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ABSTRACT: Low-cost air quality monitors are increasingly being
deployed in various indoor environments. However, data of high
temporal resolution from those sensors are often summarized into
a single mean value, with information about pollutant dynamics
discarded. Further, low-cost sensors often suffer from limitations
such as a lack of absolute accuracy and drift over time. There is a
growing interest in utilizing data science and machine learning
techniques to overcome those limitations and take full advantage of
low-cost sensors. In this study, we developed an unsupervised
machine learning model for automatically recognizing decay
periods from concentration time series data and estimating
pollutant loss rates. The model uses k-means and DBSCAN
clustering to extract decays and then mass balance equations to estimate loss rates. Applications on data collected from various
environments suggest that the CO2 loss rate was consistently lower than the PM2.5 loss rate in the same environment, while both
varied spatially and temporally. Further, detailed protocols were established to select optimal model hyperparameters and filter out
results with high uncertainty. Overall, this model provides a novel solution to monitoring pollutant removal rates with potentially
wide applications such as evaluating filtration and ventilation and characterizing indoor emission sources.
KEYWORDS: k-means clustering, DBSCAN, low-cost sensors, PM2.5, CO2, air change rate

1. INTRODUCTION
Indoor air quality (IAQ) research has benefited substantially
from the development of low-cost monitors, which provide an
opportunity to understand the dynamics of important indoor
air pollutants at high spatial and temporal resolution. In
particular, infrared CO2 sensors and optical particular counters
(OPC) are ubiquitously deployed in various indoor environ-
ments and heating, ventilation, and air-conditioning (HVAC)
systems. Indoor CO2 concentration is often considered a proxy
for ventilation1 and IAQ and has been linked with inhalation
exposure,2,3 cognitive tasks,4,5 and transmission of infectious
disease,6,7 while particulate matter (PM) has known health
consequences.8,9 However, although most low-cost IAQ
sensors show acceptable relative precision, they often suffer
from poor absolute accuracy and drift issues.10 These
drawbacks severely limit the application of low-cost sensors
in IAQ assessment, exposure monitoring, and building
certification. Furthermore, the time series data of high
temporal resolution from those sensors are often simply
summarized as the integrated mean and standard deviation,
without further analysis to extract useful information about
building physics, occupant behavior, and their interactions.
Recently, data-driven tools have provided novel perspectives

on how to take full advantage of data from low-cost air quality
monitors. Machine learning techniques are increasingly used to

predict building energy consumption,11−13 indoor environ-
mental quality,14−17 occupant sensation,18−23 and airborne
exposure.24−26 So far, the majority of relevant studies have
focused on forecasting using time series analysis27 or neural
network models.28,29 Further, the dynamics of indoor environ-
mental parameters can be linked with building physics and
occupant activities,30,31 yet understanding this complex link
requires advanced data analysis tools. For example, Carrilho et
al. developed a novel signal processing approach based on the
covariation of indoor and outdoor CO2 concentration,

32 which
was then used by Alavy et al. to estimate the year-long time-
resolved air change rate.33 Another recent study proposed an
inverse modeling approach for estimating air change rate by
searching for the air change rate that best explains the actual
indoor CO2 concentration and relative humidity trends.34

These studies demonstrate the potential of using data-driven
methods to understand building performance in general and air
change rate in particular. However, the existing methods
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usually require prior knowledge about the environment and/or
unmeasurable model parameters and thus work best for known
contexts.35

This paper proposes a novel unsupervised machine learning
method that extracts useful fragments from continuous
pollutant concentration time series data for calculating
pollutant loss rates and estimating air change rate. The
method only requires existing data from a single low-cost
sensor. After automatically detecting emission and decay
episodes from pollutant concentration curves, the proposed
model calculates the loss rate using a mass balance equation
(the same regression analysis as used in the tracer gas decay
method36). However, different from traditional methods that
require deliberate tracer gas release, the current method relies
on inherent pollutant sources (e.g., building occupants as a
source for metabolic CO2 and their indoor activities as a source
for particles) to produce concentration elevations and estimate
the effectiveness of loss mechanisms including ventilation,
deposition, and filtration. When the strength of other loss
mechanisms is negligible, e.g., in the case of CO2 in most
indoor environments, the loss rate is a reasonable proxy for air
change rate. Therefore, automatically recognizing those decay
periods can achieve a long-term estimation of pollutant loss
rate (and/or air change rate) with minimal effort at a temporal
resolution of several estimates per day.

2. METHODOLOGY
2.1. Model Framework. The proposed model automati-

cally detects continuous drops in pollutant concentration data
(referred to as decays) and uses the relevant portions of data to
estimate the loss rate of pollutants of interest. Depending on
the type of pollutants and the corresponding loss mechanisms
in an indoor environment, the estimated loss rate can be linked
with important building parameters such as air change rate and
particle removal rates. The process is summarized in Figure 1,
and an illustrative example of the key steps is shown in Figure
S1 in the Supporting Information (SI).
The model requires minimal preprocessing of raw data.

Depending on how noisy the raw data are, outlier removal and
smoothing may help improve the signal-to-noise ratio by
reducing the impact of extreme values and local random
fluctuations. In the current study, we used the local outlier
factor algorithm37 to detect and remove outliners and a
Savitzky−Golay filter38 for smoothing. We then estimated the
baseline concentration (the background indoor concentration
without the presence of any source) before extracting data
features for clustering. Different baseline detection algorithms
were compared, and the Asymmetric Least Squares Smoothing

(ALS)39 algorithm was chosen. The impact of baseline
estimation is further discussed in the Results section.
Next, significant elevations in concentration are detected

using a two-center k-means clustering algorithm (Figure 1.5).
This clustering method is a widely used unsupervised learning
technique that partitions data into a predefined number of
clusters. The data features that show the highest clustering
power were found to be: (1) the moving average of
concentration after baseline removal c_map(t) (where p is
the window length) and (2) the absolute value of
concentration gradient after baseline removal c_gd_abs(t)
defined as eq 1. As the distance between data samples is
measured by Euclidean distance, it is necessary to perform data
normalization to avoid exaggerating data features with
relatively larger numeric values. A quantile transformer
followed by a min-max scaler was used here.
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The recognized elevations can be further categorized into
emission, plateau, and decay periods using another three-
center k-means clustering method (Figure 1.6). The data
features used in this step are: (1) the positive or negative sign
of the concentration gradient c_gd(t) and (2) the relative
high−low position of the concentration at time t c_rhlq(t) that
is defined as eq 2 (where c(t) is the concentration at time t
after baseline removal and q is the window length of high−low
comparison40). The second data feature accounts for the
position of a single data point in relation to the moving
minimum and maximum, so it captures an increasing or
decreasing trend.
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Data points recognized as decay are further segmented into
individual decay events using the density-based spatial
clustering of applications with noise (DBSCAN) based on
daily concentration data (Figure 1.7). Unlike k-means
clustering, DBSCAN automatically determines the number of
cluster centers. With proper hyperparameters, this clustering
method can select consistent long decay episodes while
excluding short concentration fluctuations. The two data
features used here are the time of the day and the sum of
nondecay data points prior to the current data point (this sum
will increase upon intervals between two decay groups but
remain constant within a decay group). Further, using daily

Figure 1. Block diagram of the decay recognition and loss rate estimation process (hyperparameters related to each step are shown in gray boxes if
applicable).
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data instead of the whole dataset prevents the results from
being dominated by occasional high concentrations.
The clustering results with regard to the selected data

features for the office example are shown in Figures S2−S4 in
the SI. Generally, decays can be well separated from the
baseline and segmented into individual events. Finally, linear
regression based on a well-mixed mass balance41 was
conducted on each decay event to calculate the pollutant
loss rate (Figure 1.8). When no indoor source is present, the
concentration of a specific pollutant follows eq 3

=c t c c L( ) (0)e (e 1) /Lt Lt
out (3)

where ct is the indoor pollutant concentration at timestamp t;
c0 is the indoor pollutant concentration when decay starts; cout
is the concentration of the same pollutant in air supply; L is the
loss rate of a pollutant due to ventilation, deposition, and
filtration, etc.; λ is the building air change rate; and t is the time
lapse since decay starts. In an indoor environment, the makeup
air can come from multiple sources in addition to the outdoors.
Thus, in the current study, cout was replaced by the estimated
baseline. Further, when the other loss mechanisms are
negligible relative to ventilation (i.e., L ≈ λ), eq 3 can be
rearranged as eq 4, and linear regression can be fit between ln
[(ct − cout)/(c0 − cout)] and t to estimate air change rate λ (eq
5).

=c t c t c c( ) ( ) ( (0) (0))e Lt
out out (4)

[ ] =c c c c Ltln ( )/( )t out 0 out (5)

2.2. Hyperparameter Selection. The model hyper-
parameters involved in preprocessing and clustering are listed
in Figure 1. The selection of hyperparameters affects clustering
performance and consequently the estimated pollutant loss
rates. In data preprocessing, the degree of smoothing
polynomial and the window length are two important
parameters. Proper smoothing helps increase the signal-to-
noise ratio, but overly smoothing may cause data distortion
and bias the loss rates. In general, we found a second-order
polynomial with a window length of 3−9 is appropriate for
data from low-cost CO2 and PM2.5 sensors with 1 min
intervals, and PM2.5 data usually need more aggressive
smoothing. Further, in baseline estimation, the ALS method
takes two key parameters, namely, p for asymmetry and λ for
smoothness. Within the recommended range (0.001 ≤ p ≤ 0.1,
102 ≤ λ ≤ 109), a combination of p = 0.001−0.01 and λ = 109
produced the best fitting for our datasets. However, those
parameters should be adjusted according to the sampling
interval as well as the characteristics of the environment and
pollutant sources.
The window lengths for calculating the moving average and

relative high−low position in feature extraction affect the
performance of k-means clustering. A wider moving average
window reduces the impact of local fluctuations but tends to
misclassify data around the transition periods and can thus
omit short elevations/decays. The relative high−low window
controls which previous period to compare to in trend
detection, and it should be selected according to the length of
potential emission and decay periods. For DBSCAN, two
hyperparameters determine the segmentation of individual
decay events, namely, the maximum distance within a
neighborhood and the minimum number of members in a
neighborhood center. A larger distance will cluster data points
that are not temporally adjacent (e.g., with a nondecay period

in between) into the same group and thus bias the mass
balance analysis. In contrast, a smaller distance can break a
long decay period into several subsets, which results in
repetitive decay rate estimations but has no major impact on
the mean loss rate. The minimum sample number governs the
keeping or discarding of small clusters and has a joint effect on
the segmentation result. In general, we hope to avoid merging
temporally disconnected data samples and keep as many valid
decays as possible to characterize the temporal variation of
pollutant loss rates.
We determined the optimal model hyperparameters using a

grid search method (refer to Figures S5 and S6 in the SI). The
performance matrice for k-means clustering includes the
Calinski−Harabasz index42 and Davies−Bouldin index,43

which evaluate data separation, while the performance of
DBSCAN is assessed by the number of decays extracted and
their R2 value in mass balance regression. In addition, it is
important to plot the concentration data with the recognized
decay periods and visually inspect the results. The selected
optimal clustering hyperparameters are summarized in Table 1

for the four environments. Also, we conducted a sensitivity
analysis to investigate the impact of hyperparameters on the
estimated loss rates using the office CO2 data as an example
(Table S1 in the SI). Before result filtration, baseline
estimation and DBSACN parameters have a large impact on
the mean CO2 loss rate. However, after result filtration, only
the maximum distance in DBSCAN has an impact of greater
than 10% on the mean loss rate, and an unreasonable
maximum distance value can be recognized by visually
examining the decay recognition result.
2.3. Result Filtration. Post-regression result filtration is

another important step that improves the accuracy and
reliability of the estimated pollutant loss rate. The model
recognizes all consistent decay periods, but only some of them
provide meaningful information about the environment.
Extremely short or noisy decays should be excluded from
loss rate estimations. We performed result filtration by setting
thresholds for the duration of decays, the regression R2 value in

Table 1. Summary of Selected Optimal Clustering Model
Hyperparameters

k-means clustering DBSCAN

dataset
(sampling
interval)

moving
average
window

relative high−
low window

maximum
distance

minimum
samples

laboratory
CO2 (1
min)

5 5 0.01 10

PM2.5
(15 s)

10 10 0.01 20

office
CO2 (1
min)

5 5 0.01 5

PM2.5
(1 min)

5 5 0.005 5

classroom
CO2 (1
min)

3 5 0.005 10

PM2.5
(15 s)

10 20 0.005 20

home
CO2
(10 s)

10 30 0.01 5
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mass balance analyses, and the concentration difference from
the baseline so that only long, consistent, and predominant
decays were kept. The appropriate thresholds were determined
based on the number of remaining decays and their variability
after thresholding (details are available in the SI and an
example is provided based on the office data in Figures S7−
S9).
The selected data filtration thresholds for the four datasets

are summarized in Table 2. The laboratory environment had

controlled artificial sources and known ventilation rates. Only a
duration threshold of 30 min was used to remove short decays
outside the actual experiment hours due to experiment
preparation and data collection. The office had a maximum
occupancy of three and was mostly used by one person during
the measurement period. Therefore, the data show clear
elevations and decays, and less strict thresholds are needed. In
contrast, the classroom had a maximum occupancy of 80. A
longer duration threshold and a higher concentration differ-
ence threshold were selected to potentially exclude the short
breaks between classes when a few students left the room while
others remained inside (the CO2 loss rate at those moments is
not a proxy for air change rate as sources are still present). For
the residential dataset, relatively stricter thresholds were
applied to increase the reliability of air change rate estimation.
Still, on average, more than two decays per day are available for
characterizing the daily and seasonal variations.
2.4. Data Sources. The model was first established using

data from a controlled environmental chamber and then
applied to three environments (an office, a classroom, and a
home) to explore the impact of sensor consistency, occupancy,
air mixing, and baseline estimation on the estimated pollutant
loss rates. The laboratory chamber is equipped with a
mechanical ventilation system. During the tests, the supply
and return air volumes were individually controlled, while
artificial sources were used to elevate the indoor CO2 and PM
concentrations (metabolic CO2 from two researchers and a
used dust bag from a vacuum cleaner, respectively). The tests
aimed to validate the accuracy and reliability of the decay
recognition method by comparing the estimated pollutant loss
rates with the measured equivalent air change rate. For real-

world scenarios, the office is a graduate student office with six
desks (maximum occupancy of three due to COVID-19
regulations). Five CO2 sensors and six particle counters were
collocated on one of the desks to investigate the sensor
consistency and explore the impact of pollutant baseline
estimation. The classroom is significantly larger with a higher
occupancy density when in use (maximum occupancy 80).
CO2 and PM2.5 concentrations were monitored at three
locations to capture the spatial variation of pollutant loss rates.
The home is a semidetached house in Toronto where long-
term CO2 monitoring was conducted in the living room for
approximately a year. Alavy et al.33 have previously estimated
the long-term air change rate of this house using a signal
processing approach, which was compared to the estimated
CO2 decay rate from the current model. Details about each
environment and the corresponding data are summarized in
Table 3.

3. RESULTS
This section shows the decay rate estimation results from the
four environments based on optimized model hyperparameters
after result filtration. The loss rates of CO2 and PM2.5 in the
same environment are compared where applicable. In most
indoor environments, occupants are the single source of CO2
and ventilation is the only loss mechanism. Therefore, the CO2
loss rate is considered a proxy for air change rate. In contrast,
particles are subject to deposition and sometimes filtration, so
the PM2.5 loss rate indicates the total sum of all particle
removal processes (ventilation, deposition, and filtration).
3.1. Environmental Chamber Data. The daily CO2 and

PM2.5 concentration curves in the environmental chamber at
the center location are shown in Figure S10 (recognized decays
are differentiated by colors). The elevations are predominant
(approximately 400 ppm and 40 μg/m3 above the baseline),
each lasting for about an hour.
Two ventilation conditions were tested. Under the first

condition, the supply and return air flow rates as well as the
outdoor air flow rates were all set to 5/h equivalent; under the
second condition, the supply and return rates were 2.5/h
equivalent while the outdoor air rate was approximately 1.2/h.
The system has a HEPA filter installed and the outdoor PM2.5
concentration is generally low near the laboratory, so the air
supply can be considered PM-free. The estimated CO2 and
PM2.5 loss rates at the two monitoring locations (at the center
of the room and near air return) after result filtration are
compared to the outdoor air change rate (outdoor flow rate
divided by room volume) and equivalent air change rate
(return flow rate divided by room volume) reported by the
HVAC control system in Figure 2. It is found that the
estimated CO2 and PM2.5 loss rates at the room center and
near return are consistent. The PM2.5 loss rate agrees well with

Table 2. Summary of Selected Duration, r-Squared, and
Concentration Difference Thresholds for Result Filtration

dataset
duration threshold

(min)
R2

threshold
concentration difference

threshold

laboratory 30
office 5 0.7 25 ppm & 5 μg/m3

classroom 15 0.6 50 ppm & 1 μg/m3

home (CO2
only)

30 100 ppm

Table 3. Summary of the Monitoring Environments and the Corresponding Datasets

environment dimensions (L × W × H) sensor monitoring locations duration purpose

laboratory 3.5 × 2.7 × 3 m CO2 (AirMaster AM6) center, return 30 h validation, model development
PM2.5 (Alphasense N2)

office 4 × 3.5 × 3 m CO2 (Senseair K30) collocated on a desk 8 days collocation, baseline selection
PM2.5 (Dylos DC1700)

classroom 15 × 7 × 2.7 m CO2 (PP systems SBA-5) podium, front, back 11 days air mixing, varying occupancy
PM2.5 (Alphasense N2)

residential 185 m2, three-story CO2 (PP systems SBA-5) living room 1 year comparison with another method
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the measured equivalent air change rate under both conditions.
The estimated CO2 loss rate is very similar to the measured
outdoor air change rate under the low ventilation condition
(2.5/h equivalent air change rate and 1.2/h outdoor air change
rate) but significantly lower than the measured value under the
high ventilation condition (5/h air change rate). This
difference was likely due to that the air supply contained
some return air rather than all outdoor air. A schematic of the
system is shown in Figure S11. Although the supply, return,
and outdoor flow rates can be independently controlled, the
opening of return and bypass dampers were automatically
determined. In the 5 ACH condition, the return damper was
likely not fully closed and a fraction of return air could have
been mixed into supply.
3.2. Office Data. The daily concentration curves on a

single day from single CO2 and PM2.5 sensors are shown in
Figure S12 with the recognized decays individually colored.
The concentration data in the office are noisier than those in a
controlled chamber. PM2.5 concentration was measured as a
number concentration but converted to a mass concentration
assuming a density of 1 g/cm3 (note that the assumed density
does not impact decay rates). The duration of decays varied
from approximately 30 min to 2 h (except for very short decays
that were excluded). Also, the PM2.5 data are significantly
noisier, making the concentration curve a wide band, which
resulted in a lower r-squared value in the mass balance
regression analyses.
After result filtration, 236 and 198 decays (approximately 5

and 4 decays per sensor per day) remain for CO2 and PM2.5
data, respectively. The cumulative frequency of the estimated
decay rates of CO2 and PM2.5 after result filtration is shown in
Figure 3. The CO2 decay rate is estimated to have a median of
0.83/h and mostly ranges within 0.5−1.5/h. In contrast, PM2.5

has a higher decay rate (p = 0.001, Wilcoxon rank sum test)
with a median of 1.31/h and a comparatively wider
distribution. The estimated decay rate of PM2.5 is greater
than that of CO2 presumably because, in this environment,
ventilation is the only loss mechanism for CO2 while PM2.5 is
also subject to deposition, and the difference of approximately
0.5/h is consistent with the PM2.5 deposition loss rate reported
in the literature.44,45 However, these results should not be
taken as a paired comparison between the loss rates of CO2
and PM2.5, as decays can happen at different times.
With 5−6 sensors collocated for one week, this dataset was

also used to explore the influences of baseline selection and
sensor consistency. Figure 4 shows two different baseline

estimation methods and the corresponding estimated loss rate
of PM2.5. In an indoor space, the concentration decrease rate of
a pollutant is decided by both the fresh air supply rate and the
concentration of the same pollutant in the makeup air.
Therefore, based on the same concentration curve, the higher
the baseline concentration is, the smaller the difference
between indoor and outdoor concentration will be, and thus
a higher air change rate is needed to cause the same decay. In
this study, we compared two methods for estimating the
baseline, namely, the simple estimation that takes the daily
median concentration of the nonelevated periods as the
baseline, and the ALS39 algorithm, a smoother one with an
asymmetric weighting of deviations. It is found that the simple
estimation produces a consistently higher estimated baseline
and consequently a slightly higher estimated decay rate of
PM2.5 on average. The diurnal and daily variations of the decay
rate are also higher, presumably because using a fixed baseline
value throughout a day could cause frequent overestimations
and underestimations of the pollutant concentration in the
incoming air and thus higher uncertainties. In comparison, the
ALS method attempts to capture the diurnal variation of the
baseline concentration based on local minimum values. Similar
results are found with the office CO2 data (Figure S13 in the
SI). Therefore, ALS is selected as the baseline estimation
algorithm in this paper. It is also possible to use outdoor data
as the baseline. However, there are two major limitations: air
exchange can happen between different indoor spaces so the
outdoor concentration may not represent the concentration in

Figure 2. Comparison between estimated decay rates and measured
air change rates in the environmental chamber (ACH = air changes
per hour, solid circles = at center, hollow circles = near return).

Figure 3. Cumulative frequency of estimated decay rates in the office
(after result filtration).

Figure 4. (Top) Different PM2.5 baseline estimates (the band shows
the standard deviation across six different sensors) and (bottom) the
corresponding estimated decay rate in the office.
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the replacing air; the between-instrument variation is often
large for low-cost sensors so the indoor/outdoor difference can
partially result from instrument variation.
As we aim to develop an accessible data-driven method that

utilizes data from low-cost sensors, it is important whether
sensor sample variation impacts the results. Figure 5 shows the

PM2.5 concentration data from six collocated Alphasense N2
OPC monitors for eight consecutive days and the correspond-
ing estimated PM2.5 loss rate. The diurnal variations of PM2.5
concentration captured by the six sensors match well, although
Sensor 5 constantly reported a slightly higher concentration.
Despite the discrepancy in concentration, the estimated decay
rate coincides well across all sensors (p = 0.98, one-way
ANOVA test) after result filtration based on duration and r-
squared thresholds. The CO2 concentration data measured by
five collocated Senseair K30 sensors during the same period
are shown in Figure S14, where the corresponding decay rate
estimates are also consistent across sensors (p = 0.97, one-way
ANOVA test). These results suggest that the proposed decay
recognition and decay rate estimation method has a high
tolerance for some raw data quality issues and works well with
the tested low-cost air quality monitors.
3.3. Classroom Data. We further tested the general-

izability of the model using data collected from a classroom
(the CO2 and PM2.5 concentration data on a single day are
shown in Figure S15). The cumulative frequency of the
predicted decay rate of CO2 and PM2.5 at different locations
after result filtration is shown in Figure 6 (PM2.5 data not
available at the podium because of power failure). The decay
rate of CO2 was significantly higher at the podium (dotted blue
line) with a median of 3.10/h compared to that at the front
and back locations (p < 0.001, independent t-test after
logarithmic transformation). This difference is presumably due
to the mechanical ventilation system with two outlets and an
inlet above the blackboard causing an air flow short circuit (a
photo is shown in Figure S16). Such a result highlights the
potential applications of the proposed model for capturing the
long-term air-mixing conditions within an indoor environment,
but it also shows the limitation of using the model to evaluate
the air change rate of a large space based on CO2 decay rate as
the model output is the local loss rate at the sensor location.

To characterize the whole-room ventilation condition, multiple
sensors at different locations are needed. The estimated PM2.5
decay rate was significantly higher than that of CO2 at the same
location (p < 0.01, independent t-test after logarithmic
transformation) with a median of 2.26−2.38/h. The pollutant
loss rates in the classroom were high because the university
enhanced classroom ventilation during the COVID-19
pandemic through a combination of outdoor air ventilation,
central ventilation, and HEPA air filtration.46

3.4. Residential Data. The CO2 concentration data from
the semidetached house have less noise than the office or
school (daily example shown in Figure S17). The major
elevations of indoor concentration were caused by building
occupants entering the room, and the following decays usually
lasted 2−3 h. After result filtration, approximately two decays
remain on average per day, with a median loss rate of 0.45/h.
The estimated daily average air change rate fluctuated between
0.25 and 0.75/h throughout winter and transition seasons but
increased considerably in summer, reaching 2−3/h (Figure
S18). This seasonal difference was likely caused by window
opening in the summer.
A previous study has estimated the air change rate of the

house using a different data-driven method.33 The method uses
signal processing techniques and estimates the air change rate
according to the covariation of the indoor and outdoor CO2
concentrations. A major advantage of the signal processing
method is the high temporal resolution of air change rate
estimation, often the same as the CO2 sampling frequency.
However, it requires simultaneous monitoring of the outdoor
data and thus cannot be applied to existing datasets containing
only indoor measurements. There are also substantial
challenges around the selection of filter parameters used in
the signal processing approach. The cumulative frequency of
the estimated air change rate using the two methods is
compared in Figure 7. As is shown, the median air change rate
is similar between the two methods but the frequency
distribution is considerably different (p < 0.001, Wilcoxon
rank sum test). The automatic decay recognition method
proposed in this study produced estimated air change rates
that are approximately normally distributed, with the majority
between 0.2 and 0.7/h. In contrast, the estimates from the
signal processing method are more evenly distributed in the
range of 0−2/h. The signal processing approach shows a wider
spread because the constantly fluctuating indoor and outdoor
CO2 concentrations can result in varying air change rates
within short periods. In contrast, the automatic decay
recognition method produces only a few estimates per day,
presumably at similar times of day depending on the routine of
the building occupants, which is more likely to capture air

Figure 5. (Top) PM2.5 concentration data from six collocated low-
cost CO2 sensors and (bottom) the corresponding estimated decay
rates in the office.

Figure 6. Cumulative frequency of estimated decay rates at different
locations in the classroom (after result filtration).
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change rates in a narrower range. It is also notable that the
current decay recognition method estimated a higher air
change rate during summer months when windows were more
likely to be kept open, while the signal processing method
shows an opposite trend.

4. DISCUSSION
The proposed model based on unsupervised clustering is able
to extract decay periods from CO2 and PM2.5 concentration
data and estimate their decay rates whenever a decay is found.
In most environments, the decay rate of CO2 is a proxy for air
change rate and can be used to evaluate building ventilation. In
comparison, the decay rate of PM2.5 includes ventilation,
deposition, and filtration loss mechanisms and indicates the
effectiveness of particle removal strategies. In the context of the
COVID-19 pandemic, the results also facilitate understanding
the indoor airborne transmission of infectious diseases.
The model showed reliable performance on multiple

datasets collected from different types of buildings. Also,
reproducible and easy-to-follow protocols were developed to
select optimal model hyperparameters and filter undesired
results. Visual inspection and comparison to deliberate
emission tests confirmed that the recognized decays were
consistent with those that human experts would have chosen
and the estimated decay rates were reasonable. Further, the
model worked well on both CO2 and PM2.5 time series. When
applied to CO2 data, it makes no assumption about the
metabolic CO2 emission rate and thus is not subject to the
uncertainties caused by variations of CO2 emission across
gender, age, physiology, and activity level.47 Also, this method
takes data input from only one sensor and relies on the
(relative) precision rather than (absolute) accuracy of the
sensor, making it highly compatible with the use of low-cost air
quality monitors. Further, since emission episodes are
recognized along with decays, future studies may use this
model to characterize the in situ emission rate of various
indoor air pollution sources. Compared to simple rules for
determining emission and decay events based on consecutive
concentration changes (which also require sophisticated data
filtering and preprocessing), the current method and its
hyperparameter selection have better generalizability. As
opposed to the neural network and deep learning methods
that are increasingly used for similar peak/elevation detection
in spectrometry data,48,49 our unsupervised clustering-based
model is less computationally expensive and easier to
understand.
After decay periods are recognized, decay rate estimation is

based on the mass balance equation. A few limitations exist in

this process. For CO2, as the indoor concentration is often of
the same order of magnitude as that outdoors, the baseline
concentration in the makeup air has a large impact on its
dilution potential and consequently the estimated loss rate.
The baseline can be estimated using various simple or
advanced algorithms, but uncertainty in this process is difficult
to quantify especially when cross-ventilation between adjacent
indoor environments is present. The same limitation also
applies to particles when no strong indoor particle source is
present. Although the lack of knowledge of the baseline
concentration is a limitation for applications on existing data,
new research projects can overcome this limitation by
conducting deliberate periodical release of high-concentration
tracer gas or particles (e.g., at the end of each day). Further,
loss rates are calculated assuming no active indoor source
during the decay period. A coincidental source may interrupt
the decay and increase uncertainty in the result. For example,
CO2 decays may be recognized when only a fraction of
building users leave the space. Such uncertainty can be partially
regulated by proper result filtration (i.e., excluding short decays
with low regression r-squared value) and addressed by adding
an occupancy sensor. However, this method should not be
applied to indoor environments containing a known
continuous PM or CO2 source. Besides, there is potential
sampling bias if occupancy follows a fixed routine. Then, the
results represent pollutant decay rates at similar times of the
day and may not capture the intraday variability well.
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