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Abstract: Aim: To investigate the contribution of GAS5 in the pathogenesis of SLE.

Background: Systemic Lupus Erythematosus (SLE) is characterized by aberrant activity of the immune sys-
tem, leading to variable  clinical  symptoms.  The etiology of  SLE is  multifactor,  and growing evidence has
shown that long noncoding RNAs (lncRNAs) are related to human SLE. Recently, lncRNA growth arrest-spe-
cific  transcript  5  (GAS5)  has  been reported to  be  associated with  SLE.  However,  the  mechanism between
GAS5 and SLE is still unknown.

Objective: Find the specific mechanism of action of lncRNA GAS5 in SLE.

Methods: Collecting samples of the SLE patients, Cell culture and treatment, Plasmid construction, and trans-
fection, Quantitative real-time PCR analysis, Enzyme-linked immunosorbent assay (ELISA), Cell viability anal-
ysis, Cell apoptosis analysis, Western blot.

Results: In this research, we investigated the contribution of GAS5 in the pathogenesis of SLE. We confirmed
that, compared to healthy people, the expression of GAS5 was significantly decreased in peripheral monocytes
of SLE patients. Subsequently, we found that GAS5 can inhibit the proliferation and promote the apoptosis of
monocytes by over-expressing or  knocking down the expression of  GAS5. Additionally,  the expression of
GAS5  was  suppressed  by  LPS.  Silencing  GAS5  significantly  increased  the  expression  of  a  group  of
chemokines and cytokines, including IL-1β, IL-6, and THFα, which were induced by LPS. Furthermore, it was
identified the involvement of GAS5 in the TLR4-mediated inflammatory process was through affecting the acti-
vation of the MAPK signaling pathway.

Conclusion: In general, the decreased GAS5 expression may be a potential contributor to the elevated produc-
tion of a great number of cytokines and chemokines in SLE patients. And our research suggests that GAS5 con-
tributes a regulatory role in the pathogenesis of SLE, and may provide a potential target for therapeutic interven-
tion.

Keywords: Long noncoding RNA, GAS5, systemic lupus erythematosus, MAPK pathway, cytokines, chemokines, monocytes.

1. INTRODUCTION
Systemic lupus erythematosus (SLE) is a chronic inflammatory

disease wherein the immune system attacks healthy cells and tis-
sues throughout the body and is characterized by the production of
a  large  number  of  autoantibodies,  defective  elimination  of  anti-
bodies,  circulation  and  tissue  deposition  of  immune  complexes,
and activation of the complement system and release of cytokines,
ultimately resulting in multiple organ system damage [1-3]. Lupus
nephritis  (LN)  is  the  most  common  and  serious  complication  of
SLE and has a significant impact on the mortality of SLE patients
[4].  Despite  extensive  efforts  to  understand  the  mechanism  in-
volved in SLE, the exact pathogenesis of the disease remains un-
clear.

Multiple studies have indicated that the development of SLE is
multifactorial, involving genetic, epigenetic, and environmental fac-
tors [3, 5]. An increasing number of studies have recently focused
on investigating the role of long noncoding RNAs (lncRNAs) in
SLE.  Although  only  2% of  the  human genome encodes  for  pro-
teins, primary transcripts cover 75% of the genome, with processed
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transcripts covering 62.1% of the genome [6]. This suggests that 
the functions of lncRNAs are likely underestimated. LncRNAs are 
defined as transcripts greater than 200 nucleotides in length with-
out an evident protein-coding function. These molecules are associ-
ated with diverse biological processes, including epigenetic regula-
tion  and  gene  transcription.  The  dysregulation  of  lncRNAs  has 
been associated with various human diseases, including neurologi-
cal disorders, autoimmune diseases, and cancers [7-11]. However, 
our understanding of the relationship between lncRNAs and SLE is 
limited.

The lncRNA Growth arrest-specific  transcript  5  (GAS5) has 
gained much attention in recent research because of its anti-cancer 
effect. Previous studies have reported that GAS5 can contribute to 
the resistance function in various types of cancers, including gas-
tric cancer, lung cancer, renal cancer, and hepatocellular carcinoma 
[12-15]. Moreover, GAS5 has been identified as a potent inhibitor 
of the glucocorticoid receptor, which plays a key role in regulating 
the inflammatory process initiated by the immune response [16]. 
Despite these findings, the role and mechanism of lncRNA GAS5 
in SLE remain unclear.

In this study, we observed a significant decrease in the expres-
sion level of GAS5 in monocytes from patients with SLE. We fur-
ther discovered that GAS5 serves as a response gene to LPS and is
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downregulated by LPS stimulation. Furthermore, overexpression of
GAS5 inhibits the proliferation and induces the apoptosis of THP-1
cells. Our results also indicate that GAS5 regulates the expression
of  inflammatory  chemokines  and  cytokines  through  the  MAPK
pathway. In brief, our findings provide insight into the relevance
and mechanism of lncRNA GAS5 in the context of SLE.

2. MATERIALS AND METHODS

2.1. Materials

The THP-1 cells were obtained from the Shanghai Cell Bank
of the Chinese Academy of Sciences (Shanghai, China). Trizol was
purchased from Invitrogen (Massachusetts, USA). The reverse tran-
scription kit TransScript one-step gDNA Removal and cDNA Syn-
thesis SuperMix were purchased from TransGen Biotech (Beijing,
China). SYBR kit was purchased from Bio-Rad (California, USA).
PI/Annexin  V-FITC apoptosis  detection  kit  was  purchased  from
Becton Dickinson (New Jersey,  USA).  RIPA lysate  (including 1
mmol/L PMSF) was purchased from Nanjing Kaiji Biotechnology
Company  (Jiangsu,  China).  The  primary  antibodies  for  GAPDH
(#5174),  JNK  (#4672),  p-JNK  (#4671),  p38(#2387),  and  p-p38
(#2281) were purchased from Cell Signaling Technology (Boston,
USA). The primary antibodies for ERK1/2 (ab184699) and p-ERK
(ab201015) were purchased from Abcam (MA, USA). Sheep an-
ti-rabbit and sheep anti-mouse secondary antibodies labeled with
horseradish peroxidase were purchased from Cell Signaling Tech-
nology Company (Boston, USA).

2.2. Patients and Healthy Controls

A total of 24 patients with SLE and 25 healthy individuals of
similar age were recruited. The patients with SLE were diagnosed
according to the 1997 revised American College of Rheumatology
(ACR)  diagnostic  criteria  [17].  Disease  activity  was  quantified
with  the  Systemic  Lupus  Erythematosus  Disease  Activity  Index
2000 (SLEDAI-2K) score. The patients were categorized into ac-
tive disease (scores > 10) or inactive disease (scores ≤ 10) groups
according to the SLEDAI-2K results [18].

This research was approved by the Ethics Committee of Anhui
Medical  University.  All  study  participants  signed  the  informed
consent form.

2.3. Cell Culture and Treatment

The HEK293T/THP-1 cells were cultured in Dulbecco’s Modi-
fied  Eagle  Medium  (DMEM)-high  glucose  (Sigma)/RPMI  1640
medium  (Gibco,  Life  technology)  supplemented  with  10%  fetal
bovine serum (FBS; Gibco, Life technology), 100 U/mL penicillin,
and 100 μg/mL streptomycin at 37°C in 5% CO2 atmosphere as de-
scribed previously [19].

THP-1 cells were cultured in 24-well flat-bottomed plates at a
concentration  of  5  ×  105  cells  in  1  mL of  complete  RPMI  1640
medium and were stimulated with different concentrations of LPS
(Sigma) for indicated time points.

2.4. Plasmid Construction and Transfection

A GAS5 overexpression plasmid was constructed by inserting
a  full-length  sequence  of  GAS5  into  the  pCDH-CMV-MCS-E-
F1-Puro vector via PCR/restriction digest-based cloning. The len-
tiviral system was generated as follows: oligonucleotides of small
interfering RNA for GAS5 (shGAS5) and scrambled control (shSc)
were  annealed  and  subcloned  into  the  lentiviral  vector  pLKO.1.
Further,  HEK  293T  cells  were  transfected  with  lentiviral  vector
and packaging vectors (pVSVG, pREV, and pMDL). The viral su-

pernatants were collected after 48 h of transfection and then used
to infect the target cells.

2.5. Quantitative Real-time PCR Analysis

The total RNA was extracted from cells using Trizol, accord-
ing to the protocol provided by the manufacturer. First-strand cD-
NA was generated using the TransScript One-Step gDNA Removal
and cDNA Synthesis SuperMix, according to the manufacturer's in-
structions,  and  served  as  a  template.  The  expression  of  GAPDH
was determined and used as an internal control. Relative expres-
sion levels were calculated by the comparative threshold cycle (Ct)
method using the formula 2-ΔΔCt. More than three independent bio-
logical samples were quantified in technical duplicates and expres-
sion values were normalized to GAPDH. Nucleotide sequences of
the primers used for PCR amplifications were as follows: GAS5
forward sequence: 5’-ATGGTGGAGTCCAACTTGCC-3’, GAS5
reverse  sequence:  5’-TCCACACAGTGTAGTCAAGCC-3’;
GAPDH  forward  sequence:  5’-  GTCATCCATGACAACTTTG-
G-3’,  GAPDH  reverse  sequence:  5’-  GAGCTTGACAAAGTG-
GTCGT-3’.

2.6. Enzyme-linked Immunosorbent Assay (ELISA)

The  levels  of  various  cytokines  including  interleukin  1-beta
(IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TN-
F-α)  were  measured  using  corresponding  ELISA  kits  (Genzyme
Techne, USA), according to the manufacturer’s protocols.

2.7. Cell Viability Analysis

The  CCK-8  Assay  Kit  was  used  to  detect  cell  viability.  In
brief, THP-1 cells were plated at a density of 5 × 103 cells/well into
96-well plates in triplicates. Subsequently, 10 μL of CCK-8 solu-
tion was added to each well and the plate was incubated for 1-4 h
in a cell culture incubator. The absorbance at 450 nm was detected
using a plate reader. Cell viabilities were evaluated as relative val-
ues compared with the controls. The experiment was repeated three
times and the mean and SD values were considered.

2.8. Cell Apoptosis Analysis

Cell apoptosis was assessed as described previously by flow cy-
tometry [19]. The THP-1 cells were seeded at a density of 2 × 105

cells/well into 6-well plates. The cells were subsequently treated
with various concentrations of LPS for the indicated time points.
The cells were then collected via centrifugation. After centrifuging
at 500 × g for 5 min at room temperature, the supernatant was dis-
carded, and the cells were resuspended with PBS and centrifuged
again. Subsequently, the cells were resuspended in 500 μL of bind-
ing buffer and 5 μL Annexin V-FITC and 5 μL of PI were added.
The cells were incubated for 15 min on a shaker at room tempera-
ture in the dark, and the apoptosis of cells in each group was detect-
ed by flow cytometry.

2.9. Western Blot

Western blot was performed as described previously. The cells
were collected and lysed in RIPA cell lysate which contains 1 mM
PMSF to extract total protein. The supernatant was obtained by cen-
trifuging at 12000 × g for 5 min at 4°C. The concentration of each
tube protein was detected by a BCA protein quantitative kit, and 40
μg protein of each sample containing loading buffer was separated
by 10% SDS-PAGE gel electrophoresis, and then transferred to a
PVDF membrane (Invitrogen, USA). The membrane was blocked
with 5% nonfat milk powder in Tris-buffered saline tween (TBST)
at  room temperature  for  1  h.  The membrane was  then incubated
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with the primary antibody on a shaker at 4oC overnight. Next, the
membrane was washed 3 times in TBST for 7 min each time and
then incubated with horseradish peroxidase (HRP) labeled goat an-
ti-rabbit  IgG (1:1000 diluted) on a shaker at  room for 2 h.  After
washing,  Immunoreactive  protein  bands  were  visualized  using
PierceTM  ECL  Western  Blotting  Substrate  (Thermo  Scientific,
Massachusetts, USA) and analyzed by Automatic Gel Imaging Sys-
tem (BIO-RAD, USA).

2.10. Statistical Analysis

All statistical analyses were performed using SPSS 20.0. The
data  are  presented  as  the  mean  ±  SD  deviation  from  more  than
three individual experiments. Statistical significance was assessed
using  Student’s  t-test  or  one-way  ANOVA.  The  P-value  <  0.05
was defined as indicating statistical significance.

3. RESULTS

3.1. GAS5 Expression is Decreased in SLE Patients

Wu et al. found that GAS5 expression decreased significantly
in  SLE  patients  compared  with  that  in  healthy  individuals  (p  <
0.001) using bioinformatics; their study suggested that GAS5 may
serve as a potential biomarker for SLE [20]. To verify this conclu-
sion, we collected the plasma samples of 24 SLE patients and 25
healthy individuals from the hospital and performed qRT-PCR to
test the GAS5 expression levels. The results showed that the expres-
sion of GAS5 in SLE patients was significantly lower than that of
GAS5 in  healthy  individuals.  (Fig.  1)  These  results  suggest  that
there is a strong correlation between the expression of GAS5 and
SLE; however, whether GAS5 is involved in the pathogenesis of
SLE is unclear, and further research on the mechanism is needed.

Fig. (1). GAS5 expression is decreased in SLE patients. Expression
of GAS5 in PBMCs of SLE patients (n = 24) and healthy controls
(HC, n = 25) as determined by qRT-PCR analysis. **, P < 0.01.

3.2. GAS5 Inhibits the Proliferation and Induces the Apoptosis
of Monocytes

To  further  explore  the  effect  of  the  decreased  expression  of
GAS5  in  peripheral  monocytes  in  SLE  patients,  we  constructed
GAS5 knock-down THP-1 cell lines using shRNA. THP-1 is a hu-
man monocytic cell line and has been extensively used to study in-
nate  immune responses.  In  the  process  of  cell  culture,  we found
that the knock-down of GAS5 in THP-1 cells led to better growth

rates. Accordingly, we speculated that GAS5 is involved in regulat-
ing the growth, proliferation, and death of THP-1 cells. Therefore,
we tested the cell viability of GAS5 knock-down THP-1 cells and
control  cells  through the  CCK-8 assay,  and  the  results  indicated
that knocking down GAS5 makes THP-1 cells have better survival
and proliferation characteristics (Fig. 2A). Similarly, we verified
the results by constructing GAS5 overexpression THP-1 cell lines.
As expected, the results showed that GAS5 overexpression could
inhibit the viability and proliferation of THP-1 cells (Fig. 2B). Sub-
sequently, apoptosis was evaluated using the PI/Annexin V-FITC
apoptosis detection kit combined with flow cytometry. Compared
with the control cells, GAS5 overexpression THP-1 cells showed a
higher apoptosis ratio (Figs. 2C-F). Therefore, we speculate that
GAS5 participates in the immune response by regulating the survi-
val status of peripheral monocytes.

3.3. LPS Inhibits GAS5 Expression

Emerging evidence reports that the stimulation of TLRs con-
tributes to the initiation and development of lupus disease [21, 22].
Therefore, we wondered whether the activation of TLR signaling
in  SLE  patients  is  related  to  decreased  expression  of  GAS5  in
monocytes. We stimulated THP-1 cells with LPS, which binds the
TLRs in many cell types and promotes the secretion of pro-inflam-
matory cytokines, and found that the expression of GAS5 was signi-
ficantly decreased (Figs. 3A and B). These results further indicated
that there is a close relationship between the activation of an im-
mune response and the decreased expression of GAS5.

3.4. GAS5 Suppresses Inflammatory Cytokine Production Stim-
ulated by LPS

Considering  GAS5  was  down-regulated  in  response  to  LPS
treatment, we were curious about whether GAS5 is involved in the
regulation of LPS-induced production of numerous inflammatory
cytokines, including IL-1β, IL-6, and TNFα. To reveal the role of
GAS5  in  the  production  of  inflammatory  cytokines  induced  by
LPS,  we  stimulated  the  GAS5 knock-down THP-1  cells  and  the
GAS5  overexpression  THP-1  cells  with  LPS  and  measured  the
IL-1β, IL-6, and TNFα levels by ELISA. The results showed that si-
lencing  GAS5  significantly  increased  the  production  of  IL-1β,
IL-6, and TNFα stimulated by LPS (Figs. 4A-C). However, overex-
pressing GAS5 obviously decreased the LPS-induced production
of the inflammatory cytokines (Figs. 4A-C).

3.5. GAS5 Regulates the Activation of the MAPK Pathway

It has been demonstrated that TLR4 stimulation can lead to the
activation of the MAPK pathway. In addition, Wu et al. found that
there is a strong correlation between GAS5 and MAPK pathway
[20]; however, whether GAS5 regulates SLE through the MAPK
pathway  in  peripheral  monocytes  and  the  exact  mechanism  be-
tween them is unknown. Accordingly, to determine whether GAS5
is involved in the activation of the MAPK pathway, we treated TH-
P-1 cells with LPS and detected the activation of the MAPK path-
way. The results showed that MAPK activation in the GAS5 over-
expression cells was decreased compared with that in the control
cells (Fig. 5A). As expected, the GAS5 knockdown facilitated the
activation of the MAPK pathway induced by LPS (Fig. 5B).

4. DISCUSSION

Innate immune responses are the precursors for all adaptive im-
mune  responses,  both  in  normal  immunity  and  autoimmunity,
which is  the  immediate  line  of  defense against  both endogenous
and exogenous  host  molecules. Increasing evidence  suggests that
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Fig. (2). GAS5 inhibits the proliferation and induces the apoptosis of monocytes. (A and B). Viability of GAS5-knockdown or -overexpres-
sion THP-1 cells by CCK-8 assay. (C-F). Apoptosis of GAS5-knockdown or -overexpression THP-1 cells by flow cytometry. Data are from
three independent experiments and expressed as mean ± SD. **, P < 0.01.

Fig. (3). GAS5 expression is suppressed by LPS. (A) Analysis of GAS5 expression in THP-1 cells in response to treatment with various con-
centrations of LPS (0, 50, 100, and 200 ng/mL) for 6 h by qRT-PCR. (B) Analysis of GAS5 expression in THP-1 cells following treatment
with 50 ng/mL LPS for various durations (0, 0.5, 1, 2, 3, 6, 12, and 24 h) by qPCR. GAS5 expression was analyzed by qRT-PCR, and the
bars indicate the mean ± SD from three independent experiments. **, P < 0.01.

Fig. (4). GAS5 suppresses the inflammatory cytokine production stimulated by LPS. (A-C). The levels of IL-1β, IL-6, and TNFα in cell super-
natants as measured by ELISA. Each experiment was repeated three times independently, and the data are expressed as mean ± SD. **, P <
0.01.
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Fig. (5). GAS5 affected the MAPK pathway in monocytes. (A and B). The protein levels of MAPK pathway members as assessed by Western
blot assay. GAPDH served as the internal control.

the innate immune response contributes to the development and reg-
ulation of autoimmune diseases [23]. SLE, which is a typical and
common autoimmune disease, has a complicated etiology. Abnor-
mal activation of the interferon pathway, stimulation of the TLR
pathway, and defective apoptosis are all reported to contribute to
the initiation and development of this disease [2].

Monocytes are one of the major components of the innate im-
mune system that are involved in the regulation of an adaptive im-
mune  response  [24].  Abnormal  expression  of  monocyte  surface
markers, cytokines, and chemokines in SLE would be a key to its
pathogenesis. Monocytes from SLE patients with an active disease
display elevated surface levels of intercellular adhesion molecule-1
(ICAM-1, also called CD54) and CD40, which are involved in en-
dothelial  transmigration  and  inflammatory  cytokine  production
[25, 26]. Aberrant activation of the immune system in SLE is aug-
mented by the dysregulated production of inflammatory cytokines
and chemokines,  and monocytes are a major source of these im-
munomodulators, which may further promote the activation of au-
toreactive T and B cells [27]. Monocytes are the primary source of
the  T  helper  2  (Th2)  cytokines  IL-6  and  IL-10  in  the  peripheral
blood,  which are  elevated in  lupus patients  [28].  Further,  mono-
cytes are a significant source of B-lymphocyte stimulator (BLyS;
also known as BAFF), which promotes the survival and prolifera-
tion  of  B  lymphocytes.  Elevated  circulating  BLyS/BAFF  levels
have been detected in nearly 30% of SLE patients, and their levels
correlate with the levels of autoantibodies against dsDNA [29, 30].

LncRNAs play multiple biological functions, including chro-
matin remodeling, gene transcription, RNA splicing, protein transla-
tion, and protein transport [31]. LncRNAs serve as a multifunction-
al regulator of gene expression and function at multiple stages, in-
cluding at the levels of epigenetic modification, transcription, post-
transcription, translation, and post-translation [32]. Recently, an in-
creasing number of studies have revealed that lncRNAs play an im-
portant role in regulating the immune response, as well as immune
cell development. Increasing evidence suggests that TLRs can rec-
ognize various microbial molecules and damage-associated molecu-
lar  patterns  (DAMPs),  and  ultimately  lead  to  the  activation  of
NFκB and MAPK, which control the expression levels of pro-in-
flammatory  cytokines  including  IL-1β,  IL-6,  and  TNFα,  all  of

which play crucial roles in immune responses [33]. Guttman et al.
identified  lincRNA  Cox2  by  stimulating  CD11C+  bone  mar-
row-derived dendritic cells with a specific agonist of TLR4 [34].
Further, Zhang et al. identified lncRNA NEAT1 as a novel inflam-
matory  regulator  through  the  MAPK  pathway  in  human  lupus,
which  responded  to  the  activation  of  TLR  [35].  Several  studies
have reported that lncRNAs are involved in the proliferation, devel-
opment,  and  apoptosis  of  immune  cells,  such  as  granulocytes,
monocytes, and macrophages. Recently, Hao et al.  demonstrated
that the expression of HOTAIR has been significantly up-regulated
in  AML-de  novo  patients  compared  with  AML-CR  patients  and
normal controls, and HOTAIR knockdown can inhibit the prolifera-
tion of AML cells [36]. Hu et al. identified LincRNA-EPS, which
is required for the terminal differentiation of erythroid cells by in-
hibiting apoptosis through repressing Pycard [37].

CONCLUSION

Our findings indicated that the lncRNA GAS5 functions as a
negative regulator in TKR4 signaling. As decreased GAS5 expres-
sion in monocytes and increased monocytes percentage in PBMCs
from SLE patients compared with health controls were observed,
we speculated that more monocytes expressed lower GAS5 among
PBMCs  from  SLE  patients,  producing  more  inflammatory  cy-
tokines and chemokines. Accordingly, GAS5 is negatively correlat-
ed to SLE pathogenesis and activity. In addition, GAS5 may con-
tribute  to  SLE  pathogenesis  by  inhibiting  the  activation  of  the
MAPK pathway. Furthermore, this research brings us to the knowl-
edge that GAS5 may contribute to a new molecular regulation of
autoimmune diseases and may provide insights into the identifica-
tion of lncRNAs as biomarkers for disease activity and potential
therapeutic targets.

LIST OF ABBREVIATIONS

GAS5 = Growth Arrest-specific Transcript 5

LN = Lupus Nephritis

SLE = Systemic Lupus Erythematosus
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SLEDAI-2K = Systemic Lupus Erythematosus Disease Activity
Index 2000

Th2 = T helper 2
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