Table 3.
Evaluation of the mask R-CNN models in low-density validation dataset using different DA techniques for the detection of hachure mound features: random translation (DA1), random rotation (DA2) and the so-called Doppelgänger technique (DA3).
Algorithm | TPs | FNs | FPs | Recall (%) | Precision (%) | F1 (%) |
---|---|---|---|---|---|---|
None | 87 | 21 | 737 | 80.56 | 10.56 | 18.67 |
DA1 | 71 | 39 | 37 | 64.55 | 65.74 | 65.14 |
DA1 + DA2 | 68 | 45 | 53 | 60.18 | 56.20 | 58.12 |
DA1 + DA2 + DA3 | 68 | 44 | 31 | 60.71 | 68.69 | 64.45 |