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Abstract

Kidney disease is a leading cause of morbidity and mortality across the globe. Current 

interventions for kidney disease include dialysis and renal transplantation, which have limited 

efficacy or availability and are often associated with complications such as cardiovascular disease 

and immunosuppression. There is therefore a pressing need for novel therapies for kidney disease. 

Notably, as many as 30% of kidney disease cases are caused by monogenic disease and are 

thus potentially amenable to genetic medicine, such as cell and gene therapy. Systemic disease 

that affects the kidney, such as diabetes and hypertension, might also be targetable by cell and 

gene therapy. However, although there are now several approved gene and cell therapies for 

inherited diseases that affect other organs, none targets the kidney. Promising recent advances 

in cell and gene therapy have been made, including in the kidney research field, suggesting that 

this form of therapy might represent a potential solution for kidney disease in the future. In this 

Review, we describe the potential for cell and gene therapy in treating kidney disease, focusing on 

recent genetic studies, key advances and emerging technologies, and we describe several crucial 

considerations for renal genetic and cell therapies.

Introduction

Chronic kidney disease (CKD) is estimated to affect approximately 13% of the global 

population and is associated with high levels of morbidity and mortality1-3. For instance, 

among patients with end-stage kidney disease caused by diabetes, the 5-year mortality 

rate for a patient is almost as high as that for lung cancer and worse than that for colon 

cancer4. Nonetheless, cancer receives a huge investment from federal funding agencies and 
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biotechnology and pharmaceutical companies in the cell and gene therapy fields, whereas 

kidney-targeted cell and gene therapy clinical trials are almost nonexistent5. Despite its 

severity and a continuously evolving understanding of kidney disease pathophysiology, 

however, end-stage treatments are limited. Dialysis and renal transplantation are required for 

patients with end-stage kidney disease, although these interventions involve risk of major 

complications such as cardiovascular disease and immunosuppression6. In addition, dialysis 

provides only 5–10% of normal kidney function and necessitates considerable lifestyle 

changes involving three times-per-week or daily, multiple-hour appointments for dialysis 

treatment. Moreover, the number of patients with end-stage kidney disease far outstrips the 

supply of organs available for transplant, meaning that many patients can wait years for 

an organ and die while waiting. There is therefore an urgent need for new and innovative 

therapies for CKD, with the aim to lessen the burden on patients and the wider health-care 

ecosystem.

Recent advances in cell and gene therapy have translated into successful therapies for 

a range of clinical diseases, but none that targets the kidney. Cell and gene therapies 

aim to prevent, treat or even cure diseases by introducing cells or genetic material into a 

patient, and they often require an understanding of the underlying disease pathophysiology. 

Notably, many of the genetic causes of kidney disease are known7, with up to 30%of CKD 

attributed to inherited monogenic disorders8,9, including polycystic kidney disease (PKD), 

Alport syndrome, cystinosis, Fabry disease, tuberous sclerosis, Gitelman syndrome and 

cystinuria10,11 (Table 1). Clinicians can frequently diagnose these monogenic renal diseases 

in childhood before the onset of CKD, sometimes allowing for intervention before kidney 

damage becomes irreparable12. Genetic testing can also identify affected patients before 

onset of symptoms or irreversible kidney damage13,14. Unfortunately, the few effective 

treatments for monogenic diseases affecting the kidney, such as enzyme replacement therapy 

for Fabry disease, are often expensive, have short-term effects and are inaccessible to a large 

number of patients15-17. The clear treatment gap for patients with monogenic renal disorders 

therefore needs to be addressed with innovative strategies, such as cell and gene therapy. Of 

note, recent successes in the cell and gene therapy field have occurred in cells and organs 

more easily targeted and less complex than the kidney; nonetheless, as technologies advance 

with improved vector design and gene delivery, hope for cell and gene therapy for kidney 

disease seems just on the horizon.

This Review discusses the potential for cell and gene therapies to treat kidney disease. 

We do not describe induced pluripotent stem cell-based regenerative medicine therapy or 

extracellular vesicles for kidney disease as those are covered elsewhere18-20. Herein, we 

focus on approved cell and gene therapies and those of similar technology being developed 

in the kidney field. We discuss the basics of cell and gene therapy including its technical 

aspects and history. This is followed by a discussion of the potential for cell and gene 

therapy of kidney disease based on successes within other organs and diseases, as well as 

genetic experiments in animal models that reveal the potential for gene therapy of kidney 

disease. Cell therapies for kidney disease are also reviewed. Finally, we discuss structural 

and vector considerations for targeting kidney disease and review recent advances and future 

directions.
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A brief introduction to cell and gene therapy

Gene therapy is broadly defined as the use of genetic material to treat or prevent disease. 

This process includes but is not limited to the insertion or deletion of entire genes, resulting 

in gain or loss of gene function, or the editing of endogenous genes. Critically, gene 

therapies target somatic cells rather than germ cells to circumvent germline mutations and 

subsequent inherited genetic changes. Cell therapy, by contrast, involves the transfer of 

entire cells into a patient with goals including but not limited to replacing or repairing 

damaged tissue or cells or even for targeted destruction of pathological cells. Cell therapies 

cover a spectrum that ranges from simple transfusions of unmodified cells to the delivery 

of T cells genetically modified ex vivo to target specific cancers. In this Review, we restrict 

discussion to cell therapies that involve genetic modification.

Cell and gene therapy approaches

For cell and gene therapy to be successful, genetic cargo must be delivered to a target cell 

population. This target cell population is determined by knowledge about the pathological 

basis of the disease of interest. There is a wide range of approaches for designing gene 

therapies, allowing investigators to tailor the delivery, integration and method of editing the 

genome. Genetic material can be delivered through several vectors, including naked nucleic 

acids or those encapsulated in viruses or nanoparticles. Genetic cargo may then integrate 

into the genome or remain unintegrated and therefore episomal, or serve as a template to edit 

the genetic sequence.

The targeted cells can be modified in vivo or ex vivo. Both types of modification have been 

approved for use in patients. For instance, chimeric antigen receptor (CAR)-T cell-based 

therapies for cancer involve ex vivo modification of T cells, which are then adoptively 

transferred back into patients. Alternatively cells can be modified in vivo, instead of ex vivo. 

For example, adeno-associated virus (AAV) vectors have been used for gene delivery to both 

the retina and liver for inherited blindness and haemophilia, respectively. Therefore, cells 

can be genetically modified ex vivo and then transferred in vivo to modify a disease, or one 

can genetically modify cells directly in vivo.

Delivery to target cells is key for successful therapy. As such, viral vectors have gained 

prominence for use in gene therapy and are currently being used in the clinic for a wide 

range of diseases primarily owing to their intrinsic ability to more efficiently transduce 

cells compared with non-viral vectors. Adenovirus was used early in humans for gene 

therapy and soon after produced tragic results, involving immune response and death21. 

Because of this, adenovirus has not gained traction in clinical trials for treatment of genetic 

disease. It was hoped that helper-dependent adenovirus22, or gutless adenovirus devoid of 

immunogenic adenoviral genes, would overcome immunogenicity issues with adenovirus 

but this too has faced difficulties for treatment of inherited diseases, primarily owing to 

dose-dependent immune response to capsid proteins23. Lentivirus is a type of retrovirus 

that has been used for years for developing CAR-T cell immunotherapies. Aside from 

CAR-T cell development, lentivirus-mediated gene therapy has been approved for cerebral 

adrenoleukodystrophy and β-thalassaemia, wherein haematopoietic stem cells are modified 

with virus ex vivo and then infused.

Peek and Wilson Page 3

Nat Rev Nephrol. Author manuscript; available in PMC 2023 July 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



AAV of the Parvoviridae family was discovered in the 1960s24, contains a DNA genome 

and has been shown to efficiently transduce various human cells, although it is not known 

to cause disease in humans. AAV-mediated gene therapy was first approved in the West as 

Glybera (alipogene tiparvovec) for lipoprotein lipase deficiency. This was followed by AAV 

gene therapy for retinal disease and haemophilia in the USA.

Cell and gene therapy approaches depend on understanding the genetic basis of the disease, 

having a vector capable of delivering genetic components to the target cells and the 

ability of the therapeutic agent to prevent or reverse pathology. For now, viruses are used 

overwhelmingly for approved gene therapy approaches. In time, novel technologies may 

overcome the use of viruses as delivery vehicles.

Pre-approval era

The history of cell and gene therapy includes both successes and failures. In 1990, the 

first gene therapy trial was conducted in which a 4-year-old child with severe combined 

immunodeficiency (SCID) received the adenosine deaminase gene through a viral vector25. 

Despite success of this trial and other gene therapy trials early on, progress in the field 

halted in 1999 with the death of an 18-year-old patient from a severe immune reaction to 

an adenovirus designed to treat a urea cycle disorder21. This tragic death prompted the field 

to strengthen safety measures surrounding the pre-existing clinical trials for gene therapies. 

The field slowly regained momentum in the early 2000s, with apparent curative therapy 

for X-linked SCID by retrovirally mediated delivery of the γc gene into CD34+ cells26. 

However, in subsequent years, 40% of treated patients developed leukaemia, and subsequent 

research into the underlying cause concluded that the vector led to oncogene activation27,28. 

More recently, a patient undergoing CRISPR gene editing for Duchenne muscular dystrophy 

died29. Although the cause of death is unclear, the FDA has placed a hold on this phase I 

study. These trials demonstrate the difficulties associated with gene therapies and paved the 

way for research into newer therapies that were eventually agency approved for treatment of 

patients. To date, 22 gene therapies, 21 RNA therapies and 59 non-genetically modified cell 

therapies have been approved globally for clinical use covering the gamut of ex vivo and in 

vivo therapies30. An additional ~4,000 cell and gene therapies are currently in development 

for clinical use30.

Approved cell and gene therapies

Approval of the first gene therapy outside of clinical trials occurred in Europe in 2012, with 

the authorization of Glybera31. This therapy, which involves the AAV-mediated delivery of 

the LPL gene into muscle, was approved for lipoprotein lipase deficiency31, but was later 

withdrawn in 2017 owing to commercial failure. Subsequently, in 2017, the FDA approved 

the first gene therapies in the USA, which included those targeting the eye and modification 

of T cells for cancer immunotherapy. CAR-T cell therapy involves genetic modification of 

T cells to redirect them against tumour antigens32. This form of therapy showed promise 

for many years in clinical trials and was finally approved by the FDA in 2017 under the 

name Kymriah(tisagenlecleucel), which used CD19-directed CAR-T cells to treat acute 

lymphoblastic leukaemia. The potential for genotoxicity exists with any integrating gene 

delivery vector. CAR-T cells were thought to be safe until recently two of ten patients 
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developed CAR-T lymphoma in a clinical trial in Australia using a transposon system33. 

The cause of this adverse outcome remains to be definitively proved but may be related to 

the way in which the CAR-T cells were manufactured34. AAV-mediated gene therapies have 

expanded since Glybera, with Luxturna(voretigene neparvovec-rzyl) approved in 2017 for 

AAV-mediated gene therapy for RPE65 mutation-associated retinal dystrophy. This was later 

followed by approval for the use of AAV-delivered genes to treat spinal muscular atrophy 

type I and haemophilia B.

Several cell and gene therapies are now available, although they are mostly limited to certain 

tissues, including the retina, liver, muscle and the haematopoietic system (Fig. 1). This 

limited diversity in targetable tissue types is largely due to few available routes of delivery, 

risk of immunogenicity and poor specificity of cellular targeting. For example, retinal gene 

therapies have been developed owing to the advantageous immune privilege of the retina 

— a phenomena in which the eye limits inflammatory responses to preserve vision — as 

well as accessibility of delivery. Additionally, the liver is a relatively easily targetable organ 

owing to the predominance of only one cell type (hepatocytes) and high rates of transduction 

of viral vectors; for these reasons, therapies for several inherited hepatic diseases are 

currently in development. Finally, many blood-related disorders are prime targets for cell 

and gene therapy and have already seen success in clinical trials for leukaemia, lymphoma, 

myeloma, β-thalassaemia and haemophilia. In these diseases, a patient’s own cells can be 

modified ex vivo and then adoptively transferred back into the patient. The diversity in 

therapeutic approaches and diseases targeted for these more easily accessible tissues has 

provided hope for the gene therapy field of applying these insights to other tissues. A new 

range of treatments for kidney disease could be implemented if the field could adapt these 

strategies.

The potential for gene therapy for kidney disease

The number of genetic targets for cell and gene therapy of kidney disease is not lacking 

(Table 1). Congenital nephrotic syndrome most commonly results from mutations in NPHS1 
or NPHS2 and often leads to severe disease35. In 2010, researchers showed that inducibly 

expressing nephrin (encoded by NPHS1) in nephrin-deficient mice could prevent perinatal 

death36, which might have implications for gene therapy in patients with congenital 

nephrotic syndrome. However, incomplete phenotypic rescue was reported, as mostly 

normal kidney pathology reported at 1 week progressed to damage and proteinuria by week 

6. Candidate reasons for this finding include the timing of transgene expression or use of 

rat nephrin in the mouse36. Nonetheless, congenital nephrotic syndromes remain potential 

targets for gene therapy35. Given the severity of this disease, such a novel therapeutic 

approach would be highly desirable, although perinatal or infant gene therapy will carry with 

it a high bar for safety.

Alport syndrome results from a defect in production of α3α4α5(IV) collagen in the 

glomerular basement membrane37, caused by a mutation in the COL4A3, COL4A4 or 

COL4A5 gene. Transfer of any of these genes to restore normal collagen expression in 

the glomerular basement membrane has not yet been achieved in humans. However, in a 

mouse model of Alport syndrome, an inducible transgenic system — which reactivated 
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the COL4A3 gene — restored α3α4α5(IV) collagen expression from podocytes, thereby 

improving kidney function and extending lifespan38. These results demonstrate that 

restoration of collagen expression using gene therapy might therapeutically treat Alport 

syndrome in vivo. Slowing the progression of inherited renal diseases such as Alport 

syndrome is essential, as patients will progressively accumulate kidney damage until the 

point of end-stage kidney disease. Therefore, improvements in renal function even after 

glomerular basement membrane development may hold potential for patients with Alport 

syndrome.

In 2021, a similar study was conducted using a mouse model of autosomal dominant 

polycystic kidney disease (ADPKD), a disease that results when kidney tubule cells harbour 

mutations of either PKD1 or PKD2 (ref. 39). ADPKD is the most common monogenic 

kidney disorder, affecting more than 12 million patients worldwide40. Therefore, novel 

therapies that target PKD1 or PKD2 are a high priority for the kidney cell and gene therapy 

field. In that study, the authors conditionally inactivated Pkd1 or Pkd2 to induce ADPKD 

development, but subsequently induced re-expression of the inactivated gene. This model led 

to rapid reversal of key ADPKD features including proliferation, inflammation, extracellular 

matrix deposition and cell lining metaplasia. In animals that had developed cystic kidneys, 

the re-expression of PKD genes was able to reverse ADPKD in vivo, demonstrating that 

gene therapy could potentially reverse ADPKD even after cystic disease has developed. 

These findings hold promise for the use of gene therapy before patients develop key disease 

characteristics, but also for reversing disease pathogenesis.

Cell therapy for kidney disease

Although the use of mesenchymal stem cells and regenerative cell populations has been 

proposed for cell therapy of kidney disease20,41, herein we focus on gene-modified cell 

populations. Cell populations can be genetically modified and adoptively transferred to 

affect the kidney directly or to provide therapy for complications of kidney disease.

Haematopoietic stem and progenitor cell therapy

Haematopoietic stem and progenitor cells (HSPCs) are a promising avenue within renal 

cell therapy. One notable study investigated the use of HSPCs with a mouse model of 

cystinosis42, a lysosomal storage disorder characterized by the widespread accumulation of 

the amino acid cystine. Cystinosis affects several tissues and organs of the body, including 

the kidney, potentially leading to permanent kidney damage and failure. Through lentiviral 

transduction of HSPCs to express cystinosin — the pathogenically deficient cystine 

transporter in cystinosis — the authors demonstrated that transduced HSPCs differentiate 

and subsequently integrate into the kidney and other tissues. Importantly, such therapy led 

to a reduction in global cystine content and improved renal function. Thus, although not 

currently kidney specific, HSPC therapies hold therapeutic potential for diseases that affect 

multiple tissues, such as lysosomal storage disorders.

The use of HSPCs for kidney-targeted enhancements, such as to promote collagen 

deposition within the glomerulus, remains controversial. Researchers previously reported 

that bone marrow transplantation from wild-type mice could lead to collagen deposition 
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in mouse models of Alport syndrome43,44. These results were challenged by a later 

publication suggesting that irradiation, which preceded transplantation, was responsible for 

improved renal histology and survival in these mice, rather than the effect of bone marrow 

transplantation45. The mechanisms that underlie this effect of irradiation are unknown. A 

subsequent study investigated the use of several cell therapies in a mouse model of Alport 

syndrome (Col4A3 knockout)46. Specifically, these researchers investigated the infusion of 

three cellular therapies, including wild-type bone marrow, wild-type unfractionated blood 

and human embryonic stem cells, and assessed their effects on kidney disease progression. 

All three cell therapies reportedly increased de novo α3(IV) collagen expression in the 

mice, as well as reduced proteinuria and histological damage. Importantly, the observed 

therapeutic effect occurred without irradiating or conditioning the mice before cell therapy 

infusions, indicating the promise of possible translation to the clinic. Overall, although the 

field remains controversial in this area, these studies raise the possibility of HSPC therapy as 

a treatment strategy for kidney disease.

Ex vivo modification and subsequent delivery of gene-modified autologous cells is another 

exciting avenue for cell therapies, as this strategy reduces the risk of immunogenicity 

and rejection. To assess the clinical effects of ex vivo modification of autologous cells, a 

recent study used lentivirus-mediated transduction in patients with Fabry disease47, which 

results from α-gal A deficiency and causes kidney disease over time. HSPCs were collected 

from five patients, genetically modified to express α-gal A and then injected back into the 

respective patients. Within 1 week after the therapy, all patients were noted to have reduced 

disease severity, including near-normal α-gal A activity and reductions in levels of both 

plasma and urine globotriaosylceramide (Gb3), which accumulates in Fabry disease. This 

early evidence of ex vivo cell therapy in the clinic for a lysosomal storage disorder that 

affects many organs, including the kidney, indicates that similar approaches may be effective 

for other renal diseases.

T lymphocyte-mediated cell therapy

Another large subclass of cell therapies centres around the modification of lymphocytes for 

cytotoxic or therapeutic effects. One application of this type of therapy is the delivery of 

specific proteins, as demonstrated by a 2017 study that used non-viral, transposon-mediated 

modification of T cells to act as a sustained peptide delivery platform48. In that study, mouse 

T cells were modified using the piggyBac transposon system to express erythropoietin and 

subsequently injected into mice. Sustained increases in haematocrit were observed for more 

than 20 weeks after injection, an effect that could be perpetuated by vaccination. This 

non-virally modified T cell approach has the potential to be applied to similar hormone or 

peptide-deficient diseases that affect the kidney, such as Fabry disease, or for therapy of 

complications of kidney disease.

Viral modification of T cells may similarly be an effective approach for delivering essential 

enzymes or peptides. A recent study generated cellular delivery vehicles — termed 

‘micropharmacies’ — composed of CD4+ T cells modified ex vivo with a lentiviral vector49. 

These modified T cells were conditioned with rapamycin, an immunosuppressant that 

enhances survival of T cells and their memory capacity and reduces inflammation. The 
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authors investigated the therapeutic potential of this ‘micropharmacy’ approach in several 

lysosomal storage disorders, including Fabry disease. Specifically, when investigating 

delivery of α-gal A in a mouse model of Fabry disease, they reported α-gal activity 

above wild-type levels and a systemic reduction in Gb3 upon delivery of modified 

micropharmacies from a patient with Fabry disease. Overall, ex vivo modification of T cells 

for therapeutic delivery appears to be a promising strategy for targeting systemic disorders 

such as lysosomal storage disorders. However, more research into the long-term effects of T 

cell therapy needs to be examined for use outside of the immunotherapy realm.

Both HSPCs and T cells offer vehicles for expression of therapeutic proteins to be delivered 

via the blood. Such approaches can act through bystander effects whereby therapeutic 

proteins can be expressed elsewhere and then taken up by target cells. Delivery and 

expression of structural proteins may not be amenable to such an approach.

Cell therapy for implantable devices

Implantable devices have the potential to replace organs or important organ functions. A 

notable example of an implantable device is an artificial kidney, although bioengineering 

functional kidneys is not without challenges50. An artificial kidney aims to recapitulate 

normal kidney function, requiring functional cells for reabsorption of salt and water. 

However, tubular cells — which serve to reabsorb salt and water — lose their ability to 

mimic in vivo function when removed from their in vivo niche and cultured, owing to loss 

of expression of key transporters51. To overcome this obstacle, researchers have used genetic 

engineering to enhance volumetric transport of renal epithelial cells52. Specifically, kidney 

cells have been engineered to overexpress sodium hydrogen exchanger 3 and aquaporin 

1, resulting in increased volumetric transport, measured through a functional assay of 

water transport. Such modification of cells would be of great benefit in an implantable 

artificial kidney by improving reabsorption of salt and water much like the native kidney 

in vivo. Similarly, researchers have modified cultured proximal tubular cells to stably 

express organic ion transporters (OAT1 and OAT3), improving their ability for drug toxicity 

screening53. Therefore, cultured kidney tubular cells can be gene modified to better mimic 

their in vivo niche. Importantly, the ability to modulate renal transport is desirable not only 

for inherited renal diseases but also for acute and chronic kidney injuries in which transport 

is altered. Cell therapies that target renal transport could be applied to a broad range of 

diseases and patients, so further enquiry into transport modulation is essential for kidney cell 

therapy.

Technical considerations

Targeting

The nephron is a highly complicated structure that contains multiple specialized cell types, 

which in part explains why renal gene therapy has been difficult to achieve compared with 

other tissues. In contrast to the liver, where hepatocytes comprise more than 80% of the 

tissue, there are at least 26 unique cell types within the kidney54. Delivery of therapy 

products to a specific cell type within a specific region of the kidney has thus been the 

primary roadblock to kidney gene therapy. Notably, genetic kidney diseases arise from all 
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parts of the nephron, meaning that any one of these cell types might need to be targeted to 

treat kidney disease (Fig. 2). Historically, viruses have not transduced the kidney efficiently, 

implying a lack of known viral receptor expression or accessibility, providing increased 

difficulty for viral targeting of key parts of the nephron. Engineering new viral capsids or 

particles to target specific kidney cell types could overcome this obstacle.

Genetics

There are many considerations when deploying a gene therapy modality. One must consider 

promoter elements — deciding between ubiquitous and tissue-or cell-specific promoters or 

enhancers — whether the transgene cDNA will be codon optimized, whether additional 

elements will be added to enhance or stabilize expression such as the woodchuck hepatitis 

virus post-transcriptional regulatory element, and all of this must fit within the packaging 

capacity of the vector. Another important consideration is whether integration of genetic 

cargo is needed or preferred. Integration is needed for a dividing target cell population 

whereas episomal genetic cargo may suffice for quite some time for quiescent non-dividing 

target cells.

Accessibility

The size exclusion of the glomerulus remains another hurdle to overcome for renal 

therapeutic design. Particles travelling from the blood through the glomerulus into the 

urinary space have to pass through glomerular endothelium with 80–100-nm pores55, the 

glomerular basement membrane with a reported pore size of 3 nm (refs. 56,57) and 

interdigitating podocyte foot processes separated by 32 nm (ref. 58). Because of this, it 

is generally believed that particles above 10 nm and 50 kDa in size are actively excluded by 

the glomerular barrier59.

As described above, viral vectors are a frequently used delivery modality for many current 

gene therapies, but the size limitations of the three most common vectors must be considered 

(Fig. 3). The smallest of the viral vectors — adeno-associated virus (AAV) — is around 25 

nm in size, whereas the largest viral vector — adenovirus — can reach a size of 100 nm. 

In addition to size exclusion, few serotypes of viral vectors have been shown to target the 

kidney, and as a result, higher viral doses are needed to achieve noticeable effects. Common 

viral receptors appear to be expressed in the kidney, such as AAVR/KIAA0319L for AAV60 

and LDLR for the common VSV-G pseudotyped lentivirus61, implying that subcellular 

localization of the receptor (or receptors) or kidney architecture may contribute to a lack 

of kidney transduction. With these considerations in mind, nanoparticles are a promising 

route of delivery, given their variable size of between 1 nm and 400 nm, and because their 

modifiable shape and exterior could allow for enhanced targeting of a specific renal cell 

type.

Alternative routes for vectors to enter the kidney are important for overcoming the filtration 

limitations of the glomerulus. The nephron is widely accessible through several routes 

of injection, including anterograde delivery through the renal artery, retrograde delivery 

through the ureter, systemic administration and intraparenchymal administration. Each route 

of delivery has its own advantages, such that targeting of a specific cell type within the 
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kidney might be enhanced by differential injection techniques. For instance, the tubular 

epithelium could be targeted on the apical side from the urinary space via retrograde ureteral 

or renal pelvis injection, but also via the basolateral side from particles traversing the blood 

endothelium. Additionally, the high rate of blood flow to the kidney may allow for increased 

exposure to vectors introduced through the circulation compared with tissues that receive 

relatively lower blood flow. Finally, although local injection to the kidney may improve 

specific targeting of renal gene and cell therapy, systemic administration is more accessible 

for translation to the clinic. Innovations in renal targeting of therapeutic vectors as well as 

optimizing the administration route of an individual therapy will eventually be required to 

maximize therapeutic benefit while minimizing toxicity and off-target effects. Nonetheless, 

many different delivery methods have been attempted over the years with none generating 

high enough transfection or transduction efficiency to gain traction for gene therapy of 

kidney disease59.

Vector type

One must also choose between viral and non-viral vectors, and if non-viral, whether delivery 

agents such as nanoparticles or liposomes will be used (Fig. 3). An additional consideration 

is whether pre-existing immunity to the gene transfer vector exists within the target patient 

population. If so, many patients may be excluded from receiving the therapy. All of these 

considerations have advantages and disadvantages, and by the time a gene therapy makes it 

to the clinic these various options have been extensively evaluated.

Vector choice involves consideration of packaging limits, differences in immunogenicity 

and whether cargo will remain episomal or integrate into the genome (Fig. 3). Adenovirus 

vectors have been in use for years in research for kidney gene transfer, with mixed results59; 

the clinical application of such a vector for kidney disease seems questionable. The use 

of adenovirus for kidney gene therapy has been reviewed elsewhere59. Here, we focus on 

vectors for kidney therapy that have reached clinical application in other tissues.

Lentivirus and retrovirus vectors are common tools for gene delivery. Although lentiviral 

transduction of the kidney has been poor62, recent work showed several months of 

symptomatic improvement in a mouse model of Dent disease — a kidney disorder caused 

by mutations in the CLCN5 gene — using retrograde ureteral injection of lentivirus carrying 

CLCN5 (ref. 63). Lentiviral and retroviral vectors transduce dividing cells, which may limit 

transduction of kidney tissue given that most renal cell types are postmitotic. Integration into 

the genome is part of the life cycle of these vectors, which, although being a useful attribute 

for sustained transgene expression, raises the possibility of genotoxicity. Nonetheless, 

integration could be favourable for certain kidney cell types that turn over over time, such 

as tubular cells. In particular, off-target toxicity could result from vector integration in cells 

outside of the kidney, unless kidney targeting specificity can be achieved. Pseudotyping with 

altered envelopes64,65, attaching monoclonal antibodies66 or other targeting moieties67 are 

strategies that have been used to retarget lentivirus to other cell types. Future research should 

aim to improve retargeting of lentivirus to the kidney for enhanced transduction.

AAV has emerged as a prominent viral vector for in vivo human gene therapy, even 

achieving approval for patient use. Although AAV serotypes have been identified that 
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efficiently target tissues such as the liver, retina and muscle, few serotypes have shown 

kidney localization. Accordingly, AAV has not achieved widespread use in the kidney 

owing to variable transduction efficiency in multiple reports68-77. For instance, delivery 

of AAV9 in a mouse model of acrodysostosis demonstrated up to 70% transduction in 

kidney cortex tubular cells with subsequent restoration of disease symptoms78, but such 

success with AAV9 in the kidney has not been reported by others. In a separate AAV 

delivery study testing six AAV serotypes, researchers demonstrated transduction of kidney 

mesenchymal cells, including pericytes, fibroblasts and mesangial cells with a novel AAV 

serotype; however, they observed no kidney transduction with AAV9 (ref. 79). A recent 

report examined the biodistribution after injection of 124iodine-labelled AAV in non-human 

primates and found no uptake of AAV9 or AAVrh.10 in the kidney80. Re-engineering of 

AAV capsids may be necessary for efficient kidney transduction by AAV.

AAV is often preferred for its favourable viral safety profile, although the small packaging 

capacity compared with adenovirus and lentivirus is an important consideration for its use. 

The DNA within AAV can be made as single-stranded or self-complementary, resulting 

in a packaging capacity of 4.7 kb or 2.3 kb, respectively81. This limit is smaller than 

transgenes for the more common genetic kidney diseases such as PKD or Alport syndrome, 

which are too large for single AAV packaging (Table 1). To circumvent this issue, trans-

splicing or the use of recombination-prone nucleic acid sequences can be used to stitch 

together larger transgenes from smaller pieces in cells. Researchers have successfully 

developed trans-splicing AAVs to reconstitute larger transgenes in cells82-85. However, 

success of trans-splicing AAVs in vivo in intact animals has been limited86,87. Integration 

of recombinant AAV is thought to be rare, although tumour development has been reported 

in mice after AAV-mediated gene delivery88-92. Although the native serotypes of AAV 

appear to be somewhat inefficient for kidney transduction, highly sensitive assays to detect 

transduction have suggested that AAV transduction of the kidney may be under-reported 

through using a highly sensitive assay to detect transduction93. Some researchers have 

reported transduction of tubular cells via retrograde injection of the ureter producing 

apparently higher transduction efficiency compared with intravenous injection of virus73. 

High dosage of AAV may be necessary for kidney transduction owing to current limitations 

on viral targeting. However, recent reports of patient deaths at high AAV dosage raise 

concerns94. AAV capsid engineering has enabled retargeting of AAV to various tissues and 

cell types95-99. Capsid engineering may offer new kidney-targeted AAVs, opening avenues 

towards a wide variety of gene therapy opportunities for kidney researchers. Overall, viral 

vectors are a leading choice for gene therapy approaches for several tissues and diseases. 

Identifying viral serotypes that better target the kidney and understanding the underlying 

mechanism behind those increased transduction rates are essential for pursuing viral vector-

based therapies in the future.

Non-viral vectors, including nanoparticles, might be advantageous for kidney delivery 

owing to their modifiable size and reduced immunogenicity compared with viral vectors 

(Fig. 3). Their low manufacturing cost and flexibility in structural components are 

additional benefits. Several kidney-targeted non-viral gene delivery approaches have been 

attempted over the years, including liposomes100,101, ultrasound with microbubbles102-104, 

various vascular methods of naked DNA injection105-107 and hydrodynamic renal pelvis 
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injection108. Promising nanoparticle approaches have been developed in recent years to 

overcome the hurdle of delivery to the kidney in vivo. For example, proximal tubule-targeted 

mesoscale nanoparticles have been developed109, with a reported renal uptake that was 

26- to 94-fold higher than other tissues. Researchers have also developed proximal tubule-

targeted nanocarriers that bind to megalin, a large receptor that mediates proximal tubule 

protein uptake110. Mesoscale nanoparticles that targeted proximal tubular nuclear factor-κB 

essential modulator were beneficial in a mouse model of acute kidney injury111. Diseases 

of the proximal tubule epithelium could benefit from this nanoparticle approach, as the 

renal specificity and lack of toxicity of this vector hold translational potential. In theory, 

nanoparticles can be used to deliver drugs, RNA, protein or DNA to target cells in vivo, 

although delivery of DNA has been less successful to date.

Emerging technologies and future advances

The future of effective kidney targeting and sustained phenotypic correction by cell and 

gene therapies remains hopeful. In the past year, several efforts have highlighted the field’s 

technological improvements and enhanced understanding of renal pathophysiology.

ADPKD is the most common monogenic renal disorder (Table 1). Recent insights into 

its disease pathology have offered hope for new avenues for treatment, including gene 

therapy. A 2022 paper investigated the inhibitory effect of the primarily mutated genes in 

ADPKD: PKD1 and PKD2 (ref. 112). Using a mouse model of ADPKD, it was found that a 

non-inactivated copy of Pkd1 produces mRNA that becomes repressed owing to cis binding 

in the 3′ untranslated region (UTR). Consequently, when that portion of the 3′ UTR motif is 

removed through CRISPR–Cas9 editing or is inhibited with an oligonucleotide, cyst size and 

growth are reduced. This attenuated disease pathogenesis was also seen with inhibition of 

the 3′ UTR in the non-inactivated copy of Pkd2. The robust mechanisms demonstrated here 

indicate multiple avenues for development of ADPKD gene therapy, as both gene editing 

and oligonucleotide delivery modified disease progression.

Both viral and non-viral approaches for kidney gene therapy have also gained traction 

recently. One study developed a novel nanoparticle coated with non-inhibitory plasminogen 

activator inhibitor 1R (PAI-1R) that selectively targets glomerular mesangial cells113. This 

nanoparticle was packaged with small interfering RNA to silence transforming growth 

factor-β1 (TGFβ1) in a rat model of human mesangial proliferative glomerulonephritis. 

Systemic TGFβ1 inhibitors are efficacious at slowing CKD progression, but harbour 

substantial risks of inflammation, as TGFβ1 is also a key anti-inflammatory factor114. 

Importantly for renal targeting, the PAI-1R-coated nanoparticles were able to target 

mesangial cells through glomerular vascular fenestrations, thereby bypassing the size 

restrictions of the glomerular filtration barrier. The authors observed that a single dose of 

the nanoparticle improved renal function, including significantly reducing urinary protein 

excretion and glomerular matrix accumulation 5 days after injection. Additionally, although 

TGFβ1 protein and mRNA levels were significantly inhibited in the glomerulus and the 

liver, no changes were observed in lung, spleen, arterial or renal medullary tissue. Although 

this study highlighted a model of glomerulonephritis, glomerulus-targeted nanoparticles 
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could be modified for a wide range of glomerular diseases including both inherited and 

acquired pathologies.

Programmable nucleases can be used for various genomic manipulations that might have 

clinical implications. These include CRISPR–Cas9, transcription-activator-like effector 

nucleases and zinc-finger nucleases that induce targeted double-stranded breaks in the 

genome, leading to activation of the error-prone non-homologous end-joining pathway or 

template-dependent homologous directed repair115. Base editing can enable user-directed 

change of DNA or RNA bases to correct mutations or expression116. Prime editing uses a 

catalytically impaired Cas9 enzyme fused to reverse transcriptase wherein the guide RNA 

encodes targeting and the template for editing117. There are now several ongoing CRISPR 

clinical trials targeting various diseases118. Ultimately, the use of CRISPR–Cas for kidney 

gene delivery will depend upon effective delivery to the kidney.

Technologies have also become available for modulating gene transcription or protein 

translation without transgene delivery per se. For instance, anti-sense oligonucleotides have 

been used to enable exon skipping in an X-linked mouse model of Alport syndrome, 

resulting in improved collagen expression and animal survival119. AAV has been used to 

deliver suppressor tRNAs, enabling readthrough of nonsense mutations in vivo120. Time will 

tell whether such approaches are translatable for clinical application.

Notable advancements in viral vector design have improved feasibility for renal gene 

therapy. Viral pseudotyping — the process of producing viral vectors using viral envelope 

proteins from a different virus — allows investigators to alter the existing specificity of viral 

serotypes121,122. To improve renal targeting of lentivirus, a recent study designed lentivirus 

pseudotyped with the envelope from Zika virus, chosen for its affinity to renal tubular 

epithelial cells123. Interestingly, the pseudotyped virus, named ZIKV-E, demonstrated 100-

fold higher transduction efficiency in renal tubular epithelial cells compared with the 

lentivirus-envelope control. ZIKV-E also demonstrated high transduction within the liver, 

brain, heart and spleen, indicating that further modification to the pseudotyped envelope 

would be necessary for selective renal targeting. In addition to pseudotyping of viral 

envelopes, capsid engineering of viruses also provides an avenue for enhanced renal 

specificity of cell and gene therapies124,125. High-throughput screening of diverse capsid 

libraries could allow for identification of kidney-targeted viruses. Additionally, identification 

of key peptides that facilitate renal transduction will be essential for understanding how 

transduction occurs within the kidney and therefore how the field could enhance renal 

cell and gene therapy efforts. Both viral and non-viral approaches for renal cell and gene 

therapy have drastically improved in the past few decades, but there are still major hurdles to 

overcome in targeting, efficiency and longevity before cell and gene therapies could be seen 

in the clinic.

Technological advances in cell and gene therapies may prove futile if costs are prohibitive. 

Costs of currently marketed products range from hundreds of thousands to millions of 

dollars per dose126. The hope would be that improved manufacturing and more available 

products would drive down costs. Much work needs to be done on many levels, from basic 
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science and translational researchers through to drug companies and policy-makers, to make 

these therapies accessible and equitable for patient populations.

Conclusions

Cell and gene therapy for kidney disease is in its infancy. Although gene delivery to the 

kidney has been attempted for many years in various animal models, delivery of genetic 

cargo to the kidney remains the main obstacle for cell and gene therapy of kidney disease. 

The field will benefit from agency-approved cell and gene therapies for nonkidney diseases 

as well as the vectors used. However, breakthrough research needs to be carried out to target 

diseases of this complex but very important organ. Currently, almost all kidney diseases are 

treated with supportive care without the use of molecular therapies to target the underlying 

cause. This is unacceptable given the high burden, morbidity and mortality associated with 

kidney disease. Many patients are waiting for cell and gene therapy of kidney disease to 

improve and lengthen their lives. It is hoped that, in the near future, a toolbox of safe and 

effective cell and gene therapies for kidney disease will exist, revolutionizing the war against 

the various causes of CKD and its complications.
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Key points

• Despite the use of cell and gene therapies in the clinic for other tissues, no 

such interventions are available that target the kidney.

• Approximately 30% of chronic kidney diseases are inherited, and the genetic 

basis is well understood, meaning that they are suitable for targeting by cell or 

gene therapy before development of irreparable renal failure.

• Genetic studies in mouse models have revealed the potential of gene therapy 

for kidney disease.

• Delivery of therapeutic material to the kidney is the main hurdle to cell and 

gene therapy development.

• Innovations in vector technology, delivery and an enhanced understanding of 

kidney disease pathogenesis provide hope for future kidney cell and gene 

therapies.
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Fig. 1 ∣. Approved cell and gene therapies worldwide.
Approved gene therapies involve gene transfer in vivo (left) or modification of cells 

ex vivo that are transferred to patients (right). Various vectors are used with chimeric 

antigen receptor (CAR)-T cells generated using lentiviral or retroviral vectors. AAV, 

adeno-associated virus; ALL, acute lymphoblastic leukaemia; AUS, Australia; CAN, 

Canada; CH, China; DLBCL, diffuse large B cell lymphoma; EU, European Union; 

HSV-1, herpes simplex 1; ISR, Israel;JP,Japan; PH, Philippines; RUS, Russia; SK, 

South Korea; SWZ, Switzerland; TWN, Taiwan; UK, United Kingdom; UKR, Ukraine; 

USA, United States. Delytact (teserpaturev (Daiichi Sankyo and the University of 

Tokyo)); Gendicine (recombinant human p53 adenovirus (Shenzhen SiBiono GeneTech 

Co)); Imlygic (talimogene laherparepvec (BioVex Inc)); Oncorine (H101 (Shanghai 

Sunway Biotech)); Rexin-G (retroviral vector carrying mutant form of cyclin G1 gene)); 

Luxturna (voretigene neparvovec-rzyl (Spark Therapeutics, Inc.)); Roctavian (valoctocogene 

roxaparvovec (BioMarin)); Upstaza (eladocagene exuparvovec (PTC Therapeutics)); 

Zolgensma (onasemnogene abeparvovec (Novartis Gene Therapies, Inc.)); Collategene 

(HGF plasmid (AnGes, Inc.)); Neovasculgen (cambiogenplasmid (Human Stem Cell 

Institute)); Abecma (idecabtagene vicleucel (Bristol-Myers Squibb Pharma EEIG)); 

Carvykti (ciltacabtagene autoleucel (Janssen Biotech, Inc.)); Kymriah (tisagenlecleucel 

(Novartis Pharmaceuticals Corporation)); Carteyva (relmacabtagene autoleucel (JW 

Therapeutics)); Tecartus (brexucabtagene autoleucel (Kite Pharma, Inc)); Yescarta 

(axicabtagene ciloleucel (Kite Pharma Inc.)); Breyanzi (lisocabtagene maraleucel (Bristol-

Myers Squibb Pharma EEIG)); Libmeldy (atidarsagene autotemcel (Orchard Therapeutics)); 

Skysona (elivaldogene autotemcel (Bluebird bio, Inc.)); Strimvelis (CD34+ cells transduced 

with retroviral vector that encodes for the ADA gene (GlaxoSmithKline)); Zynteglo 

(betibeglogene autotemcel (Bluebird bio, Inc.)).
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Fig. 2 ∣. Genetic kidney disease target location within the nephron, the basic functional unit of 
the kidney.
The major genetic kidney diseases for consideration of cell and gene therapy manifest 

disease in various cell types throughout the nephron structure.
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Fig. 3 ∣. Vector considerations for cell and gene therapy of kidney disease.
Viral and non-viral vectors range in size and can package DNA or RNA with different 

capacity. Some can be engineered to target specific cells or tissues via capsid, envelope 

or particle modification. Immune response varies between vectors. Any time nucleic acids 

are delivered to cells, integration is a possibility, although the chance of integration can 

vary depending on vector type. Integration is part of lentivirus-mediated delivery but is 

possible, although rare, with other vector methodologies. AAV, adeno-associated virus; ds, 

double-stranded; ss, single-stranded.
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Table 1 ∣

Prevalence and pathogenesis for genetic kidney diseases

Disease group Disease Gene cDNA size 
(bp)

Prevalence

Glomerular diseases Alport syndrome COL4A3 8,097 1 in 5,000–10,000 in the USA

COL4A4 9,895

COL4A5 6,483

Fabry disease GLA 1,290 1 in 15,000 worldwide

Familial amyloidosis FGA 2,110 50,000 patients worldwide

APOA1 1,009

LYZ 447

B2M 360

Congenital nephrotic syndrome NPHS1 3,762 1 in 100,000 worldwide

NPHS2 1,152

Proximal tubule diseases Autosomal dominant PKD PKD1 14,138 1 in 1,000 worldwide

PKD2 5,056

GANAB 3,906

Autosomal recessive PKD PKHD1 16,282 1 in 20,000 worldwide

Tubulointerstitial kidney disease MUC1 Variable 500 families in the USA; 2–5% of
CKD due to monogenic disorders

UMOD 2,477

REN 1,462

HNF1B 2,790

SEC61A1 1,871

Cystinuria SLC3A1 1,737 1 in 7,000 in the USA

SLC7A9 1,752

Proximal renal tubular acidosis SLC4A4 3,108 <1 in 1,000,000 worldwide

Cystinosis CTNS 2,866 1 in 100,000–200,000 live births

Dent disease CLCN5 (type 1) 10,108 250 families worldwide

OCRL (type 2) 5,138

Thick ascending limb and
distal convoluted tubule
diseases

Bartter syndrome SLC12A1 (type I) 4,707 1 in 1,000,000 worldwide

KCNJ1 (type II) 4,074

CLCNKB (types III 
and IV)

1,544

BSND (type IV) 3,472

CLCNKA (type IV) 2,581

MAGED2 (type V) 2,066

Gitelman syndrome C12A3 3,119 1 in 40,000 worldwide

CLCNKB 1,544

Collecting duct diseases Liddle syndrome SCNN1A 3,481 80 families worldwide

SCNN1B 2,597

SCNN1G 3,507
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Disease group Disease Gene cDNA size 
(bp)

Prevalence

Distal renal tubular acidosis ATP6V0A4 2,523 <1 in 100,000 worldwide

ATP6V1B1 1,542

FOXI1 1,137

SLC4A1 2,736

WDR72 267

Select genetic kidney diseases with respective causative gene, cDNA size and prevalence. Some of the information is adapted from ref. 7. CKD, 
chronic kidney disease; PKD, polycystic kidney disease.
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