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Abstract

Cancer diagnosis, prognosis, and therapeutic response predictions are based on morphological 

information from histology slides and molecular profiles from genomic data. However, most deep 

learning-based objective outcome prediction and grading paradigms are based on histology or 

genomics alone and do not make use of the complementary information in an intuitive manner. 

In this work, we propose Pathomic Fusion, an interpretable strategy for end-to-end multimodal 

fusion of histology image and genomic (mutations, CNV, RNA-Seq) features for survival outcome 

prediction. Our approach models pairwise feature interactions across modalities by taking the 

Kronecker product of unimodal feature representations, and controls the expressiveness of each 

representation via a gating-based attention mechanism. Following supervised learning, we are 

able to interpret and saliently localize features across each modality, and understand how feature 
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importance shifts when conditioning on multimodal input. We validate our approach using glioma 

and clear cell renal cell carcinoma datasets from the Cancer Genome Atlas (TCGA), which 

contains paired whole-slide image, genotype, and transcriptome data with ground truth survival 

and histologic grade labels. In a 15-fold cross-validation, our results demonstrate that the proposed 

multimodal fusion paradigm improves prognostic determinations from ground truth grading and 

molecular subtyping, as well as unimodal deep networks trained on histology and genomic data 

alone. The proposed method establishes insight and theory on how to train deep networks on 

multimodal biomedical data in an intuitive manner, which will be useful for other problems 

in medicine that seek to combine heterogeneous data streams for understanding diseases and 

predicting response and resistance to treatment. Code and trained models are made available at: 

https://github.com/mahmoodlab/PathomicFusion.
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I. INTRODUCTION

CANCER diagnosis, prognosis and therapeutic response prediction is usually accomplished 

using heterogeneous data sources including histology slides, molecular profiles, as well as 

clinical data such as the patient’s age and comorbidities. Histology-based subjective and 

qualitative analysis of the tumor microenvironment coupled with quantitative examination 

of genomic assays is the standard-of-care for most cancers in modern clinical settings [1]–

[4]. As the field of anatomic pathology migrates from glass slides to digitized whole slide 

images, there is a critical opportunity for development of algorithmic approaches for joint 

image-omic assays that make use of phenotypic and genotypic information in an integrative 

manner.

The tumor microenvironment is a complex milieu of cells that is not limited to only 

cancer cells, as it also contains immune, stromal, and healthy cells. Though histologic 

analysis of tissue provides important spatial and morphological information of the tumor 

microenvironment, the qualitative inspection by human pathologists has been shown to 

suffer from large inter- and intraobserver variability [5]. Moreover, subjective interpretation 

of histology slides does not make use of the rich phenotypic information that has 

shown to have prognostic relevance [6]. Genomic analysis of tissue biopsies can provide 

quantitative information on genomic expression and alterations, but cannot precisely isolate 

tumor-induced genotypic measures and changes from those of non-tumor entities such as 

normal cells. Current modern sequencing technologies such as single cell sequencing are 

able to resolve genomic information of individual cells in tumor specimens, with spatial 

transcriptomics and multiplexed immunofluoresence able to spatially resolve histology 

tissue and genomics together [7]–[12]. However, these technologies currently lack clinical 

penetration.

Oncologists often rely on both the qualitative information from histology and quantitative 

information from genomic data to predict clinical outcomes [13], however, most histology 
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analysis paradigms do not incorporate genomic information. Moreover, such methods often 

do not explicitly incorporate information from the spatial organization and community 

structure of cells, which have known diagnostic and prognostic relevance [6], [14]–[16]. 

Fusing morphological information from histology and molecular information from genomics 

provides an exciting possibility to better quantify the tumor microenvironment and harness 

deep learning for the development of image-omic assays for early diagnosis, prognosis, 

patient stratification, survival, therapeutic response and resistance prediction.

Contributions:

The contributions of this paper are highlighted as follows:

• Novel Multimodal Fusion Strategy: We propose Pathomic Fusion, a novel 

framework for multimodal fusion of histology and genomic features (Fig. 1). 

Our proposed method models pairwise feature interactions across modalities by 

taking the Kronecker product of gated feature representations, and controls the 

expressiveness of each representation using a gating-based attention mechanism.

• GCNs for Cancer Outcome Prediction: We present a novel approach for 

learning cell graph features in histopathology tissue using graph convolutional 

networks (Fig. 2), and present the first application of GCNs for cancer survival 

outcome prediction from histology. GCNs act as a complementary method to 

CNNs for morphological feature extraction, and may be used in ileu of or 

in combination with CNNs during multimodal fusion for fine-grained patient 

stratification.

• Objective Image-Omic Quantitative Study with Multimodal 
Interpretability: In a rigorous 15-fold cross-validation-based analysis on two 

different disease models, we demonstrate that our image-omic fusion paradigm 

outperforms subjective prognostic determinations that use grading and subtyping, 

as well as previous state-of-the-art results for patient stratification that use deep 

learning. To interpret predictions made by our network in survival analysis, we 

use both class-activation maps and gradient-based attribution techniques to distill 

prognostic morphological and genomic features.

II. RELATED WORK

Survival Analysis for Cancer Outcome Prediction:

Cancer prognosis via survival outcome prediction is a standard method used for biomarker 

discovery, stratification of patients into distinct treatment groups, and therapeutic response 

prediction [17]. With the availability of high-throughput data from next-generation 

sequencing, statistical survival models have become one of the mainstay approaches for 

performing retrospective studies in patient cohorts with known cancer outcomes, with 

common covariates including copy number variation (CNV), mutation status, and RNA 

sequencing (RNA-Seq) expression [17], [18]. Recent work has incorporated deep learning 

into survival analysis, in which the covariates for a Cox model are learned using a series 

of fully connected layers. Yousefi et al. [19] proposed using stacked denoising autoencoders 

to learn a low dimension representation of RNA-Seq data for survival analysis, and in 
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a follow-up work [19], they used Feedforward Networks to examine the relationship 

between gene signatures and survival outcomes. Huang et al. [20] proposed using weighted 

gene-expression network analysis as another approach for dimensionality reduction and 

learning eigen-features from RNA-Seq and micro-RNA data for survival analysis in TCGA. 

However, these approaches do not incorporate the wealth of multimodal information from 

heterogeneous data sources including diagnostic slides, which may capture the inherent 

phenotypic tumor heterogeneity that has known prognostic value.

Multimodal Deep Learning:

Multimodal fusion via deep learning has emerged as an interdisciplinary field that seeks to 

correlate and combine disparate heterogeneous data modalities to solve difficult prediction 

tasks in areas such as visual perception, human-computer interaction, and biomedical 

informatics [21]. Depending on the problem, approaches for multimodal fusion range from 

fusion of multiview data of the same modality, such as the collection of RGB, depth 

and infrared measurements for visual scene understanding, to the fusion of heterogeneous 

data modalities, such as integrating chest X-rays, textual clinical notes, and longitudinal 

measurements for intensive care monitoring [22]. In the natural language processing 

community, Kim et al. [23] proposed a low-rank feature fusion approach via the Hadamard 

product for visual question answering, often referred to as as bilinear pooling. Zadeh et al. 
[24] studied feature fusion via the Kronecker product for sentiment analysis in audio-visual 

speech recognition.

Multimodal Fusion of Histology and Genomics:

Though many multimodal fusion strategies have been proposed to address the unique 

challenges in computer vision and natural language processing, strategies for fusing data in 

the biomedical domain (e.g. histology images, molecular profiles) are relatively unexplored. 

In cancer genomics, most works have focused on establishing correspondences between 

histology tissue and genomics [25]–[28]. For solving supervised learning tasks, previous 

works have generally relied on the ensembling of extracted feature embeddings from 

separately trained deep networks (termed late fusion) [20], [29], [30]. Morbadersany et 
al. [29] proposed a strategy for combining histology image and genomic features via vector 

concatenation. Cheerla et al. [31] developed an unsupervised multimodal encoder network 

for integrating histology image and genomic modalities via concatenation that is resilient to 

missing data. Shao et al. [32] proposed an ordinal multi-modal feature selection approach 

that identifies important features from both pathological images and multi-modal genomic 

data, but relies on handcrafted features from cell graph features in histology images. Beyond 

late fusion, there is limited work in deep learning-based multimodal learning approaches 

that combine histology and genomic data. Moreover, there is little work made in interpreting 

histology features in these multimodal deep networks.

Graph-based Histology Analysis:

Though CNNs have achieved remarkable performance in histology image classification and 

feature representation, graph-based histology analysis has become a promising alternative 

that rivals many competitive benchmarks. The motivation for interpreting histology images 

as a graph of cell features (cell graph) is that these computational morphological 
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(morphometric) features are more easily computed, and explicitly capture cell-to-cell 

interactions and their spatial organization with respect to the tissue. Prior to deep learning, 

previous works in learning morphological features from histology images have relied on 

manually constructed graphs and computing predefined statistics [33]. Doyle et al. [34] 

was the first work to approach Gleason score grading in prostate cancer using Voronoi 

and Delauney tessellations. Shao et al. [32] presented an interesting approach for feature 

fusion of graph and molecular profile features, with graph features constructed manually 

and fused via vector concatenation similar to Huang et al. [20]. Motivated by the success of 

representation learning in graphs using deep networks [35]–[38], Anand et al. [15], Zhou et 
al., [39] and Wang et al. [16] have used graph convolutional networks for breast, colon and 

prostate cancer histology classification respectively. Currently, however, there have been no 

deep learning based-approaches that have used graph convolutional networks for for survival 

outcome prediction.

III. METHODS

Given paired histology and genomic data with known cancer outcomes, our objective is 

to learn a robust multimodal representation from both modalities that would outperform 

unimodal representations in supervised learning. Previous works have only relied on CNNs 

for extracting features from histology images, and late fusion for integrating image features 

from CNNs with genomic features. In this section, we present our novel approach for 

integrating histology and genomic data, Pathomic Fusion, which fuses histology image, 

cell graph, and genomic features into a multimodal tensor that explicitly models bimodal 

and trimodal interactions from each modality. In Pathomic Fusion, histology features are 

extracted as two different views: image-based features using Convolutional Neural Networks 

(CNNs), and graph-based features using Graph Convolutional Networks (GCNs). Both 

networks would extract similar morphological features, however, cell graphs from histology 

images are a more explicit feature representation that directly model cell-to-cell interactions 

and cell community structure. Following the construction of unimodal features, we propose 

a gating-based attention mechanism that controls the expressiveness of each feature before 

constructing the multimodal tensor. The objective of the multimodal tensor is to capture 

the space of all possible interactions between features across all modalities, with the gating-

based attention mechanism used to regularize unimportant features. In subsections A–C, we 

describe our approach for representation learning in each modality, with subsections D–E 

describing our multimodal learning paradigm and approach for interpretability. Additional 

implementation and training details are found in Appendix B.

A. Learning Patient Outcomes from H&E Histology Tissue Images using Convolutional 
Neural Networks

Anatomic pathology has the ability to reveal the inherent phenotypic intratumoral 

heterogeneity of cancer, and has been an important tool in cancer prognosis for the 

past century [40]–[43]. Tumor microenvironment features such as high cellularity and 

microvascular proliferation have been extensively linked to tumor suppressor deficiency 

genes and angiogenesis, and recognized to have clinical implications in the recurrence and 

proliferation of cancer [44]. To capture these features, we train a Convolutional Neural 
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Network (CNN) on 512 × 512 image regions-of-interest (ROIs) at 20× magnification (0.5 

μm/pixel) as representative regions of cancer pathology. The network architecture of our 

CNN is VGG19 with batch normalization, which we finetuned using pre-existing weights 

trained on ImageNet. We extract a hi ∈ ℝ32 × 1 embedding from the last hidden layer of our 

Histology CNN, which we use as input into Pathomic Fusion. This network is supervised 

by the Cox partial likelihood loss for survival outcome prediction, and cross entropy loss for 

grade classification (Supplement, Appendix A).

B. Learning Morphometric Cell and Graph Features using Graph Convolutional Networks

The spatial heterogeneity of cells in histopathology has potential in informing the invasion 

and progression of cancer and in bioinformatics tasks of interest such as cancer subtyping, 

biomarker discovery and survival outcome prediction [40], [45]. Unlike image-based feature 

representation of histology tissue using CNNs, cell graph representations explicitly capture 

only pre-selected features of cells, which can be scaled to cover larger regions of histology 

tissue.

Let G = (V, E) denote a graph with nodes V and edges E. We define X ∈ ℝN × F  as 

a feature matrix of N nodes in V with F-dimensional features, and A ∈ ℝN × N as the 

adjacency matrix that holds the graph topology. To construct graphs that would capture 

the tumor microenvironment (Fig 2), on the same histology ROI used as input to our 

CNN, we 1): perform semantic segmentation to detect and spatially localize cells in a 

histopathology region-of-interest to define our set of nodes V, 2): use K-Nearest Neighbors 

to find connections between adjacent cells to define our set of edges E, 3): calculate 

handcrafted and deep features for each cell that would define our feature matrix X, and 4): 

use graph convolutional networks to learn a robust representation of our entire graph for 

survival outcome prediction.

Nuclei Segmentation: Accurate nuclei segmentation is important in defining abnormal 

cell features such as nuclear atypia, abundant tumor cellularity, and other features that would 

be indicative of cancer progression [46]–[49]. Previous works rely on conventional fully 

convolutional networks that minimize a pixel-wise loss [50], which can cause the network 

to segment multiple nuclei as one, leading to inaccurate feature extraction of nuclei shape 

and community structure. To overcome this issue, we use the same conditional generative 

adversarial network (cGAN) from our previous work to learn an appropriate loss function 

for semantic segmentation, which circumvents manually engineered loss functions [51]–

[53]. As described in our previous work [51], the conditional GAN framework consists of 

two networks (a generator G and a discriminator D) that compete against each other in 

a min-max game to respectively minimize and maximize the objective minGmaxDℒ(G, D). 
Specifically, G is a segmentation network that learns to translate histology tissue images n 
into realistic segmentation masks m, and D is a binary classification network that aims to 

distinguish real and predicted pairs of tissue ((n, m) vs. (n, S(n)). Our generator is supervised 

with a ℒ1 loss and adversarial loss function, in which the adversarial loss penalizes the 

generator for producing segmentation masks that are unrealistic.
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ℒGAN(S, DM) = Em, n ∼ pdata(m, n) logDM(m, n)
+En ∼ pdata(n) log 1 − DM(m, S(n))

Cell Graph Construction: From our segmented nuclei, we use the K-Nearest Neighbors 

(KNN) algorithm from the Fast Library for Approximate Nearest Neighbours (FLANN) 

library to construct the edge set and adjacency matrix of our graph [54] (Fig 2). We 

hypothesize that adjacent cells will have the most significant cell-cell interactions and limit 

the adjacency matrix to K nearest neighbours. In our investigations, we used K = 5 to detect 

community structure and model cellular interactions. Using KNN, our adjacency matrix A is 

defined as:

Aij
1 if j ∈ KNN(i) and D(i, j) < d
0 otherwise

Manual Cell Feature Extraction: For each cell, we computed eight contour features 

(major axis length, minor axis length, angular orientation, eccentricity, roundness, area, and 

solidity), as well as four texture features from gray-level co-occurence matrices (GLCM) 

(dissimilarity, homogeneity, angular second moment, and energy). Contours were obtained 

from segmentation results in nuclei segmentation, and GLCMs were calculated from 64 × 

64 image crops centered over each contour centroid. These twelve features were selected for 

inclusion in our feature matrix X, as they would describe abnormal morphological features 

about glioma cells such as atypia, nuclear pleomorphism, and hyperchromatism.

Unsupervised Cell Feature Extraction using Contrastive Predictive 
Coding: Besides manually computed statistics, we also used an unsupervised technique 

known as contrastive predictive coding (CPC) [55]–[57] to extract 1024-dimensional 

features from tissue regions of size 64 × 64 centered around each cell in a spatial graph. 

Given a high-dimensional data sequence {xt} (256 × 256 image crop from the histology 

ROI), CPC is designed to capture high-level representations shared among different portions 

(64 × 64 image patches) of the complete signal. The encoder network genc transforms each 

data observation xi into a low-dimensional representation zi and learns via a contrastive 

loss whose optimization leads to maximizing the mutual information between the available 

context ct, computed from a known portion of the encoded sequence {zi}, i ≤ t and future 

observations zt+k, k > 0. By minimizing the CPC objective, we are able to learn rich 

feature representations shared among various tissue regions that are specific to the cells in 

the underlying tissue site. Examples include the morphology and distinct arrangement of 

different cell types, inter-cellular interactions, and the microvascular patterns surrounding 

each cell. To create CPC features for each cell, we encode 64 × 64 image patches centered 

over the centroid of each cell. These features are concatenated with our handcrafted features 

during cell graph construction.

Graph Convolutional Network: Similar to CNNs, GCNs learn abstracts feature 

representations for each feature in a node via message passing, in which nodes iteratively 

aggregate feature vectors from their neighborhood to compute a new feature vector at the 
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next hidden layer in the network [38]. The representation of an entire graph can be obtained 

through pooling over all the nodes, which can then be used as input for tasks such as 

classification or survival outcome prediction. Such convolution and pooling operations can 

defined as follows:

aυ
(k) = AGGREGATE(k) ℎu

(k − 1):u ∈ N(υ)
ℎυ

(k) = COMBINE(k) ℎυ
(k − 1), aυ

(k)

where ℎυ
(k) is the feature vector of node υ at the k – 1-th iteration of the neighborhood 

aggregation, aυ
(k) is the feature vector of node υ at the next iteration, and AGGREGATE 

and COMBINE are functions for combining feature vectors between hidden layers. As 

defined in Hamilton et al., we adopt the AGGREGATE and COMBINE definitions from 

GraphSAGE [35], which for a given node, represents the next node hidden layer as the 

concatenation of the current hidden layer with the neighborhood features:

aυ
(k) = MAX ReLU W ⋅ ℎu

(k − 1) , ∀u ∈ N(υ)
ℎυ

(k) = W ⋅ ℎυ
(k − 1), aυ

(k)

Unlike other graph-structured data, cell graphs exhibit a hierarchical topology, in which the 

degree of eccentricity and clustered components of nodes in a graph define multiple views 

of how cells are organized in the tumor micro-environment: from fine-grained views such 

as local cell-to-cell interactions, to coarser-grained views such as structural regions of cell 

invasion and metastasis. In order to encode the hierarchical structure of cell graphs, we 

adopt the self-attention pooling strategy SAGPOOL presented in Lee et al. [36], which is 

a hierarchical pooling method that performs local pooling operations of node embeddings 

in a graph. In attention pooling, the contribution of each node embedding in the pooling 

receptive field to the next network layer is adaptively learned using an attention mechanism. 

The attention score Z ∈ ℝN × 1 for nodes in G can be calculated as such:

Z = σ SAGEConv X, A + A2

where X are the node features, A is the adjacency matrix, and SAGEConv is the convolution 

operator from GraphSAGE. To also aggregate information from multiple scales in the nuclei 

graph topology, we also adopt the hierarchical pooling strategy in Lee et al. [36]. Since we 

are constructing cell graphs on the entire image, no patch averaging of predicted hazards 

needs to be performed. At the last hidden layer of our Graph Convolutional SNN, we pool 

the node features into a hg ∈ ℝ32 × 1 feature vector, which we use as an input to Pathomic 

Fusion.

C. Predicting Patient Outcomes from Molecular Profiles using Self-Normalizing Networks

Advances in next-generation sequencing data have allowed for the profiling of transcript 

abundance (RNA-Seq), copy number variation (CNV), mutation status, and other molecular 

characterizations at the gene level, and have been frequently used to study survival outcomes 

in cancer. For example, isocitrate dehydrogenase 1 (IDH1) is a gene that is important for 
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cellular metabolism, epigenetic regulation and DNA repair, with its mutation associated with 

prolonged patient survival in cancers such as glioma. Other genes include EGFR, VEGF 

and MGMT, which are implicated in angiogenesis, which is the process of blood vessel 

formulation that also allows cancer to proliferate to other areas of tissue.

For learning scenarios that have hundreds to thousands of features with relatively few 

training samples, Feedforward networks are prone to overfitting. Compared to other kinds 

of neural network architectures such as CNNs, weights in Feedforward networks are shared 

and thus more sensitive training instabilities from perturbation and regularization techniques 

such as stochastic gradient descent and Dropout. To mitigate overfitting on high-dimensional 

low sample size genomics data and employ more robust regularization techniques when 

training Feedforward networks, we adopt the normalization layers from Self-Normalizing 

Networks in Klambaeur et al. [58]. In Self-Normalizing Networks (SNN), rectified linear 

unit (ReLU) activations are replaced with scaled exponential linear units (SeLU) to drive 

outputs after every layer towards zero mean and unit variance. Combined with a modified 

regularization technique (Alpha Dropout) that maintains this self-normalizing property, we 

are able to train well-regularized Feedforward networks that would be otherwise prone to 

instabilities as a result of vanishing or explosive gradients. Our network architecture consists 

of four fully-connected layers followed by Exponential Linear Unit (ELU) activation and 

Alpha Dropout to ensure the self-normalization property. The last fully-connected layer is 

used to learn a representation hn ∈ ℝ32 × 1, which is used as input into our Pathomic Fusion 

(Fig. 1).

D. Multimodal Tensor Fusion via Kronecker Product and Gating-Based Attention

For multimodal data in cancer pathology, there exists a data heterogeneity gap in combining 

histology and genomic input - histology images are spatial distributed as (R, G, B) 

pixels in a two-dimensional grid, whereas cell graphs are defined as a set of nodes V 
with different sized neighborhoods and edges V, and genomic data is often represented 

as a one-dimensional vector of covariates [30]. Our motivation for multimodal learning 

is that the inter-modality interactions between histology and genomic features would be 

able to improve patient stratification into subtypes and treatment groups. For example, in 

the refinement of histogenesis of glioma, though morphological characteristics alone do 

not correlate well with patient outcomes, their semantic importance in drawing decision 

boundaries is changed when conditioned on genomic biomarkers such as IDH1 mutation 

status and chromosomal 1p19q arm codeletion [59].

In this work, we aim to explicitly capture these important interactions using the Kronecker 

Product, which model feature interactions across unimodal feature representations, that 

would otherwise not be explicitly captured in feedforward layers. Following the construction 

of the three unimodal feature representations in the previous subsections, we build a 

multimodal representation using the Kronecker product of the histology image, cell graph, 

and genomic features (hi, hg, hn). The joint multimodal tensor computed by the matrix outer 

product of these feature vectors would capture important unimodal, bimodal and trimodal 

interactions of all features of these three modalities, shown in Fig. 1 and in the equation 

below:
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hfusion =
hi

1
⊗

hg

1
⊗

hn

1

where ⊗ is the outer product, and hfusion is a differential multimodal tensor that forms in a 

3D Cartesian space. In this computation, every neuron in the last hidden layer in the CNN is 

multiplied by every other neuron in the last hidden layer of the SNN, and subsequently 

multiplied with every other neuron in the last hidden layer of the GCN. To preserve 

unimodal and bimodal feature interactions when computing the trimodal interactions, we 

append 1 to each unimodal feature representation. For feature vectors of size [33 × 1], [33 

× 1] and [33 × 1], the calculated multimodal tensor would have dimension [33 × 33 × 

33], where the unimodal features (hi, hg, hn) and bimodal feature interactions (hi ⊗ hg, hg 

⊗ hn, hi ⊗ hn) are defined along the outer dimension of the 3D tensor, and the trimodal 

interactions (captured as hi ⊗ hg ⊗ hn) in the inner dimension of the 3D tensor (Fig. 

1). Following the computation of this joint representation, we learn a final network using 

fully-connected layers using the multimodal tensor as input, supervised with the previously 

defined Cox objective for survival outcome prediction and cross-entropy loss for grade 

classification. Ultimately, the value of Pathomic Fusion is fusing heterogeneous modalities 

that have disparate structural dependencies. Our multimodal network is initialized with 

pretrained weights from the unimodal networks, followed by end-to-end fine-tuning of the 

Histology GCN and Genomic SNN.

To decrease the impact of noisy unimodal features during multimodal training, before the 

Kronecker Product, we employed a gating-based attention mechanism that controls the 

expressiveness of features of each modality [60]. In fusing histology image, cell graph, 

and genomic features, some of the captured features may have high collinearity, in which 

employing a gating mechanism can reduce the size of the feature space before computing 

the Kronecker Product. For a modality m with a unimodal feature representation hm, we 

learn a linear transformation Wign→m of modalities hi, hg, hn that would score the relative 

importance of each feature in m, denoted as zm in the equation below.

hm, gated = zm ∗ hm, ∀m ∈ i, g, n
where, hm = ReLU W m ⋅ hm

zm = σ W ign m ⋅ hi, hg, hn

zm can be interpreted as an attention weight vector, in which modalities i, g, n attend over 

each feature in modality m. Wm and Wign→m are weight matrix parameters we learn for 

feature gating. After taking the softmax probability, we take the element-wise product of 

features hm and scores zm to calculate the gated representation.

E. Multimodal Interpretability

To interpret our network, we modified both Grad-CAM and Integrated Gradients for 

visualizing image saliency feature importance across multiple types of input. Grad-CAM 

is a gradient-based localization technique used to produce visual explanations in image 

classification, in which neurons whose gradients have positive influence on a class of 
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interest are used to produce a coarse heatmap [61]. Since the last layer of our network is 

a single neuron for outputting hazard, we modified the target to perform back-propagation 

on the single neuron. As a result, the visual explanations from our network correspond 

with image regions used in predicting hazard (values ranging from [−3,3]). For Histology 

GCN and Genomic SNN, we used Integrated Gradients (IG), a gradient-based feature 

attribution method that attributes the prediction of deep networks to their inputs [62]. Similar 

to previous attribution-based methods such as Layer-wise Relevance Propagation [63], IG 

calculates the gradients of the input tensor x across different scales against a baseline xi 

(zero-scaled), and then uses the Gauss-Legendre quadrature to approximate the integral of 

gradients.

IGi(x): : = (xi − xi
′) ×

α = 0

1
∂F x′ + α × x − x′

∂xi
dα

To adapt IG to graph-based structures, we treat the nodes in our graph input as the batch 

dimension, and scale each node in the graph by the number of integral approximation 

steps. With multimodal inputs, we can approximate the integral of gradients for each data 

modality.

IV. EXPERIMENTAL SETUP

A. Data Description

To validate our proposed multimodal paradigm for integrating histology and genomic 

features, we collected glioma and clear cell renal cell carcinoma data from the TCGA, a 

cancer data consortium that contains paired high-throughput genome analysis and diagnostic 

whole slide images with ground-truth survival outcome and histologic grade labels. For 

astrocytomas and glioblastomas in the merged TCGA-GBM and TCGA-LGG (TCGA-

GBMLGG) project, we used 1024 × 1024 region-of-interests (ROIs) from diagnostic slides 

curated by [29], and used sparse stain normalization [64] to match all images to a standard 

H&E histology image. Multiple region-of-interests (ROIs) from diagnostic slides were 

obtained for some patients, creating a total of 1505 images for 769 patients. 320 genomic 

features from CNV (79), mutation status (1), and bulk RNA-Seq expression from the top 

240 differentially expressed genes (240) were curated from the TCGA and the cBioPortal 

[65] for each patient. For clear cell renal cell carcinoma in the TCGA-KIRC project we used 

manually extracted 512 × 512 ROIs from diagnostic whole slide images. For 417 patients 

in CCRCC, we collected 3 512 × 512 40x ROIs per patient, yielding 1251 images total 

that were similarly normalized with stain normalization. We paired these images with 357 

genomic features from CNV of genes with alteration frequency greater than 7% (117) and 

RNA-Seq from the top 240 differentially expressed genes (240). It should be noted that for 

TCGA-GBMLGG had approximately 40% of the patients had missing RNA-Seq expression. 

Details regarding genomic features and data alignment of histology and genomics data are 

found in the implementation details (Appendix B). Our experimental setup is also described 

in the reproducibility section of our GitHub repository.
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B. Quantitative Study

TCGA-GBMLGG: Gliomas are a form of brain and spinal cord tumors defined by both 

hallmark histopathological and genomic heterogeneity in the tumor microenvironment, 

as well as response-to-treatment heterogeneity in patient outcomes. The current World 

Health Organization (WHO) Paradigm for glioma classification stratifies diffuse gliomas 

based on morphological and molecular characteristics: glial cell type (astrocytoma, 

oligodendroglioma), IDH1 gene mutation status and 1p19q chromosome codeletion status 

[59]. WHO Grading is made by the manual interpretation of histology using pathological 

determinants for malignancy (WHO Grades II, III, and IV). These characteristics form three 

categories of gliomas which have been extensively correlated with survival: 1) IDH-wildtype 

astrocytomas (IDHwt ATC), 2) IDH-mutant astrocytomas (IDHmut ATC), and 3) IDH-

mutant and 1p/19q-codeleted oligodendrogliomas (ODG). IDHwt ATCs (predominantly 

WHO grades III and IV) have been shown to have the worst patient survival outcomes, 

while IDHmut ATCs (mixture of WHO Grades II, III, and IV) and ODGs (predominantly 

WHO Grades II and III) have more favorable outcomes (listed in increasing order) [59]. 

As a baseline against standard statistical approaches / WHO paradigm for survival outcome 

prediction, we trained Cox Proportion Hazard Models using age, gender, molecular subtypes 

and grade as covariates.

In our experimentation, we conducted an ablation study comparing model configurations 

and fusion strategies in a 15-fold cross validation on two supervised learning tasks for 

glioma: 1) survival outcome prediction, and 2) cancer grade classification. For each task, we 

trained six different model configurations from the combination of available modalities in 

the dataset. First, we trained three different unimodal networks: 1) a CNN for in histology 

image input (Histology CNN), 2) a GCN for cell graph input (Histology GCN), and 3) 

a SNN for genomic features input (Genomic SNN). For cancer grade classification, we 

did not use mRNA-Seq expression due to missing data, lack of paired training examples, 

and because grade is solely determined from histopathologic appearance. After training 

the unimodal networks, we trained three different configurations of Pathomic Fusion: 1) 

GCN⊗SNN, 2) CNN⊗SNN, 3) GCN⊗CNN⊗SNN. To test for ensembling, we train 

multimodal networks that fused histology data with histology data, and genomic features 

with genomic features. We compare our fusion approach to internal benchmarks and the 

previous state-of-the-art [29] approach for survival outcome prediction in glioma, which 

concatenates histology ROIs with IDH1 and 1p19q genomic features. To compare with their 

results, we used their identical train-test split, which was created using a 15-fold Monte 

Carlo cross-validation [29].

TCGA-KIRC: Clear cell renal cell carcinoma (CCRCC) is the most common type 

of renal cell carcinoma, originating from cells in the proximal convoluted tubules. 

Histopathologically, CCRCC is characterized by diverse cystic grown patterns of cells 

with clear or eosinophilic cytoplasm, and a network of thin-walled “chicken wire” 

vasculature [66], [67]. Genetically, it is characterized by a chromosome 3p arm loss 

and mutation status of the von Hippel-Lindau (VHL) gene, which leads to lead to 

stabilization of hypoxia inducible factors that lead to malignancy [68]. Though CCRCC is 

well-characterized, methods for staging CCRCC suffer from large intra-observer variability 

Chen et al. Page 12

IEEE Trans Med Imaging. Author manuscript; available in PMC 2023 July 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in visual histopathological examination. The Fuhrman Grading System for CCRCC is a 

nuclear grade that ranges from G1 (round or nuform nuclei with absent nucleoli) to G4 

(irregular and multilobular nuclei with prominent nucleoli). At the time of the study, the 

TCGA-KIRC project used the Fuhrman Grading System to grade CCRCC in severity 

from G1 to G4, however, the grading system has received scrutiny in having poor overall 

agreement amongst pathologists on external cohorts [66]. As a baseline against standard 

statistical approaches, we trained Cox Proportion Hazard Models using age, gender, and 

grade as covariates.

Similar to the ablation study conducted with glioma, we compared model configurations 

and fusion strategies in a 15-fold cross validation on CCRCC, and tested for ensembling 

effects. In demonstrating the effectiveness of Pathomic Fusion in stratifying CCRCC, we 

use the Fuhrman Grade as a comparative baseline in survival analysis, however, we do not 

perform ablation experiments on grade classification. Since CCRCC does not have multiple 

molecular subtypes, subtyping was also not performed, however, we perform analyses on 

CCRCC patient cohorts with different survival durations (shorter surviving and longer 

surviving patients).

Evaluation: We evaluate our method with standard quantitative and statistical metrics 

for survival outcome prediction and grade classification. For survival analysis, we evaluate 

all models using the Concordance Index (c-Index), which is defined as the fraction of all 

pairs of samples whose predicted survival times are correctly ordered among all uncensored 

samples (Table I, II). On glioma and CCRCC respectively, we separate the predicted hazards 

into 33-66-100 and 25-50-75-100 percentiles as digital grades, which we compared with 

molecular subtyping and grading. For significance testing of patient stratification, we use the 

Log Rank Test to measure if the difference of two survival curves is statistically significance 

[69]. Kaplan-Meir estimates and predicted hazard distribution were used to visualize how 

models were stratifying patients. For grade classification, we evaluate our networks using 

Area Under the Curve (AUC), Average Precision (AP), F1-Score (micro-averaged across all 

classes), F1-Score (WHO Grade IV class only), and show ROC curves (Appendix C, Fig. 

7). In total, we trained 480 models total in our ablation experiments using 15-fold cross 

validation. Implementation and training details for all networks are described in detail in 

Appendix A and B.

V. RESULTS AND DISCUSSION

A. Pathomic Fusion Outperforms Unimodal Networks and the WHO Paradigm

In combining histology image, cell graph, and genomic features via Pathomic Fusion, our 

approach outperforms Cox models, unimodal networks, and previous deep learning-based 

feature fusion approaches on image-omic-based survival outcome prediction (Table I, II). 

On glioma, Pathomic Fusion outperforms the WHO paradigm and the previous state-of-the-

art (concatenation-based fusion [29]) with 6.31% and 5.76% improvements respectively, 

reaching a c-Index of 0.826. In addition, we demonstrate that multimodal networks were 

able to consistently improve upon their unimodal baselines, with trimodal Pathomic Fusion 

(CNN⊗GCN⊗SNN) fusion of image, graph, and genomic features having the largest 
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c-Index. Though bimodal Pathomic Fusion (CNN⊗SNN) achieved similar performance 

metrics, the difference between low-to-intermediate digital grades ([0,33) vs. [33,66) 

percentile of predicted hazards) was not found to be statistically significant (Appendix C, 

Table III, Fig. 9). In incorporating features from GCNs, the p-value for testing difference 

in [0,33] vs. (33,66] percentiles decreased from 0.103 to 2.68e-03. On CCRCC, we report 

similar observations, with trimodal Pathomic Fusion achieving a c-Index of 0.720 and 

statistical significance in stratifying patients into low and high risk (Appendix C, Fig. 10). 

Using the c-Index metric, GCNs do not add significant improvement over CNNs alone. 

However, for heterogeneous cancers such as glioma, the integration of GCNs in Pathomic 

Fusion may provide clinical benefit in distinguishing survival curves of less aggressive 

tumors.

We also demonstrate that these improvements are not due to network ensembling, as 

inputting same modality twice into Pathomic Fusion resulted in overfitting (Appendix C, 

Table III). On glioma grade classification, we see similar improvement with Pathomic 

Fusion with increases of 2.75% AUC, 4.23% average precision, 4.27% F1-score (micro), 

and 5.11% (Grade IV) over Histology CNN, which is consistent with performance increases 

found in multimodal learning literature for conventional vision tasks (Appendix C, Fig. 8, 

Table V) [24].

B. Pathomic Fusion Improves Patient Stratification

To further investigate the ability of Pathomic Fusion for improving objective image-omic-

based patient stratification, we plot Kaplan-Meier (KM) curves of our trained networks 

against the WHO paradigm (which uses molecular subtyping) on glioma (Fig. 3), and 

against the Fuhrman Grading System on CCRCC (Fig. 4). Overall, we observe that 

Pathomic Fusion allows for fine-grained stratification of survival curves beyond low vs. 

high survival, and that these digital grades may be useful in clinical settings in defining 

treatment cohorts.

On glioma, similar to [29], we observe that digital grading (33-66 percentile) from Pathomic 

Fusion is similar to that of the three defined glioma subtypes (IDHwt ATC, IDHmut 

ATC, ODG) that correlate with survival. In comparing Pathomic Fusion to Histology 

CNN, Pathomic Fusion was able to discriminate intermediate and high risk patients better 

than Histology CNN. Though Pathomic Fusion was slightly worse in defining low and 

intermediate risk patients, differences between these survival curves were observed to be 

statistically significant (Appendix C, Table III). Similar confusion in discriminating low-

to-intermediate risk patients is also shown in the KM estimates of molecular subtypes, 

which corroborates with known literature that WHO Grades II and III are more difficult to 

distinguish than Grades III and IV [59] (Fig. 3). In analyzing the distribution of predicted 

hazard scores for patients in low vs. high surviving cohorts, we also observe that Pathomic 

Fusion is able to correctly assign risk to these patients in three high-density peaks / clusters, 

whereas Histology CNN alone labels a majority of intermediate-to-high risk gliomas with 

low hazard values. In inspecting the clusters elucidated by Pathomic Fusion ([−1.0, −0.5], 

[1.0, 1.25] and [1.25, 1.5]), we see that the gliomas these clusters strongly corroborate with 

the WHO Paradigm for stratifying gliomas into IDHwt ATC, IDHmut ATC, and ODG.
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On CCRCC, we observe that Pathomic Fusion is able to not only differentiate between lower 

and higher surviving patients, but also assign digital grades that follow patient stratification 

by the Fuhrman Grading System (Fig. 4). Unlike Histology CNN, Pathomic Fusion is able to 

disentangle the survival curves of G1-G3 CCRCCs, which have overall low-to-intermediate 

survival. In analyzing the distribution of hazard predictions by Histology CNN, we see that 

risk is almost uniformly predicted across shorter and longer survival patients, which suggests 

that histology alone is a poor prognostic indicator for survival in CCRCC.

C. Multimodal Interpretability of Pathomic Fusion

In addition to improved patient stratification, we demonstrate that our image-omic paradigm 

is highly interpretable, in which we can attribute how pixel regions inhistology images, cells 

in cell graphs, and features in genomic inputs are used in survival outcome prediction.

In examining IG attributions for genomic input, we were able to corroborate important 

markers such as IDH wildtype status in glioma and CYP3A7 under-expression in CCRCC 

correlating with increased risk. In glioma, our approach highlights several signature 

oncogenes such as PTEN, MYC, CDKN2A, EGFR and FGFR2, which are implicated in 

controlling cell cycle and angiogenesis (Fig. 5) [70]. In examining how feature attribution 

shifts when conditioning on morphological features, several genes become more pronounced 

in predicting survival across each subtype such as ANO9 and RB1 (Appendix C, Fig. 

11). ANO9 encodes for a protein that mediates diverse physiological functions such as 

ion transport and phospholipid movement across the membrane. Over-expression of ANO 

proteins were found to be correlated with poor prognosis in many tumors, which we 

similarly observe in our IDHmut ATC subtype with decreased ANO9 expression decreases 

risk [71]. In addition, we also observe RB1 over-expression decreases risk also in IDHmut 

ATC, which corroborates with known literature that RB1 is a tumor suppressor gene. 

Interestingly, EGFR amplication decreased in importance in IDHwt ATC, which may 

support evidence that EGFR is not a strong therapeutic target in glioblastoma treatment 

[72]. In CCRCC, Pathomic Fusion discovers decreased CYP3A7 expression and increased 

PITX2, DDX43, and XIST expression to correlate with risk, which have been linked to 

cancer predisposition and tumor progression across many cancers (Fig. 6) [73]–[77]. In 

conditioning on morphological features, HAGHL, MMP1 and ARRP21 gene expression 

becomes more highly attributed in risk prediction (Appendix C, Fig 11) [78], [79]. For 

cancers such as CCRCC that do not have multiple molecular subtypes, Pathomic Fusion has 

the potential to refine gene signatures in cancers, and uncover new prognostic biomarkers 

that can be targeted in therapeutic treatments.

Across all histology images and cell graphs in both organ types, we observe that Pathomic 

Fusion broadly localizes both vasculature and cell atypia as an important feature in survival 

outcome prediction. In ATCs, Pathomic Fusion is able to localize not only regions of 

tumor cellularity and microvascular proliferation in the histology image, but also glial cells 

between the microvasculature as depicted in the cell graph (Fig. 5). In ODG, both modalities 

attend towards “fried egg cells”, which are mildly enlarged round cells with dark nuclei and 

clear cytoplasm characteristic in ODG. In CCRCC, Pathomic Fusion attends towards cells 

with indiscernible nucleoli in longer surviving patients, and large cells with clear nucleoli 
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in shorter surviving patients that is indicative of CCRCC malignancy (Fig. 6). An important 

aspect about our method is that we are able to leverage heatmaps from both histology images 

and cell graphs to explain prognostic histological features used for prediction. Though visual 

explanations from the image and cell graph heatmap often overlap in localizing cell atypia, 

the cell graph can be used to uncover salient regions that are not recognized in the histology 

image for risk prediction. Moreover, cell graphs may have additional clinical potential in 

explainability, as the attributions refer to specific atypical cells rather than pixel regions.

VI. CONCLUSION

The recent advancements made in imaging and sequencing technologies is transforming our 

understanding of molecular biology and medicine with multimodal data. Next-generation 

sequencing technologies such as RNA-Seq is redefining clinical grading paradigms to 

include bulk quantitative measurements from molecular subtyping [59]. Tangential to this 

growth field has been the emergence of tissue imaging instrumentation such as whole-slide 

imaging, which capture the organization of cells and their surrounding tissue architecture. In 

this work, we present Pathomic Fusion, a novel framework for integrating data from these 

technologies for building objective image-omic assays for cancer diagnosis and prognosis. 

We extract morphological features from histology images using CNNs and GCNs and 

genomic features using SNNs and fuse these deep features using the Kronecker Product 

and a gating-based attention mechanism. We validate our approach on glioma and CCRCC 

data from TCGA, and demonstrate how multimodal networks in medicine can be used 

for fine-grained patient stratification and interpretted for finding prognostic features. The 

method presented is scalable and interpretable for multiple modalities of different data types, 

and may be used for integrating any combination of imaging and multi-omic data. The 

paradigm is general and may be used for predicting response and resistance to treatment. 

Multimodal interpretability has the ability to identify new and novel integrative bio-markers 

of diagnostic, prognostic and therapeutic relevance.
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Fig. 1: Pathomic Fusion:
An integrated framework for multimodal fusion of histology and genomic features for 

survival outcome prediction and classification. Histology features may be extracted using 

CNNs, parameter efficient GCNs or a combination of the two. Unimodal networks for the 

respective image and genomic features are first trained individually for the corresponding 

supervised learning task, and then used as feature extractors for multimodal fusion. 

Multimodal fusion is performed by applying an gating-based attention mechanism to first 

control the expressiveness of each modality, followed by the Kronecker product to model 

pairwise feature interactions across modalities.
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Fig. 2: 
Graph Convolutional Network for learning morphometric cell features from histology 

images. We represent cells in histology tissue as nodes in a graph, where cells are isolated 

using a deep learning-based nuclei segmentation algorithm and the connections between 

cells are made using KNN. Features for each cell are initialized using handcrafted features 

as well as deep features learned using contrastive predictive coding. The aggregate and 

combine functions are adopted from the GraphSAGE architecture, with the node masking 

and hierarchical pooling strategy adopted from SAGEPool.
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Fig. 3: Pathomic Fusion Applied to Glioblastoma and Lower Grade Glioma.
A. Glioma hazard distributions amongst shorter vs. longer surviving uncensored patients 

and molecular subtypes for Histology CNN and Pathomic Fusion. Patients are defined as 

shorter surviving if patient death is observed before 5 years of the first follow-up (shaded 

red), and longer surviving if patient death is observed after 5 years of the first follow-up 

(shaded blue). Pathomic Fusion predicts hazard in more concentrated clusters than Histology 

CNN, while the distribution of hazard predictions from Histology CNN have longer tails and 

are more varied across molecular subtypes. In analyzing the types of glioma in the three 

high density regions revealed from Pathomic Fusion, we see that these regions corroborate 

with the WHO paradigm for stratifying patients into IDHwt ATC, IDHmut ATC, and ODG 

(Appendix C, Table IV). B. Kaplan-Meier comparative analysis of using grade, molecular 

subtype, Histology CNN and Pathomic Fusion in stratifying patient outcomes. Hazard 

predictions from Pathomic Fusion show better stratification of mid-to-high risk patients 

than Histology CNN, and low-to-mid risk patients than molecular subtyping, which follows 

the WHO paradigm. Low / intermediate / high risk are defined by the 33-66-100 percentile 
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of hazard predictions. Overlayed Kaplan-Meier estimates of our network predictions with 

WHO Grading is shown in the supplement (Appendix C, Fig. 9).
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Fig. 4: Pathomic Fusion Applied to Clear Cell Renal Cell Carcinoma.
CCRCC hazard distributions amongst shorter vs. longer surviving uncensored patients for 

Histology CNN and Pathomic Fusion. Patients are defined as shorter surviving if patient 

death is observed before 3.5 years of the first follow-up (shaded red), and longer surviving 

if patient death is observed after 3.5 years of the first follow-up (shaded blue). Pathomic 

Fusion was observed to able to stratify longer and shorter surviving patients better than 

Histology CNN, exhibiting a bimodal distribution in hazard prediction. Overlayed Kaplan-

Meier estimates of our network predictions with WHO Grading is shown in the supplement 

(Appendix C, Fig. 10).
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Fig. 5: 
Multimodal interpretability by Pathomic Fusion in glioma. A. Local explanation of histology 

image, cell graph, and genomic modalities for individual patients of three molecular 

subtypes. In IDHwt ATC, the network detects endothelial cells of the microvascular 

proliferation in the histology image, while the cell graph localizes glial cells between the 

microvasculature. In IDHmut ATC, we observe similar localization of tumor cellularity in 

both the histology image and cell graph, however, attribution direction for IDH is flipped 

to have positive impact on survival. In ODG, we observe both modalities localizing towards 

different regions containing “fried egg cells” that are canonical in ODG. For each of these 

patients, local explanation reveals the most important genomic features used for prediction. 

B. Global explanation of top 20 genomic features for each molecular subtype in glioma. 

Canonical oncogenes in glioma such as IDH, PTEN, MYC and CDKN2A are attributed 

highly as being important for risk prediction.
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Fig. 6: 
Multimodal interpretability by Pathomic Fusion in CCRCC. A. Local explanation of 

histology image, cell graph, and genomic modalities for two longer and shorter surviving 

patients. In the longer surviving patient, Pathomic Fusion localizes cells without obvious 

nucleoli in both the histology image and cell graph, which suggests lower-grade CCRCC 

and lower risk. In the shorter surviving patient, we observe Pathomic Fusion attending to 

large cells with prominent nucleoli and eosinophilic-to-clear cytoplasm in the cell graph, and 

the “chicken-wire” vasculature pattern in the histology image that is characteristic of higher-

grade CCRCC. Cells without clear cytoplasms are noticeably missed in both modalities for 

shorter survival. For each of these patients, local explanation reveals the most important 

genomic features used for prediction. B. Global explanation of top 20 genomic features for 

longer surviving, shorter surviving, and all patients in CCRCC. Genes such as CYP3A7, 

DDX43 and PITX2 are attributed highly as being important for risk prediction, which have 

linked to cancer predisposition and tumor progression in CCRCC and other cancers.
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TABLE I:

Concordance Index of Pathomic Fusion and ablation experiments in glioma survival prediction.

Model c-Index

Cox (Age+Gender) 0.732 ± 0.012*

Cox (Grade) 0.738 ± 0.013*

Cox (Molecular Subtype) 0.760 ± 0.011*

Cox (Grade+Molecular Subtype) 0.777 ± 0.013*

Histology CNN 0.792 ± 0.014*

Histology GCN 0.746 ± 0.023*

Genomic SNN 0.808 ± 0.014*

SCNN (Histology Only) [29]) 0.754*

GSCNN (Histology + Genomic) [29]) 0.781*

Pathomic F. (GCN⊗SNN) 0.812 ± 0.010*

Pathomic F. (CNN⊗SNN) 0.820 ± 0.009*

Pathomic F. (CNN⊗GCN⊗SNN) 0.826 ± 0.009*

*
p < 0.05
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TABLE II:

Concordance Index of Pathomic Fusion and ablation experiments in CCRCC survival prediction.

Model c-Index

Cox (Age+Gender) 0.630 ± 0.024*

Cox (Grade) 0.675 ± 0.036*

Histology CNN 0.671 ± 0.023*

Histology GCN 0.646 ± 0.022*

Genomic SNN 0.684 ± 0.025*

Pathomic F. (GCN⊗SNN) 0.688 ± 0.029*

Pathomic F. (CNN⊗SNN) 0.719 ± 0.031*

Pathomic F. (CNN⊗GCN⊗SNN) 0.720 ± 0.028*

*
p < 0.05
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