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Abstract

Purpose of Review—The purpose was to summarize the current role and state of artificial 

intelligence and machine learning in the diagnosis and management of melanoma.

Recent Findings—Deep learning algorithms can identify melanoma from clinical, 

dermoscopic, and whole slide pathology images with increasing accuracy. Efforts to provide more 

granular annotation to datasets and to identify new predictors are ongoing.

Summary—There have been many incremental advances in both melanoma diagnostics and 

prognostic tools using artificial intelligence and machine learning. Higher quality input data will 

further improve these models’ capabilities.

✉Lee Wheless, lee.e.wheless@vumc.org. 

Human and Animal Rights and Informed Consent The work included does not contain any new experiments conducted by the 
authors on human or animal subjects.

Conflicts of Interest The authors declare no conflicts of interest.

Disclaimer These funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation 
of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication. The contents 
are solely the responsibility of the authors and do not necessarily represent official views of the Department of Veteran Affairs or the 
United States Government.

U.S. Department of Veterans Affairs
Public Access Author manuscript
Curr Oncol Rep. Author manuscript; available in PMC 2023 July 13.

Published in final edited form as:
Curr Oncol Rep. 2023 June ; 25(6): 635–645. doi:10.1007/s11912-023-01407-3.

V
A

 A
uthor M

anuscript
V

A
 A

uthor M
anuscript

V
A

 A
uthor M

anuscript



Keywords

Artificial intelligence; Melanoma; Machine Learning; Melanoma; Deep learning; Digital 
pathology; Dermoscopy

Introduction

Sparked by Estreva et al. declaring in 2017 that deep neural networks could achieve 

dermatologist-level classification of skin lesions, there has been a wave of new research into 

using deep learning and other artificial intelligence methods for melanoma diagnosis and 

prognosis [1]. Unlike most other cancers, skin cancers including melanoma are diagnosed 

primarily visually, which lend themselves to multiple imaging modalities, including “naked-

eye” clinical images, dermoscopy, reflectance confocal microscopy (RCM), and optical 

coherence tomography (OCT) (see Table 1) [2, 3]. These are in addition to the widening 

use of pathology whole slide images (WSI) in clinical medicine [4]. In this review, we 

will discuss recent applications of deep learning (DL) and other machine learning (ML) 

methods to these imaging modalities, as well as future directions and barriers to deployment. 

Broadly, ML refers to the use of algorithms on structured data to identify patterns to guide 

classification or prediction without being explicitly programmed to produce the output. That 

is, when encountering new data, ML algorithms can predict an outcome based on prior 

training. Familiar examples include linear or logistic regression models. DL is a subset of 

ML that specifically uses neural networks to perform this task. Several excellent reviews 

have been written on this topic, including one describing the basics of the computational 

methodologies [5, 6•, 7]. The present review will focus primarily on studies that have been 

reported in the two years since these others. Moreover, while many earlier models were 

developed with the intent of making a binary classification, e.g., melanoma vs. benign 

nevus, most now have adopted a multiclass learner to identify numerous lesion types. As 

a result, the development of melanoma-specific models is now uncommon, and most of 

the studies included evaluate the respective model’s ability to identify not only melanoma 

but also other malignant and benign skin lesions. We will focus the use of DL on several 

different imaging modalities individually and only briefly discuss models based on genetic 

or other non-imaging data.

Methods

An electronic literature search was performed on July 5, 2022, with the PubMed, Web 

of Science, and Embase databases. Articles published in English from October 31, 2019 

through July 5, 2022 were included in the search. These were supplemented by hand 

searches through reference lists and expanding beyond the search window for key papers. 

A second search was conducted on October 18, 2022 to include papers published since 

the initial search. Search terms included melanoma or skin neoplasm(s) combined with 

diagnosis combined with artificial intelligence or machine learning. The full search strategy, 

including MeSH terms and keywords, can be found in “Appendix.”
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Clinical Image Analysis

The most accessible application of DL to diagnose melanoma uses clinical photographs. 

This method involves using a pretrained network such as ResNet, VGG-16, or InceptionV3, 

or training a convolutional neural network (CNN) on images sourced from large 

datasets such as ImageNet (https://www.image-net.org/) and the International Skin Imaging 

Collaboration (ISIC) Archive (https://www.isic-archive.com/) or individually created 

datasets and then providing clinical photograph as inputs for the CNN to diagnose [8]. Even 

the oldest published DL models have shown success in being able to distinguish melanoma 

from benign nevi, achieving high accuracies, sensitivities, and specificities [9–11].

Early studies trained CNN to discriminate melanoma from benign nevi [12–14]. Clinically, 

it can often be difficult to discern melanocytic lesions from solar lentigines or seborrheic 

keratoses, among others, and these simple binary models would perform poorly in practice if 

other lesion types were encountered. Moreover, at this time, there was no benchmark against 

which to test CNN performance to compare models to each other and, more importantly, 

to the clinical performance of trained dermatologists. This led Brinker et al. to create the 

first melanoma classification benchmark (MClass) and to provide the images publicly for 

direct comparison with other algorithms [15]. This standard, however, was a reference 

for only melanocytic images of light-skinned Western populations. Many of these early 

publications did not test algorithms in clinical settings and identified this as a limitation [8, 

16]. Therefore Han et al. utilized a CNN trained with over 200,000 clinical images in a 

multi-ethnic cohort to classify images including melanoma and 11 other common malignant 

or benign skin lesions [14]. Binary and multiclass classification was used to evaluate the 

performance of the algorithm compared to clinicians and AI-assisted clinicians. The results 

showed how even subtle differences in lighting in images and lack of clinical information 

could negatively impact the ability to classify lesions [16]. Another group recognized this 

gap and trained their CNN on clinical images that were artificially darkened [17]. Their 

results suggest that even artificial darkening of images can significantly improve a CNN’s 

ability to recognize melanoma in patients with darker skin tones.

Incremental advances have been achieved by including additional clinical data such as 

age, part of the body where the lesion is located, symptoms present, and change in 

size or elevation [18, 19]. Maclellan et al. conducted a study to evaluate three different 

models in the diagnosis of melanoma and compared those to the performance of a teleder-

moscopist and local dermatologists [19]. While several DL models had comparable or lower 

diagnostic performance compared to teledermoscopy (84.5% sensitivity, 82.6% specificity) 

or face-to-face evaluation by a dermatologist (96.6% sensitivity, 32.2% specificity), the best 

performing one was FotoFinder Moleanalyzer Pro (88.1% sensitivity, 78.8% specificity). 

The authors concluded that the lesion size and location, as well as Fitzpatrick skin type, 

could impact classification, and that the use of DL in the diagnosis of melanoma currently 

should be as an ancillary tool rather than a standalone one [20].

In line with this assessment, others have investigated the use of DL as a triage system for 

the identification and prioritization of malignant lesions [21]. In fact, many publications 

have suggested ancillary use of DL augments the diagnostic ability of dermatologists 

and non-dermatologists [16, 19, 22•, 23, 24]. Ba et al. specifically investigated the 
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difference in accuracy, sensitivity, and specificity of AI-assisted dermatologists vs. 

unassisted dermatologists [8]. They observed that AI-assisted dermatologists achieved a 

significantly higher accuracy (76.60% vs. 62.78%, P < 0.001), sensitivity (89.56% vs. 

83.21%, P < 0.001), and specificity (87.90% vs. 80.92%, P < 0.001) compared to unassisted 

dermatologists (Table 2).

Multiple patient-driven smartphone applications (“apps”) exist for detecting melanoma, 

such as SkinVision® and TeleSkin, both of which are approved in Europe as certified 

medical products for use as diagnostics, and DermaCompare, which is approved by the US 

Food and Drug Administration (FDA) as a class 1 medical device that is not for use as a 

diagnostic standalone tool. Multiple recent publications have evaluated the ability of these 

and other smartphone applications at detecting melanoma [25–27, 28•]. The conclusion 

of each of them was that the apps performed far worse in practice than the published 

metrics. Moreover, no patients in one study preferred melanoma screening based solely on 

the results from an app, which could severely restrict the broader acceptance of this tool in 

practice [28•]. As with dermatologist-driven methods, the current recommended use of DL 

in patient-driven screening for melanoma is to assist the triage and assessment by a trained 

dermatologist.

Dermoscopy

Dermoscopy is a real-time, in vivo imaging technique that allows for visualization of 

substructures in the skin surface and superficial dermis [29]. This involves the use of 

a handheld magnifier that can emit both polarized and non-polarized light. Polarization 

decreases the light reflection at the surface, thereby revealing the superficial features beneath 

(Fig. 1B and E). Several large datasets include dermoscopic images that have been used 

extensively for building deep learning models [30–32]. DL models based on these datasets 

have tended to achieve excellent classification of melanoma and other skin lesions, often 

with sensitivity greater than 90% [15, 33–41].

In actual practice, however, these models attain far worse accuracy and are highly sensitive 

to variation in how the image is obtained and oriented. One group found up to 22% 

misclassification with simple perturbations in image composition [42]. Others showed how 

slight changes in the red, green, and blue values for each pixel that would be imperceptible 

to the naked eye can dramatically impair an algorithm’s ability to discriminate melanoma 

from benign nevus, even after training the network on similarly distorted images [43]. This 

study also showed how rotation or horizontal or vertical shifting was enough to cause 

misclassification of melanoma as benign nevus. Still, others showed that the use of skin 

markers, or dermatoscopes with different sized scale bars imprinted on the lens could greatly 

diminish classification ability [44, 45]. Finally, a large study from ISIC found a balanced 

accuracy of only 58.8% for multi-class classification in a dataset developed to reflect more 

real-world lesions that a dermatologist would encounter [46•]. This suboptimal accuracy was 

encountered even with algorithms designed to flag images that scored poorly on all classes 

and were likely outside of the trained expertise of the models. The authors concluded that 

such algorithms could potentially be dangerous to deploy in their current state as standalone 

methods to identify melanoma. Others, however, found that a DL system approved for 
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market in Europe performed on par with dermatologists on classifying a small set of lesions 

that included melanomas and could improve a dermatologist’s ability to classify skin lesions 

when used as a diagnostic aid [41, 47].

Beyond changes in the image characteristics, change in the lesion itself over time is one 

of the hallmark features of melanoma. Two DL algorithms showed markedly improved 

performance when comparing sequential dermoscopy imaging to a one-time image [48]. The 

standard of care for high-risk patients remains serial observation, and DL has the potential to 

identify more subtle changes over time to augment the clinical exam. This especially has the 

potential for easy deployment in clinics using total body photography (colloquially referred 

to as “mole mapping”), with the potential for direct interface with the photography software 

[49, 50].

More recently, investigators have acknowledged that further improvements in models can 

come only with improvements in the data, both in terms of volume and granularity. As with 

clinical image analysis, the addition of simple clinical data such as patient age and sex can 

have small impacts on the classification of dermoscopic images [32, 51–53]. Ongoing efforts 

to identify new features to encode into training images or to concatenate into DL models are 

likely to produce further progress toward validated, clinically useful tools for the diagnosis 

of melanoma dermoscopically.

Reflectance Confocal Microscopy and Optical Coherence Tomography

Reflectance confocal microscopy (RCM) and optical coherence tomography (OCT) both 

use near-infrared light to provide high resolution of the epidermis and papillary dermis in 

vivo up to a depth of 2 mm [54, 55]. Focusing the light source up or down can produce 

a 3-dimensional stack of images. RCM uses a shorter wavelength that gives excellent 

resolution at the cost of shallower penetration, while OCT can image deeper into the skin, 

but at lower resolution. As the microscope scans over the lesion, it creates a mosaic of image 

tiles that are pieced together into a larger image (Fig. 1C). A particular benefit of RCM is 

that the method is not only FDA approved but also has its own reimbursement codes from 

the US Centers for Medicare and Medicaid Services (Current Procedural Terminology codes 

96,931–96,936), paving the way for expanded clinical use [56]. RCM has even been shown 

to be superior to dermoscopy for the diagnosis of melanoma in a meta-analysis [57].

Adoption of this method has been limited by the need for equipment that costs 2 orders of 

magnitude greater than a handheld dermatoscope, as well as the need for highly specialized 

expertise in both the production of images and the reading of them. Perhaps the greatest 

barrier to wider use of RCM is that many table-mounted microscope-based techniques 

require up to 15 min to image a single lesion, whereas dermoscopy can be done in seconds 

at the bedside. RCM is therefore often scheduled as a special imaging encounter where 

no dermatologist is seen, so if imaging indicates a need for biopsy, it necessitates creation 

of an additional appointment for this procedure. There has been very little investigation to 

date into melanoma diagnosis and deep learning with RCM images, with current research 

on optimizing the image acquisition and analysis protocol [58]. Proposed use cases for 

RCM in melanoma diagnosis and management is to map pre-surgical margins for lentigo 

maligna in patients undergoing Mohs, monitoring excision sites, and to assess clearance 
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after non-invasive treatments [59, 60]. As the technology shifts to faster, less expensive 

hand-held devices, there will likely be broader use of RCM and OCT in the clinical setting 

[61].

Pathology Whole Slide Image Analysis

Whole slide imaging (WSI), or virtual microscopy, is an imaging modality that has become 

popular for its ability to emulate conventional light microscopy in a virtual manner. As the 

name implies, the entire biopsy slide is imaged at high-resolution yielding a gigabyte-size 

image file. Current computational capabilities are unable to analyze these files in one piece 

in a DL framework, and so they are divided into individual tiles of 256 × 256 pixels, or 

the size required by the individual pre-trained network that is being used. There are two 

main approaches to image analysis: classification and segmentation. In classification, entire 

slides are given a label and can be classified as melanoma or not melanoma, for example. 

Segmentation is a much more intensive task and instead is a pixel-level or near pixel-level 

classification, such that the model could learn to identify the specific melanoma cells on 

the slide and not label uninvolved tissue. Most DL has focused on classification, although 

progress into segmentation of melanoma has already begun [62–64]. DL models based on 

WSI datasets have achieved classification of melanoma and other skin lesions, with the 

majority having both a sensitivity and an area under the ROC curve greater than 90% [65–

72].

Several studies found that DL models based on WSI datasets had comparable sensitivity 

with dermatopathologists for histologic detection of melanoma [65, 66, 73]. Furthermore, 

one group found DL may be a useful assistive diagnostic tool for dermatologists in certain 

cases of melanoma. This study found that dermatologists performed better in diagnosis of 

nevoid melanoma cases with the assistance of DL trained with WSI, but it did not show any 

benefit for dermatologists when diagnosing general cases of melanomas [74]. Other studies 

found that DL models had significant prognostic capabilities of predicting progression-free 

survival in melanoma, which may provide patients with more insight into their prognosis 

[64, 72, 75].

There are various commonly found genetic mutations in melanomas, and mutational 

profiling of melanomas can be useful in determining precise treatments. One WSI study 

found a use for DL in predicting specific mutations on histopathology images of melanoma 

[63]. This study showed their DL model could detect distinct morphological changes in 

mutated BRAF melanomas with sensitivities greater than 0.75, which may prove beneficial 

in providing mutation-specific treatments. Others have tried to automate tasks such as 

counting mitotic figures or characterizing tumor infiltrating lymphocytes (TILs) to include 

both not only for staging purposes but also for inclusion in DL models [67, 76]. In terms 

of training methods, one study found that in most cases, the model was sufficiently accurate 

in predicting melanomas without requiring any additional patient data integration to aid in 

diagnosis [71]. Interestingly, they found, however, that incorporating patient data for lesions 

classified by the CNN with “low confidence” led to improved diagnostic accuracy.

Studies on DL models trained with WSI have shown impressive capabilities in classifying 

melanomas, but they still have significant limitations. As with many of the other early 
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models using clinical or dermoscopic images, several of these studies used a binary 

classification (i.e., melanoma vs. not melanoma) and not the many differential diagnoses 

a dermatopathologist would need to consider [68, 69, 77]. One of these studies found a 

misclassification rate of 19% for WSI, even with a binary classification model [77]. Another 

limitation is that training of DL models varies from one study to the next, and the models’ 

abilities are confined to that which they are taught [68]. In this group’s study, they only 

included pT3 and pT4 melanomas in training, which may have limited the model’s ability 

to discriminate melanomas from nevi or even thin melanomas since it was not trained in 

recognizing these.

Response to Immune Checkpoint Inhibition

The use of immune checkpoint inhibitors (ICI) has had the single most beneficial impact 

on melanoma-specific survival in decades [78]. Not all patients will respond to this type 

of therapy and with high rates of immune-related adverse events, identifying those who are 

unlikely to respond to this type of treatment can reduce harms while maximizing benefits 

[79, 80]. We have shown that even simple segmentation of melanoma WSI can predict 

response to ICI with AUC of 0.80 [64]. A recurring theme of DL models is that better data 

leads to better prediction. Information on TILs, genetic signatures, and other clinical factors 

can help predict ICI response in melanoma and other tumors [76, 81–83]. As biomarkers 

for response become better characterized, incorporation of these into predictive models will 

produce further refinements toward precision oncology.

Discussion

The use of DL has advanced from simple binary classification and limited multi-class 

classification to a wide range of diagnoses in dermatology. Multiple studies from clinical 

and dermoscopic images as well as WSI support that the best classification from DL models 

comes from the use of these tools to augment human clinical judgement [16, 22•, 23, 

36, 38]. To date, the evidence indicates that DL systems are not refined to the point of 

making highly reliable diagnoses without human input [46•, 84]. Several commercial smart 

phone applications exist for patient-driven point of care testing that have been approved 

at varying levels in Europe and North America. These apps have shifted from places to 

store photos and provide education to tools that interface with DL algorithms in attempts to 

provide diagnoses [26, 28•, 85]. These applications unfortunately have performed poorly in 

identifying melanoma, and none have attained FDA approval as a diagnostic.

Appropriately, it is becoming the standard for studies of new DL tools to report an 

uncertainty metric, akin to a confidence interval around a point estimate, in addition to 

the tool’s class probability, and other metrics on the dataset and model [46•, 86••, 87]. This 

inclusion underscores the need for a trained dermatologist to review the final diagnoses 

before treatment decisions are made. These tools have great potential to be integrated into 

clinical practice, some more easily than others. For example, dermoscopic evaluation of 

a lesion might take 3 to 10 s, while RCM can take up to 15 min for a single lesion. 

Computational time for DL algorithms is also a critical feature, although a longer analytic 

time becomes acceptable when the patient is not sitting in the exam room waiting on an 
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immediate result. Image detection and classification models that can be run rapidly on a 

local device would be ideal for diagnostic DL to be adopted into bedside practice.

Recently, the artificial intelligence working group of ISIC established guidelines for the 

presentation and use of imaging in AI studies towards making these tools more reliable 

[86••]. The resulting checklist included reporting features of the data, the technique by 

which the images were generated, a technical assessment of any models used, and lastly how 

the authors envision the application of the AI, including the need for fairness in applicability. 

Fairness extends to having diverse representation in terms of skin color in the samples 

informing the AI as the dermatologic literature has long suffered from a relative lack of 

non-White images [88, 89]. The development of new datasets that specifically include 

non-White populations will further improve the ability to diagnose both melanoma and other 

skin disorders [14, 17, 90, 91].

There is a major difference in the clinical questions that each of these image analysis 

methods addresses. Lesions seen clinically do not necessarily need a proper diagnosis. 

Rather, the question that must be answered in that moment is “Does this lesion need 

to be biopsied?” In instances of technically non-malignant lesions such a severely 

dysplastic nevus, the answer can still be yes, and models should not be penalized for 

“misclassification” as a melanoma. Similarly, for a basal cell carcinoma, the answer could be 

no particularly if it is asymptomatic, in an elderly patient, and unlikely to invade underlying 

structures if left untreated [92]. Understanding that the goal of clinical image analysis is to 

remove the lesions that are troublesome and leave the ones that are not is one area where AI 

can improve in dermatology overall, not just in melanoma diagnosis.

For biopsied lesions with pathology slides available, there are several clinical questions: 

“What is the diagnosis? What is the prognosis of this? Does this need additional treatment? 

Which treatment is best?” At the time of writing, several whole slide imaging systems 

have been FDA approved for diagnostic use (Leica, Phillips IntelliSite Pathology Solutions), 

paving the way for augmented or even automated diagnoses. The issues of treatment and 

prognosis are intertwined. The lesion with narrowly clear margins and a low-risk profile 

could perhaps be safely monitored, whereas high-risk ones could require re-excision or 

sentinel lymph node biopsy. For melanoma specifically, there are poor data to guide the 

decision to pursue SLNB in T1a and T1b lesions, and a model that could predict the 

likelihood of nodal or distant metastases would greatly improve the ability to offer this 

procedure to those most likely to benefit from it while minimizing harms [93].

Future Goals and Barriers

1. Datasets with more benign lesions and more skin types: one of the most common 

complaints from patients is a changing lesion and concern for melanoma. The 

vast majority of these are not melanocytic but instead are either seborrheic 

keratoses or solar lentigines. Datasets that include predominantly melanocytic 

or malignant lesions will therefore be unable to address this important clinical 

question, and one that could lend itself well to automated triage of patient-

supplied images. More and more image banks are including a vast array of 

diagnoses, with a drive to include more images of non-White skin.
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2. Datasets including multiple imaging modalities on lesions: most ISIC nevi are 

not biopsied. A lack of histologic data is itself a confounder for deep learning 

algorithms, such that more benign-appearing lesions histologically could pose 

some difficulty to deep learning algorithms if they are essentially unseen before.

3. Datasets including melanoma subtypes and sun-exposed skin: melanomas are 

a heterogeneous group of skin cancers ranging from the aggressive nodular 

melanoma, to the more indolent lentigo maligna. Even within the four 

recognized histologic subtypes (these two plus superficial spreading and acral 

lentiginous), there can be additional subtypes such as nevoid, pigmented 

epithelioid, desmoplastic, and spindle cell. Datasets in the future should include 

labels with this level of granularity to aid in model development. For example, 

while lentigo maligna is a subtype of melanoma in situ, its development on 

extensively sun-damaged skin has a different histologic pattern, behavior, and 

often treatment.

The formation of large, high-quality datasets for DL models will likely require multi-

institutional or multi-national collaborations that include both public and access-restricted 

data. There are multiple public access databases for skin images, though these tend to 

be only clinical and dermoscopic images [94]. Accordingly, the ISIC Archive currently 

allows for users to upload their own clinical and dermoscopic images, although there is the 

potential to add digital pathology in the future. Pooled resources such as this database can 

help overcome the limitations of sample size and data quality to advance the use of artificial 

intelligence and machine learning in melanoma.

Conclusion

There have been many incremental advances in both melanoma diagnostics and prognostic 

tools using artificial intelligence and machine learning. Higher quality input data will further 

improve these models’ capabilities. While these tools hold potential to augment diagnosis by 

a trained dermatologist, they are not currently ready for fully automated deployment.
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Appendix

PubMed

((“melanoma”[mesh] OR melanoma* [tiab] OR “skin neoplasms”[mesh] OR skin 

neoplasm*[tiab]) AND (“artificial intelligence”[mesh] OR artificial intelligence[tiab] OR 

machine learning[tiab])) AND (“Diagnosis”[Mesh] OR Diagnos*[tiab]).
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Web of Science

TS = (melanoma OR “skin neoplasm*”) AND TS = (“artificial intelligence” OR “machine 

learning”) AND TS = (diagnos*).

Embase

(exp melanoma/ or melanoma.ab,ti. or exp skin tumor/ or skin neoplasm*.ab,ti.) and (exp 

artificial intelligence/ or artificial intelligence.ab,ti. or machine learning.ab,ti.) and (exp 

diagnosis/ or diagnos*.ab,ti.)
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Fig. 1. 
Examples of (A), (D) clinical, (B), (E) dermoscopic, and (C), (F) reflectance confocal 

microscopy images on two individual nevi
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Table 2

Clinical imaging: sensitivity and specificity of skin lesion diagnosis among AI-assisted dermatologists vs. 

unassisted dermatologists using a deep learning model trained on clinical images. [8] Adapted from Ba et al.

Sensitivity Specificity

AI-assisted evaluation 89.56 87.90

Unassisted evaluation 83.21 80.92
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