphoma44 cell lines. Studies in acute myeloid leukemia 

suggest its aberrant expression may contribute to disease pathogenesis through multiple 

mechanisms including differentiation blockade and by fostering epigenetic repression of 

the CDKN2A tumor suppressor locus.46 Although rs11187157 may not be the functional 

genetic variant responsible for the association, it lies in a DNase 1 hypersensitivity site for 

multiple cell lines, including CD20+ (normal B cell), CD14+ (monocytes), mobilized CD34+ 

hematopoietic progenitor cells, many HapMap B-cell lymphoblastoid lines, and 3 leukemia 

cells lines (CLL, HL-60 and NB4 promyelocytic leukemia). Rs11187157 is significantly 

associated with HHEX gene expression in lymphoblastoid cell lines47 and blood.48 In 

addition, it resides in a transcription binding site for many transcription factors, including 

IRF4 in B-lymphocyte lymphoblastoid lines, and SNPs in IRF4 have previously been 

identified as associated with CLL and HL.15, 49 Moderate signals for histones H3K4Me1 

and H3K27ac in the general region indicate the possibility for an enhancer role.

Our findings of distinctly different patterns of association with some shared heritability 

are consistent with observational studies of environmental and lifestyle risk factors, which 

suggest some common risk factors but substantial heterogeneity among NHL subtypes 

with some risk factors being subtype-specific.3 Although 17 loci reached genome-wide 

significance in our ASSET analysis and 15 loci were genome-wide significant in our 

meta-analysis, most of these were driven primarily by one subtype. Those with nominally 

significant contributions by more than one subtype included 2q13 (ACOXL/BCL2L11), 

3p24.1 (EOMES), 3q13.33 (CD86), 6p21.32 (HLA-DQA1), 8q24.21 (PVT1), and 18q21.33 

(BCL2). Although the 2q13 locus had been previously identified for CLL, the ASSET 

analysis revealed that the subset including MZL was significant. The association with MZL 

may be spurious; however, BCL2L11, which encodes the pro-apoptotic protein Bim, has 
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been shown to be deregulated in CLL and MZL.50 The most significant SNP at 3q13.33 

in our ASSET analysis was rs2681416, which failed to replicate for both DLBCL and FL 

in our previous GWAS.7, 8 Another SNP at 3q13.33, rs9831894, which is only modestly 

correlated with rs2681416 (r2=0.23), also reached genome-wide significance (P=1.93×10−9) 

in our ASSET analysis with both DLBCL and FL contributing to risk. We recently replicated 

the observed association between rs9831894 at 3q13.33 and DLBCL risk in an independent 

set of cases and controls.51 rs9831894 is located near CD86, which encodes a member of 

the immunoglobulin superfamily that negatively regulates T-cell activation by binding to 

cytotoxic T-lymphocyte-associated protein 4 and augments B-cell activity.52

Similar to our study, Law et al. used ASSET to examine pleiotropy between CLL, multiple 

myeloma, and Hodgkin lymphoma and reported one novel locus associated with opposing 

risk associations for CLL and Hodgkin lymphoma.53 We did not observe evidence for this 

locus for CLL (rs11715604, P=0.69) or Hodgkin lymphoma (rs13075615, r2=0.81, P=0.92) 

in our study; no association was observed for the other NHL subtypes (Supplementary 

Table 6). We were unable to include MM and HL in our ASSET analysis; however, we 

were able to conduct a meta-analysis of MM, HL, and four common NHL subtypes. Our 

meta-analysis yielded 15 genome-wide significant loci for lymphoid malignancies. Most loci 

had previously been identified for at least one subtype, suggesting little discovery gain by 

combining subtypes.

Examination of individual associations with published loci for lymphoid malignancies 

showed more SNPs with the same direction of effect and P<0.05 than would be expected 

by chance for the four NHL subtypes. These findings are consistent with the study by Went 

et al. that suggested shared risk loci between CLL and MM may be enriched for B-cell 

regulatory elements.54 Polygenic risk score analyses with established NHL loci showed 

genome-wide significant associations for multiple NHL subtypes, suggesting significant 

pleiotropy; however, the magnitude of the risks varied among subtypes. We observed very 

little or no association with risk scores based on the established loci for ALL, HL, and MM, 

suggesting more limited pleiotropy with other lymphoid malignancies.

Heritability analyses revealed a broad range of genetic correlations between NHL subtype 

pairs ranging from 0.20 to 0.86, suggesting some shared heritability among subtypes, but 

substantial etiologic differences as well. If the genetic etiology of all four NHL subtypes 

was highly shared, one might expect all genetic correlations to be >0.7 or 0.8, but we 

did not find this to be true. The positive genetic correlations were statistically significant 

between CLL and MZL and between CLL and DLBCL, the latter of which was previously 

reported.39 These findings suggest that there may be some shared biological pathways 

for these subtypes. We were unable to estimate the shared genetic correlation with other 

lymphoid malignancies using LD score regression due to relatively small sample sizes 

(N<10,000 cases), but partitioning heritability by regulatory markers might yield additional 

insight.

Our analysis was limited to participants of European ancestry, so the results may not 

be generalizable to other populations. A previous GWAS reported an association at 

chromosome 3q27 and risk of B-cell lymphoma in Chinese.55 We observed a nominal 
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association between rs6773854 and B-cell lymphoma risk in our meta-analysis of four NHL 

subtypes (P=0.01). Our analysis of NHL was limited to four common B-cell subtypes and 

may not be reflective of B-cell lymphoma risk in the general population. However, these 

four subtypes comprise the vast majority of NHL cases, so the bias is likely small. Our study 

also suggests that many loci are subtype-specific and so unbiased estimates of associations 

for B-cell lymphoma may be of less importance. Finally, our results assume that these four 

subtypes are homogeneous; however, there may etiologically distinct molecular or biologic 

subtypes in these groups, such as by cell of origin or MYC status for DLBCL. Further 

subtyping may reveal additional heterogeneity in etiology.

In conclusion, our evaluation of the genetic etiology of NHL demonstrated that there is 

shared heritability and pleiotropy among common NHL subtypes (i.e., CLL, FL, DLBCL, 

MZL); however, many of the loci identified in our ASSET analysis and B-cell meta-analyses 

appeared to be driven primarily by one specific subtype. Indeed, the novel locus we 

discovered for a subset of NHL subtypes at chromosome 10q23.33 was strongly associated 

with CLL, in particular. Although additional studies are needed to fully elucidate the genetic 

architecture of NHL, our study suggests that genetic susceptibility to NHL is complex 

with some overlapping loci but with substantial heterogeneity among subtypes for common 

variants. This is consistent with studies of environment and lifestyle risk factors and specific 

NHL subtypes. Future studies are needed to further clarify which exogenous and genetic risk 

factors contribute to the etiology of multiple NHL subtypes, which are subtype-specific, and 

what are the underlying biological mechanisms of each pattern. Further, larger studies will 

be able to investigate pleiotropy with rarer variants and rarer NHL subtypes.
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Figure 1. Regional association plot of novel locus at chromosome 10q23.33 (rs11187157) for the 
NHL subset of CLL, FL, and MZL.
Shown are the -log10 association P values from the discovery log-additive genetic model for 

all SNPs in the region (dots) and rs11187157 (diamond). The lead SNP is shown with results 

from both the discovery (dark purple diamond) and combined discovery and replication 

(light purple diamond) analyses. Estimated recombination rates from the 1000 Genome 

Project are plotted in blue. Locations of recombination hotspots are depicted by peaks 

corresponding to the rate of recombination. The SNPs surrounding the most significant SNP 

are color-coded to reflect their r2 correlation with the lead SNP. Pairwise r2 values are from 

European ancestry subjects in the 1000 Genomes Project. Genes, position of exons and 

direction of exons and direction of transcription from UCSC genome browser are denoted. 

Plot was generated using LocusZoom.
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Figure 2. Shared genetic correlations and pleiotropy among four NHL subtypes (CLL, DLBCL, 
FL, and MZL).
a) Shared genetic correlations based on GCTA analysis. b) Heat plot of directional 

Z-scores of associations with sentinel SNPs at established genetic loci for individual 

lymphoid malignancies [e.g., chronic lymphocytic leukemia (CLL), diffuse large B-cell 

lymphoma (DLBCL), follicular lymphoma (FL), marginal zone lymphoma (MZL), multiple 

myeloma (MM), acute lymphocytic leukemia (ALL), Hodgkin lymphoma (HL)]. Red color 
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indicates positive association/correlation, and blue indicates inverse or negative association/

correlation.
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Table 2.

Heritability and familial relative risk estimates* for four NHL subtypes, individually and combined

hL
2 (95% CI) FRR (95% CI)

NHL Subtype

CLL 0.24 (0.18–0.30) 2.47 (2.01–3.00)

FL 0.16 (0.10–0.22) 1.92 (1.54–2.38)

DLBCL 0.09 (0.04–0.15) 1.40 (1.15–1.69)

MZL 0.08 (0–0.19) 1.46 (0.84–2.43)

NHL Overall 0.10 (0.07–0.14) 1.35 (1.21–1.49)

*
hL2 is the estimated heritability based on the liability scale. FFR is the estimated familial relative risk.

Abbreviations: non-Hodgkin lymphoma (NHL), chronic lymphocytic leukemia (CLL), follicular lymphoma (FL), diffuse large B-cell lymphoma 
(DLBCL), marginal zone lymphoma (MZL)
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Table 3.

Risk of four NHL subtypes associated with polygenic risk scores* for eight lymphoid malignancies

NHL Subtype

CLL DLBCL FL MZL

OR (95%CI) OR (95%CI) OR (95%CI) OR (95%CI)

PRS based on 43 CLL SNPs 2.17 (2.07–2.28) 1.17 (1.12–1.22) 1.12 (1.07–1.17) 1.15 (1.07–1.24)

3.42E-222 1.26E-14 1.01E-06 0.0002

PRS based on 5 DLBCL SNPs 1.33 (1.14–1.54) 2.69 (2.35–3.08) 1.66 (1.42–1.94) 2.10 (1.63–2.72)

0.0002 2.53E-46 2.02E-10 1.25E-08

PRS based on 7 FL SNPs 1.07 (0.98–1.17) 1.28 (1.19–1.39) 2.77 (2.52–3.04) 0.94 (0.81–1.09)

0.12 4.97E-10 2.15E-100 0.41

PRS based on 2 MZL SNPs 1.26 (1.09–1.46) 1.53 (1.34–1.75) 1.39 (1.21–1.61) 2.43 (1.93–3.06)

0.002 7.27E-10 6.48E-06 4.00E-14

PRS based on 2 WM SNPs 1.07 (1.01–1.14) 1.24 (1.18–1.31) 1.12 (1.05–1.19) 1.18 (1.07–1.30)

0.02 3.35E-16 0.0007 0.0009

PRS based on 24 MM SNPs 1.09 (1.02–1.16) 0.98 (0.93–1.04) 1.01 (0.95–1.09) 1.05 (0.94–1.18)

0.01 0.56 0.70 0.38

PRS based on 15 ALL SNPs 0.95 (0.90–1.00) 0.99 (0.94–1.04) 1.01 (0.95–1.06) 1.02 (0.93–1.12)

0.06 0.62 0.87 0.62

PRS based on 21 HL SNPs 1.02 (0.97–1.08) 1.07 (1.02–1.13) 0.88 (0.83–0.93) 1.05 (0.96–1.16)

0.43 0.006 8.20E-06 0.28

*
Polygenic risk scores (PRS) based on previously reported loci for eight lymphoid malignancies [chronic lymphocytic leukemia (CLL), diffuse 

large B-cell lymphoma (DLBCL), follicular lymphoma (FL), marginal zone lymphoma (MZL), Waldenström’s macroglobulinemia (WM), multiple 
myeloma (MM), pediatric acute lymphoblastic leukemia (ALL), and Hodgkin lymphoma (HL)]. Odds ratios, 95% confidence intervals and 
p-values are provided. Bold indicates significance after adjustment for multiple testing.
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