Skip to main content
. 2023 Jul 12;13(31):21127–21137. doi: 10.1039/d3ra00796k

Physiochemical properties of all α-benzyl amino coumarin derivatives (1–24).

Entry MWa LogPb HBDc HBAd TPSAe (Å) RBf Lipinski/Veber violation
1 335.4 3.04 1 4 53.68 3 0
2 369.84 3.62 1 4 53.68 3 0
3 369.84 3.52 1 4 53.68 3 0
4 349.42 3.26 1 4 53.68 3 0
5 349.42 3.26 1 4 53.68 3 0
6 365.42 2.69 1 5 62.91 4 0
7 391.50 3.89 1 4 53.68 4 0
8 380.39 2.08 1 6 99.5 4 0
9 404.29 4.01 1 4 53.68 3 0
10 414.29 3.63 1 4 53.68 3 0
11 321.37 2.381 1 4 53.68 3 0
12 400.27 3.41 1 4 53.68 3 0
13 355.81 3.30 1 4 53.68 3 0
14 366.37 1.85 1 6 99.50 4 0
15 335.40 3.04 1 4 53.68 3 0
16 351.40 2.48 1 5 62.91 4 0
17 366.67 1.85 1 6 99.50 4 0
18 337.37 1.93 1 5 62.91 3 0
19 416.27 2.59 1 5 62.91 3 0
20 371.81 2.48 1 5 62.91 3 0
21 382.37 1.06 1 7 108.73 4 0
22 351.40 2.21 1 5 62.91 3 0
23 406.26 2.96 1 5 62.91 3 0
24 402.26 2.96 1 5 62.91 3 0
Lipinski/Veber's rules ≤ 500 ≤ 5 ≤ 5 ≤ 10 ≤ 140 ≤ 10 ≤ 1
a

Molecular weight (MW).

b

Logarithm of partition coefficient between n-octanol and water (logP).

c

Number of hydrogen bond donors (HBD).

d

Number of hydrogen bond acceptors (HBA).

e

Topological polar surface area (TPSA).

f

Number of rotatable bonds (RB).