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Measuring the relative effect that any two sequence positions
have on each other may improve protein design or help better
interpret coding variants. Current approaches use statistics and
machine learning but rarely consider phylogenetic divergences
which, as shown by Evolutionary Trace studies, provide insight
into the functional impact of sequence perturbations. Here, we
reframe covariation analyses in the Evolutionary Trace frame-
work to measure the relative tolerance to perturbation of each
residue pair during evolution. This approach (CovET) system-
atically accounts for phylogenetic divergences: at each diver-
gence event, we penalize covariation patterns that belie
evolutionary coupling. We find that while CovET approximates
the performance of existing methods to predict individual
structural contacts, it performs significantly better at finding
structural clusters of coupled residues and ligand binding sites.
For example, CovET found more functionally critical residues
when we examined the RNA recognition motif and WW do-
mains. It correlates better with large-scale epistasis screen data.
In the dopamine D2 receptor, top CovET residue pairs recov-
ered accurately the allosteric activation pathway characterized
for Class A G protein-coupled receptors. These data suggest
that CovET ranks highest the sequence position pairs that play
critical functional roles through epistatic and allosteric in-
teractions in evolutionarily relevant structure-function motifs.
CovET complements current methods and may shed light on
fundamental molecular mechanisms of protein structure and
function.

Covariation analysis probes the multiple sequence align-
ment of a protein family to search for sequence positions
whose mutational pattern of variations are not independent.
Since most compensatory couplings are thought to arise from
structurally neighboring residues, covariant residue positions
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have been sought to predict structural contacts and thus
constrain the search space of possible protein folds toward de
novo computational structure prediction (1–6). AlphaFold
(7, 8) and RoseTTAFold (9) both use covariation among many
other training features in the context of machine learning.

The assumptions of structural proximity and compensatory
mutations in covariation analysis bear closer scrutiny, how-
ever. First, concerted motions within a protein may lead to
allosteric interactions. As a result, compensatory mutations
may occur between structurally distant protein residues (10–
12). Second, coupled residues must not necessarily undergo
compensatory mutations during evolution. In fact, phyloge-
netic divergence involves changes in functional aptitude, with
larger changes between increasingly distant species. Accord-
ingly, mutational perturbations are increasingly less likely to be
compensated between evolutionary distant orthologs—since
mutation is precisely the instrument of evolution. These allo-
steric and evolutionary caveats are likely to impact the analysis
of large protein sequence alignments but are not accounted for
by current covariation algorithms in their search for coupled
pairs of residues in structural contact (13, 14).

Therefore, we used the Evolutionary Trace (ET) framework
to better account for phylogenetics in covariation analysis of
structural contacts, allosteric interactions, and epistasis
following a prior but different effort (15, 16). ET ranks every
sequence position by its relative tolerance or sensitivity to
mutation by correlating sequence variations with phylogenetic
divergences between species. This approach has helped predict
protein binding sites (17, 18), design separation of function
mutations (19–22), annotate and alter protein function (23–
36), design inhibitors (37, 38), and identify residues involved
in diseases (39, 40). ET algorithms iteratively divide a multiple
sequence alignment into progressively smaller sequence
groupings following the branching pattern of the phylogenetic
tree, penalizing each grouping by the total amount of entropy
in each group. Accordingly, positions with patterns of varia-
tions that track closely with the evolutionary tree are deemed
to be most functionally significant and penalized least. Posi-
tions that vary irrespective of the evolutionary tree and are
deemed least important and penalized severely (17, 41). Here,
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CovET identifies protein structure–function modules
we reasoned that the same ET penalty scheme could be
extended to pairs of residue positions, as to measure how well
their variations are consistent with phylogenetic divergences.
And thus developed our new covariation algorithm, CovET,
which ranks the relative tolerance of residue pairs to mutations
using the ET framework.

We tested CovET on both a large scale and in specific
structures for its ability to predict structural features, func-
tional sites, allosteric interactions, and experimental data on
epistasis. We find that CovET not only identifies covarying
residues that correspond to individual structural contacts of
interest but outperforms other methods in the ability to
identify mutually clustered pairs of covarying residues that
reveal functional sites and pathways linked to allostery and to
epistasis. The code for CovET is open and freely available on
GitHub at: https://github.com/LichtargeLab/Covariation-ET.
Results

CovET method development

CovET uses the ET framework to identify phylogenetically
supported residue couplings. ET has the general form: ETi ¼PN

n¼1
1
n

Pn
g¼1xi, where i is a position or pair of positions, N is

the depth of the phylogenetic tree, n is a specific level in the
tree, g is a group of evolutionarily related sequences (repre-
sented by a branch in the tree), and xi is a scoring function for
residues at position i in group g in the phylogenetic tree. This
general algorithm captures the process of traversing the
CA

B

Figure 1. CovET Pipeline. A, CovET Equation, ij is a pair of residues, N is the n
group of the tree at division n, v is one of the 17,640 possible nonconcerted
variation v in group g. B, vertical dashed lines show division of the tree into gr
groups (g) from each division. C, the substitution matrix for each division in th
yellow and are used in the penalty function (right). The boxed regions of the ma
substitution matrix has two boxed regions, corresponding to the two groups in
pair is indicated by the + and - symbols, with + meaning variation and - meanin
concerted variation).
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phylogenetic tree from root to leaves (n ¼ 1 to N , represented
by vertical-colored lines in Figure 1B) and of characterizing
each group (g, represented by colored boxes in Fig. 1B) ac-
cording to a penalty function xi. CovET penalizes non-
concerted variations (AB > AC or AB > CB) between pairs of
residues according to the exponential of the Shannon entropy,
i.e., the diversity metric or perplexity, resulting in the final
formula in Equation 2 and Figure 1. v in the entropy calcula-
tion is any of the nonconcerted variations which can be
observed when comparing a pair of positions between one
sequence and another, a process highlighted in Figure 1C.
CovET ignores concerted variation (AB > CD) and conser-
vation (AB > AB) as neither is inconsistent with a coupling.
The score resulting from a simple characterized pair of posi-
tions ij is demonstrated in Figure 1C. We hypothesize that this
phylogenetic formulation will allow us to identify functionally
relevant residue couplings.

CovET preferentially identifies higher order protein structures
over local contacts

To test whether CovET identifies local structural contacts
(residues where Cβ are within 8 Å of each other, C⍺ for
glycine), we studied its rankings of residue pairs in 943 protein
families. ET and other alignment-based methods are inher-
ently sensitive to the alignment itself, so we used the Pfam
dataset to obtain a large, diverse protein set (42) (Table S1, see
Experimental Procedures for detail). We compared CovET
against standard methods: EVCouplings (13, 43) and DCA (44)
umber of sequences in the alignment, n is the division in the tree, g is the
variations in a 21 character alphabet, fijv is the frequency of nonconcerted
oups (blue n = 1, orange n = 2, green n = 6), boxed sequences are resulting
e tree. Instances of nonconcerted variation are shown in different shades of
trix represent the pairwise comparison, defined on a per group basis (second
the tree at that division). In each box the comparison of the residues in each
g conservation (i.e., ++ concerted variation, – conservation, and +- or -+ non-
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CovET identifies protein structure–function modules
as well as our previous covariation algorithm, ET-MIp which
used the same ET framework but used mutual information to
identify covariant residues (16). Based on the area under the
receiver operating curve (AUROC, Fig. 2A), CovET improved
over DCA and ET-MIp in predicting structural contacts,
especially in the medium and long-range categories (Fig. S1)
but was outperformed by EVCouplings. Based on the area
under the precision recall curve (AUPRC, Fig. 2B), which is
less sensitive to the class imbalance between positive and
negative cases, CovET only outperforms ET-MIp. Importantly,
all methods performed better than what would be expected
from a random predictor.

A hallmark of phylogenetic strategies to predict the func-
tional importance of individual residues is that the top pre-
dictions cluster structurally in 3D space (45–48), which would
be useful in higher order protein structure and function
determination. Therefore, we asked next whether covarying
residue pairs identified by CovET and other methods were
structurally random or clustered into subregions of structural
and functional importance. For this, we converted the pairwise
covariation scores for each of the 943 proteins in our Pfam
dataset to single residue scores (based on the order of first
appearance in a pair) and applied two complementary mea-
sures of structural clustering: the biased and unbiased selec-
tion cluster weighting (SCW) z-scores (41, 45, 46). Both scores
Figure 2. CovET recapitulates the performance of existing methods in p
clustered structurally. A, AUROC measured for all contacts (residues where Cβ
(B) shows the same contacts measured at the same sequence separation cate
class imbalance between contacts and noncontacts. The expected AUPRC valu
number of contacts/total residue pairs. AUPRC—Random evaluates whether th
(D) Selection cluster weighting (SCW) z-scores measured for each protein and e
clustering for most proteins, CovET shows significantly more clustering than DC
better clustering than the three other methods in biased SCW z-scores. E, the
than for any of the other methods assessed, confirming that the increase in b
further apart in primary sequences. Significance was measured using the paire
other methods, the comparison bars are colored red. AUPRC, area under the
measure how clustered a group of residues are on a given
protein structure, but the biased SCW z-score gives greater
weight to clusters of residues more distant in sequence. SCW
z-scores were measured for the top 30% of predicted residues
in accordance with previous studies (45, 46). While all
methods achieved significant clustering (unbiased SCW z-
score >2) in most proteins (Fig. 2C), top-ranked CovET pairs
are more significantly clustered than those of EVCouplings,
DCA, and ET-MIp (CovET mean unbiased Z-Score 9.9, DCA
7.1, EVCouplings 7.0, ET-MIp 8.9). This advantage grew when
measured by the biased SCW z-score (CovET mean biased Z-
Score 3.9, DCA 0.9, EVCouplings 1.0, ET-MIp 0.1, Fig. 2D),
with CovET strongly outperforming all other methods. These
results showed that CovET is better at identifying amino acid
structural clusters than individual local contacts, which is
fundamentally different from the other three covariation
methods.

Finally, given CovET’s performance in the biased SCW z-
score, we compared the average sequence separation
(normalized by protein length) of top predicted pairs for all
methods (Fig. 2E). DCA, EVCouplings, and ET-MIp dispro-
portionately rank pairs of residues that are close together in
the sequence among their top results. In sharp contrast, pairs
predicted by CovET are farther apart across the sequence.
These data show that CovET pairs are qualitatively and
redicting structural contacts, but its predictions are more significantly
are within 8 Å of each other, C⍺ for glycine) at least six residues apart. Pane
gories evaluated by AUPRC. This evaluation which is less influenced by the
e from a random predictor is the positive rate in the standard, which is the
e predictor performs better than random. C and D, unbiased (C) and biased
ach of the tested methods. While all methods show significant (z-score >2)
A, EVCouplings (EVC), and ET-MIp in unbiased SCW z-scores and significantly
average distance between pairs at 30% coverage is much higher for CovET
iased SCW Z-Scores is due to clustering of residues which are significantly
d, two-sided Wilcoxon rank sum test. When CovET significantly outperforms
precision recall curve.
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CovET identifies protein structure–function modules
structurally different. They involve more distant positions in
the sequence (Fig. 2E), yet these cluster together in the protein
structure much better than the pairs predicted by other
methods. Together, these results show that CovET captures
coevolutionary relationships involving sequence neighbors,
like other methods, but also positions far apart in the primary
sequence, a unique property of this method.

CovET identifies important functional residues

Having confirmed the structural clustering of top CovET
predictions, we assessed CovET’s ability to recover functionally
important residues, like other phylogenetic methods which
cluster well. It is impractical to manually gather the functionally
important residues for every protein in the Pfam dataset. Instead,
we turned to the BioLiP database to gather information on bio-
logically relevant ligands in our Pfam queries (49). Defining res-
idues within 4 Å of biologically relevant ligands as being
functionally important, we could characterize them in 329 of our
Pfam queries from the BioLiP database. As shown in Figure 3A,
CovET was the best at recovering these functionally important
residues with an average AUROC of 0.746, while the other three
methods have average AUROCs below random (0.5). As
measured by AUPRC, CovET still significantly outperforms the
Figure 3. Top CovET residues significantly overlap with known functional
the pfam dataset judging by both AUROC (A) and AUPRC (B). Similar to Figure
each protein. Significance was measured using the paired, two-sided Wilcoxo
comparison bars are colored red. C, top CovET predictions significantly overlap
domain. Known functional residues visualized as spheres. Top 30% of residue
ranked residues, and green those just at the 30% threshold. False positives show
was measured using the one-sided hypergeometric test. The overlap betwee
geometric test. p-values are shown to the upper right of each structure. AUP
operating curve; D2R, dopamine D2 receptor; RRM, RNA recognition motif.
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othermethods (Fig. 3B). These results suggested that unlike other
methods, CovET is uniquely able to identify functionally relevant
residue pairs, as opposed to solely structural neighbors.

To assess CovET’s ability to identify functional sites in
greater detail, we gathered key functional site information
from the literature for two protein domains (the RNA recog-
nition motif (RRM) domain and the WW domain) and for the
single-domain dopamine D2 receptor (D2R) and tested how
well CovET and the other covariation methods could recover
their functional sites. Multiples sequence alignments of each
were obtained (see Experimental Procedures, Fig. S2 and
Table S2) and covariation analyses performed. The RRM
domain is found across a wide variety of organisms including
eukaryotes, prokaryotes, and viruses (50–53). This domain is
�90 amino acids long and plays a role in almost all stages of
RNA processing (51, 53–57). The RRM domain is built mainly
from a β-sheet that contains two highly conserved motifs,
RNP1 and RNP2, that are essential to the domain’s main
function, binding poly(A) RNA (50, 51, 53, 55, 58). CovET
picked out many of the key residues from the β-sheets that
bind RNA and others in the C-terminal region that stabilizes
the RNA binding network. CovET significantly recovers the
RNP1 motif at low coverage, with p-values of 0.042 at 20%
sites. A and B, CovET performs the best in recovering ligand binding sites in
2B, the AUPRC values are adjusted with the AUPRC of random predictors for
n rank sum test. When CovET significantly outperforms other methods, the
with known functional residues in the dopamine 2 receptor, RRM, and WW
s shown on a red to green color scale, with red indicating the most highly
n as color scaled ribbons, false negatives shown as white spheres. Significance
n top predictions and known functional residues are evaluated with hyper-
RC, area under the precision recall curve; AUROC, area under the receiver



CovET identifies protein structure–function modules
coverage and 0.008 at 30%, while the other methods failed to
identify this site by 30% coverage (Figs. 3C and S3; Table S3).
At 30% coverage, DCA, EVCouplings, and ET-MIp identified
some residues in the C-terminal region, but these were
disconnected from the few residues these methods recovered
in the β-sheets (Fig. S4). In sharp contrast, the top pairs pre-
dicted by CovET connected the RNA binding β-sheets and the
C terminus. These data show that CovET preferentially iden-
tifies key sequence positions in the RRM domain. Additionally,
top CovET predictions formed a dense and interconnected
network in the RRM domain: many of the top pairs had
overlapping residues. In contrast, top pairs from other
methods form a sparser network and reach a given residue
coverage with fewer pairs than CovET. For the RRM and WW
domains as well as the D2R, CovET has more residues pairs
and a denser network for a given coverage cutoff (Figs. S4–S6).
This is because coverage cutoffs are defined as all the pairs it
takes to recover a certain percent of residues in the protein.
For example, a 10% cutoff is defined as all the residue pairs it
takes until 10% of residues are recovered by at least one pair.
Methods whose top pairs repeatedly select the same residues
will have more pairs for a given coverage. CovET consistently
takes more pairs to reach a certain coverage, which highlights
the interconnectedness of top CovET pairs.

We next assessed the recovery of key residues in the WW
domain. WW domains are 30 to 50 amino acids long and have
one of the smallest spontaneously folding β-sheet structures,
consisting of three anti-parallel β-strands (59–66). This domain
enables protein–protein interactions by binding short peptide
sequences (e.g., PPxY in hYAP65) (59–66). The most important
sites include the two tryptophans (W) for which theWWdomain
is named (59–61, 65, 66) and two hydrophobic patches, one
involved in binding and the other in stability (61, 63–65). At 10%
coverage, CovET recovers one titular tryptophan, while the sec-
ond one is recovered at 20% coverage. Neither is recovered by
DCA, EVCouplings, or ET-MIp by 30% coverage (Fig. 3C and
Table S4). At 30% coverage, CovET is the only method to
significantly recover the combined set of conserved residues and
functional sites (Figs. 3C and S5). None of the other covariation
methods reaches significance for the highlighted sites or the
combined set of conserved residues and functional sites. In
addition, theWWdomain contains residues that can bemutated
without causing significant perturbation to its structure or
function, dubbed insensitive residues here, mostly in the N andC
termini and the turns between β-strands (61, 65). Here, the
pattern is reversed, and CovET does not pick up any insensitive
residues by 30% coverage, while EVCouplings and ET-MIp be-
gins to pick these residues up at 10% coverage and DCA by 20%
coverage (Table S5). These data show that CovET preferentially
identifies key conserved residues and functional sites in theWW
domain, while DCA, EVCouplings, and ET-MIp recover known
variable positions.
CovET highlights functional networks in the D2R

If top-ranked CovET residue pairs have important structural
and functional interactions, we would expect that they would
form highly interconnected networks in proteins that mediate
long-range information transfer across a protein via allosteric
pathways. To test this hypothesis, we focused on the D2R, a
member of the Class A G protein-coupled receptor (GPCR)
family, the single largest family of eukaryotic proteins (67, 68).
Class A GPCR’s have arguably the most-studied allosteric
signaling mechanism that depends on the concerted motions
of its seven transmembrane helices, in which various func-
tional modules have been described in detail (36, 67–77).

To predict covarying residues, we aligned the whole
sequence of 2568 class A GPCRs probing a wide cross-section
of bioamine receptors and species (Fig. S2A). The top-ranked
pairs predicted by CovET created a modular network that
significantly incorporates experimentally described compo-
nents of the allosteric pathway extending from the ligand
binding site to the G protein coupling and β-arrestin site (p-
value 3.7E-17 at 30% coverage) (Figs. 4 and S6; Table S6).
Moreover, as the network is built-up over a span of CovET
ranks, it reveals an underlying modular evolutionary hierarchy
that implies various degrees of functional importance. This is
because CovET estimates the covariation pattern of residue
pairs in the context of the evolutionary tree. The best-ranked
CovET pairs have residues that do not vary or if they do, al-
ways in concert with the main evolutionary tree branches. As
coverage increases, concerted variation tracks with lesser tree
branches until, eventually, additional pairs follow no discern-
able correlation with the phylogenetic tree branches.

Specifically, at only 2.5% coverage, CovET picks up two sets of
known functional residues. One of the discrete clusters (Fig. 4A,
lime, Table S7) overlaps entirely with the NPxxY (67, 68, 70, 72,
74, 78) motif (p-value 3.34E-6), while both clusters partially
recover the water channel (72) (p-value 3.83E-7), the Na+

binding site (67, 68, 72, 74, 78) (p-value 1E-4), and known state
determinants (70, 78) (Fig. S7). At 5% coverage, CovET further
adds three discrete clusters, one of which (Fig. 4B, red) overlaps
with the CWxP (68, 70, 78) motif (p-value 0.006), and the ca-
nonical toggle switch (67) (p-value 0.012). At 7.5% coverage,
CovET recovers the HHM (67, 68, 72) (p-value 0.014) and ionic
lock (68, 70) (p-value 0.027) as well as switches (68, 70) involved
in the allosteric activation pathway (p-value 0.001). Two of the
prior clusters (Fig. 4B, blue and light blue) now merge and
expand. As a result, nearly the entire structurally central and
functionally pivotal transmembrane helix 3 (TM3) is recovered
(Figs. 4C, blue and S7). At 10% coverage, CovET predictions
significantly recover the DR[E]Y motif (67, 70, 72–74, 78) and
ligand binding site (74, 79–82) (p-value 0.026 and 0.024), while
the four discrete clusters are maintained, and the one centered
around TM3 continues to expand. At 12% coverage, the cluster
including the CWxP motif becomes connected to the central
TM3 cluster (Fig. 4E, blue). At 14% coverage, CovET recovers
the PIF[W] (70, 78) motif (p-value 0.05), and the NPxxY motif
cluster joins the large network cluster centered on TM3. At 16%
coverage, two main clusters are now formed. The larger one
spans from TM3 to TM7, while the smaller one is localized
between TM1 and TM2. At that coverage, CovET recovers
residues from almost all motifs and conserved elements that
have been implicated in allosteric signal transduction (p-value
J. Biol. Chem. (2023) 299(7) 104896 5
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the D2R are recovered by CovET network at various coverage cutoffs. GPCR, G protein-coupled receptor; TM3, transmembrane helix 3.
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1.21E-12), except the TM3-7 (68) lock (not recovered by 30%
coverage) and the G-protein coupling site (recovered at 30%
coverage, p-value 0.028). At 16% coverage, 42 residues are
identified by CovET, 31 (�74%) of which overlap with the ligand
or G protein–binding sites, known motifs, state determinants,
or members of the allosteric network. Interestingly, some resi-
dues are not described among previously recognized functional
positions. These include: 65, 752.45, 892.59, 97, 100, 1073.25, 139,
1604.50, 1915.40, 1925.41, and 1985.47 (superscripts refer to the
Ballesteros-Weinstein numbering system for GPCR TM seg-
ments) (83). Residues 97, 100, and 1073.25 form a small local
cluster (Cβ within 8 Å) in the structure, while the hydroxyl
group in Ser752.45 is hydrogen bonded with the side chain of
Trp1604.50 (Fig. S8). Thus, these additional CovET residues are
not randomly distributed in the structure and would be of in-
terest for furthermutational testing. The remaining two clusters
continue to grow at 20% coverage and merge into a single
connected network, spanning the 7TM from end to end at 30%
coverage. This ranked order of appearance of functional mod-
ules that grow and coalesce to span the entire known allosteric
pathway is in sharp contrast to the interaction networks iden-
tified by DCA, EVCouplings, and ET-MIp which localize to
TM1 and do not overlap significantly with key sites (Fig. S6 and
Table S6). Together, these results show that CovET recovers
hierarchically and specifically the structural and functional
6 J. Biol. Chem. (2023) 299(7) 104896
motifs most critical components to the allosteric pathway
mediating signal transduction in Class A bioamine GPCR.
Pairs predicted by CovET correlate with epistatic interactions

To test if CovET predicts intraprotein epistatic interactions,
we evaluated the correlation of the top predictions with large-
scale mutational studies. We analyzed five high-throughput
deep mutagenesis studies that measured the fitness of double
mutants: the RRM domain (50), the WW domain (84), TEM-1
β-lactamase (85), the IgG-binding domain of protein G (GB1)
(86), and the prion-like domain of TDP-43 (TAR DNA-
binding protein 43) (87). Because the best epistasis model is
unknown, we computed epistasis scores using four commonly
applied models (Additive, Log, Min, and Product) (84) for each
of the datasets. Since CovET and other covariation methods
tested here do not consider the impact of specific mutations
pairs and have no directionality, we took the mean and abso-
lute value of all epistasis scores available for a given residue
pair, resulting in a final score that represents the average de-
viation from wildtype behavior. In the RRM dataset, CovET
predictions correlate the best with these experimental epistasis
scores for all four commonly applied epistasis models (Pearson
correlations per epistasis model: Min 0.239, Log 0.170, Product
0.177, Additive 0.460, Figure 5). The next best correlations,
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from EVCouplings, were much lower across every epistasis
model (Fig. 5). The WW domain dataset consisted of 47,000
variants, including 5010 double mutants (�2.5% of possible)
(84). CovET correlated best with the experimentally deter-
mined epistasis scores using Log, Product, and Additive
models, with Pearson correlation scores of 0.154, 0.149, and
0.456, respectively. For the minimum epistasis model, only ET-
MIp correlates with experimental data with highest Pearson
correlation of 0.187. For TEM-1, CovET gives the best corre-
lation in the Additive model (Pearson correlation 0.406), which
is also the best correlation among all epistasis models. In GB-1
and TDP-43, CovET correlates the best with epistasis scores
computed using Additive, Log, and Product models, while
none of the covariation methods correlates with the Min
epistasis model. In addition, when considering all four epistasis
models together, CovET best correlates with experimental data
in all five proteins tested (Fig. 5, Pearson correlations: RRM
Additive 0.460, WW Additive 0.456, TEM-1 Additive 0.406,
GB-1 Product 0.163, and TDP-43 Product 0.176). These
results suggested that CovET better predicts protein residue
functional couplings than DCA, EVCouplings, and ET-MIp
and suggests that phylogenetic couplings are generally in
better agreement with Additive epistasis.
Discussion

Our study introduces a newmethod to identify evolutionarily
coupled sequence positions. CovET is distinct from existing
methods (13, 14) in two ways: first, it explicitly accounts for
phylogenetic history by applying the ET framework to score
every pair of residues recursively along successive evolutionary
tree partitions. Second, CovET exclusively penalizes uncoupled
variations within a partition’s branch, and pairs that are
completely conserved or that covary within a branch are not
penalized. We find that, unlike other methods, top CovET
predictions form significant spatial clusters that overlap with
ligand binding sites in a diverse set of protein families, as well as
known functional sites in the RRM andWWdomains and in the
D2R. The functional relevance of top CovET pairs is further
supported by deep mutational scans where CovET predicted
epistatic interactions between residues better than other
methods. Moreover, the structural clusters and networks
defined by top-ranked CovET pairs are functionally relevant. In
theD2R, for example, topCovET residues formdense clusters of
mutually coupled pairs that overlapwith key functional sites and
reveal, at increasing coverage, nearly the entire canonical allo-
steric network. The hierarchical nature of this network, remi-
niscent of past ET analysis (36), suggests that CovET captures
the functional and evolutionary architecture of the Class A
GPCR transduction mechanism through couplings that define
the allosteric pathway. Given howwell CovET recovers theClass
A GPCR allosteric activation pathway, it would be interesting to
test the couplings predicted byCovET in theD2R. In addition, in
our recent study, residues 180 and 181 in the metabotropic
glutamate receptor 4 were predicted to be highly covariant by
CovET. Indeed, residue position 180 and 181 demonstrated a
strong epistatic interaction toward ligand binding in metabo-
tropic glutamate receptor 4 (88). Similar experiments can be
conducted on highly rankedCovET residues in theD2R. Further
validating our coupling predictions in the D2R in vitro or in vivo
could potentially strengthen our understanding of its physio-
logically (71, 72, 74, 78) and therapeutically relevant (70, 72, 74,
78) allosteric activation pathway.

The performance of CovET is rooted in the phylogenetic
logic of the ET framework. Evolution proceeds from random
sequence variations followed by functional selection, repeated
at each generation (89–91). Therefore, the pressure for two
residues to comutate, or not mutate at all, will be large when
the interaction between the residues maintains an important
protein function within a narrow range of fitness tolerance.
Conversely, that pressure will be small, or nil, if a large change
in protein function is well tolerated by an organism in its new
adopted environment. Thus, covariation patterns between two
sequences in a protein family must be interpreted with respect
to the function each protein serves in its environment. While
direct functional assessments of proteins are sparse, the ET
J. Biol. Chem. (2023) 299(7) 104896 7
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approach instead uses distances among phylogenetic branches
since these are defined through a sequence metric that ap-
proximates functional aptitude groupings (17, 89, 90). As a
result, nonconcerted variations across short evolutionary
ranges, where function is likely preserved, should strongly
indicate a lack of coupling and be penalized more severely than
nonconcerted variations across long ranges in the tree. CovET
captures the functional context of covariation patterns by
scoring the complete alignment at the tree’s root node and
each subalignment spawned by a divergence event. In contrast:
traditional covariation methods are performed over a complete
alignment, without consideration of phylogenetic structure
(92). Such an approach intrinsically assumes that all sequences
share the same structure and function, which is less and less
likely as we consider proteins that are further and further apart
in sequence identity and in an evolutionary tree. These
methods may then be confounded by less meaningful co-
variations in functionally unrelated regions of the tree. In
addition, most covariation models penalize pairs of residues
that are invariant together (93), even though, presumably,
many of these important positions are essential for protein
function. CovET considers both conservation and covariation
as positive signals and penalizes neither. By exclusively
penalizing nonconcerted variations—the only signal that one
can be sure does not support covariation—CovET avoids un-
certainties regarding invariant and mostly invariant residues.

Given its unique approach to identifying coupled residues,
CovET may provide an orthogonal feature set to current
covariation methods in protein structure prediction machine
learning systems (13, 14). CovET nearly recapitulates the
performance of other methods in predicting structural con-
tacts, but its predictions are fundamentally unique, they are
further apart in sequence, yet significantly spatially clustered.
CovET may also be used to improve genotype-phenotype
predictions. Taking a more formal approach, we previously
used ET to approximate the first derivative of the evolutionary
landscape function f ðγÞ ¼ Φ, which maps genotypes γ to their
fitness potential Φ (94). This approach allowed us to estimate
the functional impact of coding variants with high accuracy
(95) and was further validated with diverse practical applica-
tions (96–101). However, ET only evaluates the functional
importance of single residues, thus missing higher order in-
teractions among residues. CovET may be interpreted as the
mixed second derivative of f with respect to residue pairs. In
the future, with proper scaling and sign, the addition of this
second-order epistatic term may improve our approximation
of the evolutionary landscape function and our understanding
of the genotype-phenotype relationship.

In summary, CovET predicts functionally coupled sequence
positions by accounting explicitly for phylogenetic divergences
during evolution. This approach enriches current views of res-
idue couplings by informing whether variants occur in pre-
served or divergent functional contexts. Examples from
functional sites and an allosteric pathway suggest this approach
may provide additional insights to understand protein structure
and function and machine learning features to predict them.
8 J. Biol. Chem. (2023) 299(7) 104896
Experimental procedures

Sequence retrieval and multiple sequence alignment
construction

To test our algorithm on the most diverse set of proteins
possible,we turned to thePfamdatabase (42). Theprotein families
used in this study are summarized in Table S1. The Pfam database
contains a comprehensive list of protein families, each represented
by a multiple sequence alignment. We extracted alignments for
each family and removed those where no family member had an
available experimental structure with at least 3.5 Å resolution. In
the case where multiple structures were available for a family, the
structure that best aligned to its respective linear sequence was
assigned as the reference structure for the family; its linear
sequencewas assigned the query sequence. Alignments were then
filtered using hhblits (102) to minimum 70% coverage with query,
minimum 30% sequence similarity to query, and 98% maximum
pairwise sequence similarity. Larger alignments were filtered to
contain the most diverse 2000 sequences. All filtering steps were
done in tandem using the command: hhfilter -i
<alignment_path> -cov 70 -qid 30 -id 98 -diff 2000. Due to the
presence of small proteins with few contacts (e.g., singleα helices),
familieswere furtherfiltered tohave at least one short-range (6–11
amino acids apart in sequence), medium-range (12–24 amino
acids apart in sequence), and long-range (24+ amino acids apart in
sequence) structural contact (103, 104). The Pfam database is
further grouped into clans of families that share an evolutionary
origin. To ensure coverage of the entire knownproteome, for each
clan in thePfamdatabase that has at least one family thatmeets the
above criteria, we used the family with the highest number of se-
quences to perform CovET and other methods.

The RRM domain (105), the WW domain (60), the D2R (70,
78), TEM-1 β-lactamase (85), the GB1 (86) and the prion-like
domain of TDP-43 (87) were used as detailed examples in this
study (Table S2). Homologous sequences for these proteins were
retrieved by using the blastp utility of the BLAST+ tool (106) to
search the UniProt90 sequence database (downloaded from
https://www.uniprot.org/downloads) (107). This sequence data-
base was first filtered to remove all sequences including the terms
“Fragment” or “Low Quality”. Then, it was used to create a data-
base compatible with the blastp tool using the makeblastdb utility
also provided with the BLAST+ tool. Blastp (version 2.9.0, build
May 27, 2019) was runusing thefiltered database as the target and
a max e-value cutoff of 0.05 (41) and a max sequence return of
20,000. Sequences identified by the BLAST search were further
filtered such that only sequences covering at least 70% of their
query and with identity of 25% ≤ query ≤ 98% (41, 89) were kept.
Sequences were also removed if they included amino acids other
than the standard 20 or gaps, if their description included the
terms “artificial”, “fragment”, “low quality”, “partial”, or “syn-
thetic”, or if their taxonomy recorded in UniProt included the
terms “synthetic”or “artificial”. The sequencespassing thesefilters
were aligned using the ClustalW tool (version 2.1) (47, 108) using
the quicktree option. To reduce redundant sequences, all pairwise
identities were calculated between sequences in the constructed
alignments. Sequences were removed such that any cluster of

https://www.uniprot.org/downloads
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sequences with >98% sequence identity to each other were rep-
resented by only one sequence. The alignment was re-aligned
using ClustalW with the same settings after this filtering step.

Phylogenetic reconstruction under ET framework

In the ET framework (17, 41, 109), the distance between any
two sequences in the multiple sequence alignment is
computed by:

Distðseqa; seqbÞ¼ 1 −

Pl
i¼1f

�
seqa;i; seq2b;i

�

min
�Pl

i¼1g
�
seqa;i

�
;
Pl

i¼1g
�
seqb;i

��
(1)

where seqa is the protein sequence at the a th row in the
multiple sequence alignment. seqa;i is the amino acid in the i th
position in a th sequence (character at [a, i] when considering
MSA as a matrix), and l is the column count of the MSA.

f ðx; yÞ¼
�

1; if BLOSUM62ðx; yÞ≥2
0; if BLOSUM62ðx; yÞ<2

where BLOSUM62ðx; yÞ is the log odds of between amino acid
character x and y in the BLOSUM62 matrix. The log odds
between gap character and any character (including itself) are
manually set to 0.

gðxÞ¼
�
0; if x is the gap character
1; otherwise

A UPGMA tree is generated across the sequences using the
distance matrix (110).

Covariation predictions

CovET is first described here, and the code is available in the
accompanying codebase. The formula for the covariation of a
pair of positions is given by:

CovETij ¼ 1þ
XN−1

n¼1

1
n

Xn

g¼1
e
−
P
v2NC

fij;v lnðfij;vÞ
(2)

vab;ijh
�
xa;i; xa;j; xb;i; xb;j

�

xa;i; xa;j; xb;i; xb;j 2 f20 animo acids; gapg

vab;ij 2 NC; if
�
xa;i ¼ xb;i & xa;j ≠ xb;j

�
or

�
xa;i ≠ xb;i & xa;j ¼ xb;j

�

where ij is a pair of residue positions, N is the depth of the
phylogenetic tree, n is a level in the phylogenetic tree, and g is
a group of sequences (branch) at that level in the tree. The
term in the second sum is the diversity metric or perplexity,
which is the exponential of the Shannon entropy. When
comparing a pair of residues in two sequences in a 21-letter
alphabet for all amino acids and a gap character, there are
194,481 (214) possible outcomes for the 20 standard amino
acids plus a gap character. These possible outcomes can be
classified as conservation (AD > AD), concerted variation
(AD > CE), and nonconcerted variation (AB > AE). Four
hundred one (212) of them are conservations. 176,400 (21 ×
21 × 20 × 20) of them are concerted variation. The
remaining 17,640 of them are nonconcerted variations
α2×2ðα − 1Þ, respectively, where α is the number of
characters used. v in the entropy calculation is any of the
17,640 possible non-concerted variations (NC). The process
of characterizing a pair of positions for a given group, g, is
demonstrated in Figure 1. By scoring these transitions,
nonconcerted variation is penalized, while conservation and
concerted variation, or covariation, are not.

ET-MIp (16) was reimplemented in Python and is available
with the codebase distributed with this study. ET-MIp score
for a pair of residues are given by the equation:

ETMIp;ij ¼
XN−1

n¼1

1
n

Xn
g¼1

MIgpði; jÞ (3)

where ij is a pair of residues, N is the depth of the phylogenetic
tree, n is a level in the phylogenetic tree, and g is a group of
sequences (branch) at that level in the tree. MIgpði; jÞ is mutual
information with the product correction (111) given by:

MIpði; jÞ¼MIði; jÞ−APCði; jÞ (4)

where MIði; jÞ is the mutual information (112):

MIði; jÞ¼Hi þHj−Hij (5)

where Hi and Hj are the Shannon entropy of positions i and j,
respectively, and Hij is the joint entropy of the pair of position.
APCði; jÞ is the average product correction (111) given by:

APCði; jÞ¼MIði; yÞ ⋅MIðj; yÞ
MI

(6)

where MIði; yÞ and MIðj; yÞ are the mean MI with respect to
position i or j, andMI is the mean mutual information over the
pair of positions.

EVCouplings (13, 43) covariation scores were computed using
the implementation provided at https://github.com/
debbiemarkslab/EVcouplings. To perform EVcouplings pre-
dictions, the provided config file was used to set the following
settings for each run. In the “global” settings: “region” = None,
“theta” = 0.8. The “pipeline” was set to “protein_monomer”.
“batch” was set to None. The “stages” were set to [“align”, “cou-
plings”]. For the “align” settings: “protocol” = “existing”, “inpu-
t_alignment” was set to the path of the alignment file used by all
J. Biol. Chem. (2023) 299(7) 104896 9
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prediction methods, “first_index” = 1, “compute_num_
effective_seqs” = False, “seq_id_filter” = None, “minimum_se
quence_coverage” = 0, “minimum_column_coverage” = 0,
“extract_annotation” = False. These settings were used to ensure
that the provided alignment was used without alteration, so that
results would be comparable across methods. For the “couplings”
settings: “protocol” = “standard”, “iterations” = 100, “lambda_J” =
0.01, “lambda_J_times_Lq” = True, “lambda_h” = 0.01, “lamb-
da_group” = None, “scale_clusters” =None, “alphabet”was set to
the ‘-‘ gap character and the 20 standard amino acids, “ignor-
e_gaps” = False, “reuse_ecs” = True, and “min_sequence_-
distance” = 0. The “global” variables: “prefix”, “sequence_id”, and
“sequence_file” were provided separately for each protein.

DCA was computed using the multivariate Gaussian
approach implemented in Julia (44) and available at https://
github.com/carlobaldassi/GaussDCA.jl.

Evaluation of structural contacts

To evaluate structural contacts, query sequences were first
aligned with the corresponding structures (“PDB” column of
Table S1), and only positions present in both were considered
for evaluation. Contacts were then determined using the
definition used in the CASP competitions, only residues at
least six residues apart in sequence and whose Cβ (Cα for
glycine) were within 8 Å of each other were considered true
contacts (103, 104, 113–118). Contacts were broken into three
categories, also defined in CASP by number of amino acids of
separation, which were short (6–11), medium (12–23), and
long (≥ 23) (103, 104, 117). Finally, predictions were compared
against the combined set and three subsets of contacts using
the AUROC and AUPRC, as implemented in Sklearn (119). All
predicted contacts were evaluated, not just top contacts, as
suggested in a recent CASP competition (104). The AUPRC
were then adjusted by subtracting the observed positive rate,
which is the expected AUPRC for a random predictor. The
AUROCs and adjusted AUPRCs of each method were
compared using paired two-sided Wilcoxon Rank Sum test to
determine if differences were statistically significant.

Evaluation of structural clustering using the selection cluster
weighting z-score

The SCW z-score (41, 45–47, 120) was used to measure the
nonrandomness of top covariation predictions mapped to the
protein structure. As described in the previous section, resi-
dues were only considered when they could be aligned be-
tween the query sequence and target structure. We then
converted the covariation rankings into single residue rank-
ings. Each residue was ranked based on the score of the best
covariation pair it forms between other residues. SCW z-scores
were calculated for the top 30% of residues, a cutoff which has
been used in previous studies (45, 46) and has been shown to
correspond with the upper limit of clustering significance in
previous studies (47). The SCW z-score can be computed
using the code distributed with this study or using the
10 J. Biol. Chem. (2023) 299(7) 104896
PyETViewer plugin for PyMol (121). It is described by the
equation:

w¼
XL
i<j

SðiÞSðjÞAði; jÞbði; jÞ (7)

where L is the full set of pairs of residues present in a protein
(counted only once per pair as specified by the term i<j), S is
a selection function and returns one for a given residue (i or
j) if that residue is in the set of pairs described by the 30%
coverage cutoff, and A is an adjacency matrix for all residues
in the structure where position i; j is one if the shortest
distance between atoms of the two residues is <4 Å and
0 otherwise. The term bði; jÞ is the bias coefficient, for un-
biased analyses bði; jÞ evaluates to one for all pairs of resi-
dues, while for biased analyses bði; jÞ evaluates to the
sequence separation between the two residues (i.e., ji − jj).
Differences between methods over all the proteins in the
Pfam dataset were measured using paired two-sided
Wilcoxon Rank Sum test.
Determination of average sequence separation

To determine the difference in pair biases for each of the
covariation methods, the average sequence separation between
residues predicted among the top-ranked pairs was deter-
mined. Top pairs were selected for evaluation until 30% of the
residues in the structure was included. The sequence separa-
tion between the residues of the pair was calculated, i.e., if a
pair consists of residues i and j, the sequence separation is
given by ji − jj. The average of all sequence separations in the
set of top pairs for each protein was calculated, and methods
were compared using paired two-sided Wilcoxon Rank Sum
test to determine if there was a significant difference in the
average sequence separations.
Recovery of functionally important residues

We obtained the coordinates for biological ligands from the
BioLiP database (49) for each of our Pfam queries. A residue
was considered as functionally important if the distance be-
tween any atom is smaller than 4 Å between that residue and
the biological ligands. As with the calculation of SCW z-scores,
we then converted the covariation rankings into single residue
rankings. Each residue was ranked based on the score of the
best covariation pair it forms between other residues. Single
residue rankings were compared against the set of functional
important residues using the AUROC and AUPRC. The
AUPRCs were then adjusted by subtracting the observed
positive rate, which is the expected AUPRC for a random
predictor. The AUROCs and adjusted AUPRCs of each
method were compared using paired two-sided Wilcoxon
Rank Sum test to determine if differences were statistically
significant.

https://github.com/carlobaldassi/GaussDCA.jl
https://github.com/carlobaldassi/GaussDCA.jl
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Scoring of the identification of gold standard residues

Key conserved residues, motifs, functional sites, and other
contributors to protein structure-function from the literature
were identified for the RRM and WW domains and the D2R.
The overlap of covariation predictions at different coverage
cutoffs (10, 20, and 30% for the RRM and WW domains and
2.5, 5, 7.5, 10, 12, 14, 16, 20, and 30% for D2R) with these key
sites as well as the union of all sites for each domain or protein
were measured for significance using the one-sided hyper-
geometric test. For the WW domain, a set of known variable
residues was also evaluated as a negative control.

Measuring the correlation of covariation predictions with
experimental data

Single and double mutant data from large-scale mutagenesis
screens of the RRM domain (50), the WW (84) domain, TEM-
1 β-lactamase (85), the GB1 (86), and the prion-like domain of
TDP-43 (87) were used to compute epistasis scores for these
two domains. The log fitness scores (lnW) of GB1 were ob-
tained from Rollins et. al (122) and were exponentially trans-
formed back to fitness before the epistasis scores calculation.
The uncorrected toxicity scores for double mutants were used
for TDP-43 (87). The toxicity scores for double and single
mutants were also exponentially transformed back to have the
WT toxicity score normalized to 1. Epistasis scores were
computed based on the reported fitness values for single and
double mutants using four different models of epistasis:
Product, Additive, Log, and Min, the formulas for each of these
models are provided below (84).

ε
product
ab ¼Mab−Ma ⋅Mb (8)

ε
additive
ab ¼ðMab þWTÞ−ðMa þMbÞ (9)

ε
log
ab ¼Mab−log2

��
2Ma −WT

�
⋅
�
2Mb −WT

�þWT
�

(10)

ε
min
ab ¼Mab−minðMa;MbÞ (11)

In each of these formulas, Mab is the fitness value measured
for double mutant ab, Ma is the fitness value of single mutant
a, Mb is the fitness value measured for single mutant b,
and WT is the fitness value measured for the wildtype domain.
In these studies, the fitness values were normalized against
wildtype fitness so WT is always 1.

Since the covariation metrics only provide a single score for
each pair and the experimental studies provide many more, the
mean of all epistasis scores for a given pair was taken. Simi-
larly, covariation metrics evaluated here do not provide a sign
to their prediction, so the absolute value of the mean calcu-
lated for each pair was taken. This means the covariation
scores were compared to the average displacement from
wildtype activity as measured by each epistasis model. Only
pairs tested in the experimental studies were tested, and the
Pearson correlation coefficient between the raw score of each
covariation method and each set of epistasis scores was
computed to determine which method corresponded better
with experimental observations. The negative raw score was
used for CovET, because the CovET raw score has a different
direction wherein a lower value means better covariation be-
tween a pair.
Data availability

The code for CovET is open and freely available on GitHub
at: https://github.com/LichtargeLab/Covariation-ET.
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