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ABSTRACT
Objective: Exosome microRNAs (miRNAs) have great research outlook in clinical therapy and 
biomarkers, they have been found to have a close to multiple diseases. A growing number of 
studies have attempted to alleviate or treat diseases through exosomes. It indicates that miRNAs 
in exosomes have great significance in preventing and controlling diseases in clinical research. We 
summarise these studies below to better understand their implications.
Methods: We screened and analyzed more than 100 articles from PubMed, Web of Science, and 
other databases from 1987 to 2022. Data of the clinical trials are collected from clinicaltrials.gov.
Results: In this review, we introduce the source, type, and characteristics of several exosomes, 
summarising current research on their role in cardiovascular, nervous system disease, tumour, and 
other diseases. Further, we discuss their mechanism of action and future directions for development 
of treatments in several diseases, and highlight the significant research value and potential use 
of exosomes in clinical diagnosis and treatment.
Conclusions: An increasing number of researchers have begun to explore the link between 
exosomal miRNAs and diseases. More exosome therapeutics will be used in future clinical trials, 
which may bring new hope for the diagnosis and treatment of several diseases.

KEY MESSAGES
•	 Exosomes have unique advantages in molecular transport and cell signal transduction.
•	 miRNAs play an essential role in the formation of multiple diseases.
•	 Research on the clinical application and potential value of exosomes is growing.

1.  Introduction

In 1983, a special vesicle component was discovered in 
sheep reticulocytes – the first one that scientists had 
ever observed floating outside the cell – and was 
named an ‘exosome’ by Johnstone in 1987. However, 
since the structure of this vesicle was uncomplicated it 
did not attract much attention at the time. With the 
development of life science research, researchers have 
found that many cells can secrete extracellular vesicles 
(EVs). Exosomes are a type of EV. Today, the term ‘exo-
some’ refers specifically to vesicles between 30 and 
100 nm in diameter [1,2]. The volume is insignificant 
for this type of vesicle since it has such strong perme-
ability, which can quickly distribute it through the 
whole-body tissue by fusing with cell membranes to 
participate in the body’s metabolism and function and 
play a role in intercellular communication.

Exosomes have a double-membrane structure and 
are stimulated by normal or abnormal signals and 
engulfed by invagination of the plasma membrane to 
form primitive intracellular vesicles [3]. Many intracellu-
lar vesicles fuse and gradually mature into intraluminal 
vesicles (ILVs) [2,4]. ILVs contain many types of vesicular 
structures, and their mature bodies are called multive-
sicular bodies (MVBs). MVBs can be degraded and 
self-cleared through lysosomes and undergo apoptosis 
to ensure homeostasis. Additionally, undegraded MVBs 
secrete ILVs through exocytosis, distributing their con-
tents to the whole body; once the ILVs exit the cell they 
become exosomes [5,6]. The content of the exosome is 
not necessarily the same as in the original secretion and 
can have different functions. MicroRNAs (miRNAs) can 
be sorted into exosomes by selectively binding to the 
protein heterogeneous nuclear ribonucleoprotein A2B1 
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and KRAS, indicating that secretion and release are 
complex processes, and the content will be processed 
and selected [7]. Exosomes enter the tissue after cell 
recognition and exert their effects through receptor 
interaction, fusion-absorption, endocytosis–exocytosis 
and other mechanisms [8] (Figure 1).

Exosomes contain various active molecules, includ-
ing proteins, phospholipids, nucleic acids and 
non-coding RNA (ncRNA). Exosomes can be secreted 
and released, delivered as vectors, and transferred as 
signals between cells and tissues throughout the body 
[9]. Additionally, blood, saliva and tissue fluids contain 
many exosomes that transport active molecules to 
target cells. Body fluid transport can effectively ensure 
rapid transmission, giving rise to the premise that 
exosomes can be used as a biomarker for early dis-
ease diagnosis [10,11]. miRNAs are the most studied 
mature ncRNAs. Their function is not to directly 
encode proteins but, rather, to combine with the 
3′-UTR non-coding region of specific messenger RNA 
(mRNA) to promote or reduce protein expression via 
mRNA [12–14]. Since miRNAs are small and have a 

relatively stable structure, they can be more effec-
tively transmitted throughout the body than long 
non-coding RNA (lncRNA) and mRNA. Additionally, 
exosomes function mainly by influencing gene expres-
sion and signalling pathways, which are closely related 
to miRNA regulation of cellular communication [15,16].

These characteristics make it possible for exosomes 
to serve as both a biomarker and a new avenue for 
disease treatment. Studies have confirmed that exo-
somes can interfere with the mechanisms of disease 
formation through signal transduction, cellular immu-
nity, angiogenesis and other pathways. Thus, playing a 
crucial role in the early formation and development of 
cardiovascular and nervous system diseases and 
tumours [17,18]. A growing number of studies have 
attempted to alleviate or treat diseases through exo-
somes, using methods like implanting exosomes 
derived from stem cells or synthetic exosomes [19,20]. 
Their results indicate that miRNAs in exosomes have 
great significance in preventing and controlling dis-
eases in clinical research. We summarize these studies 
below to better understand their implications.

Figure 1.  The growth and formation of exosomes. Exosomes are small vesicle structures with an inner diameter of 30–100 nm. 
The cell membrane invaginates to form early endosomes, which further mature and eventually form multivesicular bodies (MVBs). 
Some of the MVBs are degraded by lysosomes while the other MVBs fuse with the cell membrane and release the exosomes. 
Exosomes contain DNA, RNA, phospholipids and proteins and enter the body to play a role through receptor interaction, 
fusion-absorption and endocytosis–exocytosis.
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2.  Origin and isolation of exosomes

EVs are nanoscale to micrometre-sized vesicles secreted 
by cells and play important roles in cell communica-
tion and transmission. According to the size, morphol-
ogy and function of secretions, they are divided into 
three main categories: exosomes, microvesicles (MVs) 
and apoptotic bodies. Exosomes are vesicles formed 
by the fusion of MVBs with the plasma membrane and 
generally consist of two types. The first is natural exo-
somes, which have mainly been studied by scientists. 
The other is engineered exosomes, which are exo-
somes modified by molecular engineering techniques 
[21]. Natural exosomes are secreted by various cells, 
primarily fibroblasts, endothelial cells, tumours and 
mesenchymal stem cells (MSCs) [22,23]. MSCs, adult 
stem cells that originate from the mesoderm and share 
all the commonalities of stem cells, are currently con-
sidered the most effective therapeutic cells. Their 
advantages include strong replication capacity, fast 
self-renewal and multi-directional differentiation poten-
tial. MSCs have been used in the clinical treatment 
stage of several studies [24–27]. Additionally, macro-
phages can also produce exosomes to improve cell 
proliferation and inflammation by regulating endothe-
lial growth factors and their related signalling path-
ways [28].

Common methods for isolating exosomes include 
ultracentrifugation, ultrafiltration, immuno-affinity 
purification and microfluidic-based isolation tech-
niques [29]. The most classical extraction method, 
ultracentrifugation, is low-cost and suitable for the 
study and analysis of large sample numbers. However, 
the operation procedure is complicated and the 
extraction concentration is low. Thus, it is mainly 
used for analysing a small number of samples. 
Ultrafiltration is used for screening molecules based 
on their molecular weight, size, density and function. 
It has the advantages of high speed and purification 
concentration. However, some impure proteins remain 
in samples. Regarding new separation methods, 
immuno-affinity purification and microfluidics-based 
isolation both have high efficiency and good purifica-
tion. However, because new technologies require spe-
cific reagents and instruments, they are not currently 
widely available and are primarily used for research 
on essential molecules and proteins [30]. In addition 
to the above methods, size exclusion chromatogra-
phy (SEC) and precipitation are also used for exo-
some isolation [31]. Still, regardless of how they are 
isolated, exosomes must either be studied as soon as 
possible or stored in a refrigerator at −80 °C to ensure 
that the components are not degraded.

3.  Relationship between exosomes and 
various diseases

3.1.  Exosomes and cardiovascular diseases

The most common cardiovascular disease worldwide is 
coronary atherosclerotic heart disease (CHD), which is 
mainly caused by myocardial hypoxia and ischaemia 
due to the accumulation of lipid plaques and throm-
bosis [32]. The characteristic plaque formation and 
aggregation of CHD can be controlled by inhibiting 
the early inflammatory response; therefore, reducing 
the inflammatory reaction and the resulting damage is 
the key to protecting the vascular intima [33,34]. 
Studies have found that MSC-derived exosome miR-133 
regulates inflammation levels by controlling the snail 1 
gene [35]. Exosomal miR-34a, miR-124 and miR-135b 
can suppress inflammation through polarization of M2 
macrophages [36]. Serum-derived exosomal miR-126 
can inhibit atherosclerosis and reduce the risk of sta-
ble coronary heart disease [37]. Adipose-derived stem 
cell (ADSCs)-derived exosome miR-146a reduces cellu-
lar inflammation and fibrosis [38]. One study of myo-
cardial infarction found that the MSC-derived exosomes 
miR-19a and miR-144 protected the myocardium by 
reducing the apoptosis of cardiomyocytes mediated 
through the PTEN/AKT pathway [39,40]. MiR-125 also 
plays a cardioprotective role by regulating autophagic 
flux [41,42]. Clathrin is a highly conserved protein, 
which mainly plays a major role in transport in the 
human body. Exosome miR-214 from ADRCs has been 
proven to inhibit cell death through clathrin endocyto-
sis and reduce the risk of heart rupture in acute myo-
cardial infarction [43]. Myocardial ischaemia–reperfusion 
injury (MIRI) increases the difficulty of follow-up treat-
ment. Thus, the smaller the degree of reperfusion 
injury, the better the prognosis and recovery of the 
myocardium. Exosomes from MSCs – such as miR-132, 
miR-21 and miR-210 – can improve myocardial health 
by promoting vascular regeneration [44–46]. 
Additionally, miR-25-3p and miR-486-5p can play a car-
dioprotective role by regulating myocardial apoptosis 
and necrosis, thereby reducing the area of myocardial 
infarction [47,48]. The exosomes miR-211/222 of ADSCs 
and miR-133a-3p of macrophage migration inhibitory 
factor-engineered umbilical cord MSCs (MIF-ucMSCs) 
regulate MIRI by reducing fibrosis and inhibiting apop-
tosis [49,50]. The abovementioned studies indicate a 
close relationship between exosomal miRNAs and the 
cardiovascular system (Table 1).

Additionally, exosomal miRNAs play a critical role 
in protecting the heart under hypoxic conditions. 
Exosome expression is increased, promoting cell pro-
liferation, migration and vascular regeneration. Zhu 
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et  al. found that exosomal miR-125b can inhibit 
proapoptotic factors p53 and BAK1 and reduce myo-
cardial damage after myocardial infarction in a hypoxic 
environment  [41]. In addition to increased expression, 
the transport, binding and uptake efficiency of exo-
somes in a hypoxic environment are also improved. 
Preadaptation in ischaemia–reperfusion injury refers 
to the fact that several short periods of ischaemia 
and hypoxia can enhance organ resistance and reduce 
subsequent reperfusion injury before major and 
severe injury. This mechanism may be related to the 
enhancement of exosome function under hypoxia 
[54]. Other studies have shown that miR-199a is 
involved in myocardial hypertrophy and fibrosis in 
patients with hypertrophic cardiomyopathy. In heart 
failure, miR-1, miR-499 and other circulating miRNAs 
are essential biomarkers in patients and require fur-
ther study [55,56].

Among cardiovascular diseases, patients with angina 
pectoris or myocardial infarction are mainly treated 
with oral drugs such as antiplatelet agents, nitrates 
and low-density lipoprotein cholesterol (LDL-C) and 
patients with severe vascular stenosis require either 
percutaneous coronary intervention (PCI) or coronary 
artery bypass graft (CABG) to ensure smooth coronary 
flow. Exosomes can protect myocardial tissue by inhib-
iting the inflammatory response and apoptosis, pro-
moting angiogenesis, reducing the extent of myocardial 
infarction, and rescuing the ischaemic myocardium by 
administering exosomes of different origins [57]. 
Exosomes have a vital role in cardiovascular therapy. 

Intervention with exosomes can reduce injury in the 
early stages, providing a new target for the treatment 
of patients with myocardial infarction.

3.2.  Exosomes and nervous system diseases

Nervous system diseases are diverse and complex, 
mainly including neurodegenerative, cerebrovascular 
and neuromuscular junction diseases. Studies have 
shown that exosomes are closely related to the ner-
vous system function and are mainly involved in cellu-
lar transduction, transport and protein expression. 
Simultaneously, they can freely cross the blood–brain 
barrier and play an irreplaceable role in treating ner-
vous system diseases (Table 2) [69–71].

Neurodegenerative diseases are one of the most 
important diseases that affect the health and quality 
of life of the elderly. They include Alzheimer’s disease 
(AD) and Parkinson’s disease (PD). The mechanism of 
these diseases is currently believed to be mainly due 
to a damaged protein expression process, resulting in 
changes in the structure and properties of neurons or 
myelin sheaths, which subsequently cannot transmit 
signals normally [60]. Although there is no cure for 
this type of disease, research on exosomal miRNAs has 
shown some exciting new possibilities. Sarkar et  al. 
found that the expression of miR-34a activated synap-
tic linkage, revealing the polygenic AD formation 
mechanism [58]. Gui et  al. found that cerebrospinal 
fluid (CSF) secretions contain abundant miRNAs, which 
differ significantly between normal people and patients 

Table 1.  Role of different kinds of exosome miRNAs in cardiovascular diseases.
Disease model miRNA Source Research results Reference

CHD miR-126 Serum-Exo Inhibit atherosclerosis and reduce the risk of cardiovascular events [37]
CHD miR-146a ADSCs-Exo Reduce myocardial cell inflammation and fibrosis [38]
CHD miR-133 MSCs-Exo Reduce myocardial cell inflammation and myocardial infarction area [35]
CHD miR-181a MSCs-Exo Inhibit the body’s immune and inflammatory response [51]
CHD miR-34a/miR-124/miR-135b MSCs-Exo Enhance anti-inflammatory effect [36]
MI miR-214 ADRCs-Exo Reduce myocardial cell apoptosis and promote myocardial cell survival [43]
MI miR-125b MSCs-Exo Reduce the level of autophagy and apoptosis in mouse myocardial 

infarction model
[41]

MI miR-338 MSCs-Exo miR-338 overexpression reduces myocardial cell apoptosis by regulating 
signalling pathways

[52]

MI miR-22 MSCs-Exo Reduced cell apoptosis and improved myocardial fibrosis [53]
MI miR-144 MSCs-Exo Under hypoxia condition, myocardial cell apoptosis inhibited [40]
MI miR-19a MSCs-Exo By activating GATA-4 to reduce apoptosis and protect cardiomyocytes [39]
MIRI miR-25-3p MSCs-Exo Regulate proapoptotic genes and play a protective role in 

ischaemia–reperfusion
[47]

MIRI miR-486-5p MSCs-Exo Inhibit cell apoptosis and reduce reperfusion injury [48]
MIRI miR-132 MSCs-Exo Promote angiogenesis in the myocardial infarction area [44]
MIRI miR-21 MSCs-Exo Promote angiogenesis and protect myocardial cells [45]
MIRI miR-221/222 ADSCs-Exo Reduce MIRI and myocardial fibrosis [49]
MIRI miR-210 MSCs-Exo Promote vascular regeneration and improve collateral circulation [46]
MIRI miR-133a-3p MIF-ucMSCs-Exo miR-133a-3p promotes angiogenesis, inhibits apoptosis, and reduces fibrosis [50]
MIRI miR-181a MSCs-Exo Suppress inflammatory and immune responses to treat MIRI [51]

CHD: coronary heart disease; MI: myocardial infarction; MIRI: myocardial ischaemia–reperfusion injury; MSC-Exo: mesenchymal stem cell exosome; ADSC-Exo: 
adipose-derived stem cell exosome; MIF-ucMSC-Exo: macrophage migration inhibitory factor-engineered umbilical cord mesenchymal stem cell exosomes; 
ADRC-Exo: adipose-derived regenerative cells.
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with neurodegenerative diseases, indicating that CSF 
miRNAs can be used as early biomarkers [60].

Stroke is a highly disabling and lethal cerebrovascu-
lar disease that seriously threatens human health. 
Stroke is a sudden and rapidly progressing disease 
associated with cerebral ischaemia or intracerebral hae-
morrhage. Similar to critical cardiovascular illness, once 
it occurs, it needs to be treated within a few hours. 
Otherwise, it is life-threatening. Currently, thrombolysis 
and interventional thrombus retrieval are the gold 
standard early treatments for patients with cerebral 
infarction. The key to successful treatment is to reduce 
infarct size and ensure cerebral perfusion. Studies have 
found that, by establishing a mouse stroke model of 
exercise, miR-126 can effectively mitigate cerebral 
infarct size by regulating PI3K. Simultaneously, miR-126 
promotes vascular regeneration, which has a significant 
neuroprotective effect [62]. Supplementing exogenous 
exosome miR-17-92 has been found to restore the 
function of nerve cells and reduce the harm caused by 
ischaemia and hypoxia [63]. By collecting blood sam-
ples from patients with acute cerebral infarction and 
extracting exosomes, Jing et  al. found that miR-134 is 
closely related to inflammatory factors, infarct size and 
the risk of cerebrovascular events, which may be an 
essential indicator of ischaemic stroke [64].

The mechanisms of some nervous system diseases 
are complex and regulated by many factors, such as 
genes and the environment. Epilepsy is caused by the 
abnormal excitation of neurons in the brain, often 
occurring without any apparent reason, and its mech-
anism is complex. A recent study found that miR-346 
and miR-331-3p were significantly downregulated after 
miRNA sequencing verification in a rat epilepsy model. 
Signal pathways and targets were identified through 

enrichment analysis, which provided a new research 
direction for determining the underlying mechanism 
of epilepsy [72].

Amyotrophic lateral sclerosis (ALS) is a severe dis-
ease that begins with mild weakness, progresses grad-
ually to severe general weakness, and ends with 
general muscle atrophy and difficulty in breathing. 
Currently, only supportive symptomatic treatment is 
available to such patients. Daniel et  al. found that the 
expression of miR-494-3p in exosomes from astrocytes 
can affect the function of motor neurons and play a 
role in ALS [65]. In addition to the diseases discussed 
above, Huntington’s disease (HD), multiple sclerosis 
(MS) and other neurological diseases have also been 
confirmed to involve exosome miRNAs, indicating their 
potential as diagnostic and prognostic indicators 
[66,67].

3.3.  Exosomes and tumours

Tumours are malignant diseases with abnormal gene 
expression caused by multiple factors. Owing to 
changes in the surrounding environment, exposure 
conditions, metabolism and heredity, some gene 
mutations cause abnormal expression of tissue cells. 
The biomolecular basis of these diseases is mainly an 
imbalance between oncogenes and tumour suppres-
sors, apoptosis, and DNA repair genes [73]. Unlike 
normal cells, tumour cells are characterized by rapid 
growth and reproduction rates, strong metastatic 
invasiveness, and the ability to evade normal surveil-
lance by the organism which, once achieved, is diffi-
cult to contain and causes great harm to human 
health and socioeconomics. The focus of current 
research is mainly to target the characteristics of 

Table 2.  Role of different kinds of exosome miRNAs in nervous system diseases.
Disease model miRNA Source Research results Reference

AD miR-34a Rat cortical neuron-Exo miR-34a activated synaptic linkage and proved polygenic AD 
formation mechanism

[58]

AD miR-193b CSF and serum-Exo Control diseases affected by amyloid precursor protein [59]
PD miR-136-3p, miR-433, 

miR-153, miR-409-3p
CSF-Exo miRNAs can play a significant role as biomarkers [60]

PD miR-34a-5p Plasma-Exo miR-34a-5p is helpful in distinguishing healthy people from PD 
patients and in assessing depression levels

[61]

Stroke miR-126 EPCs-Exo Regulate PI3K pathway can effectively reduce cerebral infarction 
size and promote vascular regeneration

[62]

Stroke miR-17-92 MSCs-Exo Restore the function of nerve cells and reduce damage [63]
Stroke miR-134 Serum-Exo Regulate inflammatory factors, infarct size and influence 

prognosis
[64]

Epilepsy miR-346
miR-331-3p

Rat forebrain-Exo Inhibit neurotransmitter transmission [65]

ALS miR-494-3p Astrocyte-Exo Affect motor neuron function and induce neuron degeneration [66]
MS miR-326 CD4  +  T cells-Exo Regulate the immune response [67]
HD miR-128

miR-130b-3p
Serum and plasma-Exo miRNAs are closely related to ageing-related diseases [68]

AD: Alzheimer’s disease; PD: Parkinson’s disease; ALS: amyotrophic lateral sclerosis; MS: multiple sclerosis; HD: Huntington’s disease; MSCs: mesenchymal 
stem cells; Exo: exosome; CSF: cerebrospinal fluid; EPCs: endothelial progenitor cells.
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tumour cells, aiming to intervene in advance and 
eliminate them in the early stages. Exosomes are 
essential components of cell communication because 
of their high transmissibility and free mobility. They 
carry most of the essential molecules in life, such as 
proteins, lipids and nucleic acids, all of which partici-
pate in tumour formation and progression [74,75]. We 
have identified possible future treatment strategies to 
retard and treat tumours by summarizing current exo-
some and tumour research and analysing the links 
between the two (Table 3).

3.3.1.  Promoting proliferation and migration
The rapid rate of cell proliferation and migration is the 
most prominent characteristic of tumour cells and 
identifying the regulated genes is key. In a study on 
non-small cell lung cancer, the engineered exosome 
miR-499a was constructed, which could be specifically 
recognized and absorbed by lung cancer basal epithe-
lial cells. Exosomal miR-499a plays an antitumour role 
by inhibiting the proliferation, growth and spread of 
lung cancer cells by regulating the apoptotic gene 
Bcl-2 [76]. Additionally, miR-17-92 was found to be sig-
nificantly upregulated in lung cancer, playing a role in 
promoting tumour cell proliferation and gene amplifi-
cation [84]. Ascites is inevitable in patients with mid- 
to late-stage gastric cancer, when cancer cells undergo 
ascites and cause malignant ascites, resulting in accel-
erated disease progression. Hu et  al. studied exosomes 
derived from malignant ascites in patients with gastric 
cancer and found that it could increase the invasion 
and metastasis of gastric cancer cells. Through 
high-throughput sequencing of ascites samples from 
patients with gastric cancer and normal patients, 
miR-196, miR-92 and other genes were differentially 
expressed, which may serve as novel therapeutic tar-
gets for peritoneal metastasis [77].

3.3.2.  Promoting tumour angiogenesis
Tumour angiogenesis is the formation of new blood 
vessels from existing capillaries. It plays an essential 
role in the nutrient supply of tumour cells and distant 
metastasis. Angiogenesis is mainly through the process 
of endothelial cell proliferation, differentiation and 
fusion into new vascular lumen and basement mem-
brane. In studies on metastatic breast cancer (BRCa), 
exosomal miR-105 is overexpressed, which enhances 
vascular regeneration and permeability and induces 
the proliferation of tumour cells. MiR-105 acts by tar-
geting the regulatory ZO-1 protein, and the inhibition 
of miR-105 and ZO-1 can reduce tumour angiogenesis. 
These results suggest that miR-105 may serve as an 
early biomarker for BRCa [78]. There is a close relation-
ship between exosomes and nervous system tumours, 
and studies have found that miRNAs play an essential 
role in various brain tumours by participating in cellu-
lar processes such as angiogenesis and apoptosis [85]. 
In glioblastoma (GBM)-derived exosomes, miR-9 can 
promote tumour cell growth by hindering the expres-
sion of angiostatic proteins and plays a crucial role in 
inducing apoptosis and promoting tumour angiogene-
sis [79].

3.3.3.  Tumour immune escape
Some tumour cells evade the regulation of the immune 
system by changing the properties of their self-antigens, 
causing body cells to proliferate extensively. In liver 
cancer, exosome miR-23a-3p secreted by hepatocellu-
lar carcinoma (HCC) cells suppresses the signal of the 
PTEN/AKT pathway and reduces T cell function. 
Transfection of tunicamycin-treated HCC cells into 
macrophages results in increased apoptosis of T cells 
and affects normal immune function, which may be a 
novel mechanism for tumour cells to escape the 
immune system [80].

Table 3.  Role of different kinds of exosome miRNAs in tumours.
Disease model miRNA Source Research results Reference

Lung cancer miR-499a Engineered-Exo Regulate Bcl-2 apoptosis gene and inhibit the proliferation and 
diffusion of lung cancer cells

[76]

Gastric cancer miR-196, miR-92, etc. Malignant ascites-Exo Increase the invasion and metastasis of gastric cancer cells [77]
BRCa miR-105 Metastatic breast cancer-Exo Enhance vascular regeneration and permeability, and induce the 

proliferation of cancer cells
[78]

GBM miR-9 GBM-Exo Inhibit the expression of angiogenesis inhibitor protein and 
induce apoptosis

[79]

HCC miR-23a-3p ER-stressed HCC cells-Exo miR-23a-3p inhibits the conduction of PTEN/AKT signalling 
pathway and decreases T cell function

[80]

OVCa miR-21 Adipocytes and fibroblasts-Exo Targeting miR-21 on APAF1 protein promoted the reduction of 
apoptosis of cancer cells, and the cancer cells obtained 
stronger drug resistance

[81]

MM miR-15a/16 MSCs-Exo Promote cell proliferation in multiple myeloma [82]
PCa miR-375, miR-200c-3p, 

miR-21-5p, etc.
Plasma-Exo Some miRNAs have strong diagnostic and predictive potential [83]

BRCa: breast cancer; GBM: glioblastoma; ER: endoplasmic reticulum; HCC: hepatocellular carcinoma; OVCa: ovarian cancer; MM: multiple myeloma; PCa: 
prostate cancer; MSCs: mesenchymal stem cells; Exo: exosomes.
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The acquisition of drug resistance by tumour cells is 
also responsible for accelerated tumour progression. 
Exosome miR-21, derived from adipocytes and fibro-
blasts in ovarian cancer (OVCa), targets APAF1, a factor 
that regulates apoptosis, resulting in decreased APAF1 
protein expression and suppression of tumour cell 
apoptosis. When exogenous miR-21 is transfected into 
cells, drug resistance and invasiveness of tumour cells 
increase significantly, which could be a potential direc-
tion for treating chemotherapeutic drug resistance in 
OVCa [81]. The tumour microenvironment, which can 
alter tumour growth and invasion and is considered a 
new target for antitumour therapy, has been a topic of 
much research in recent years. Studies have found that 
GBM-derived exosomes are more prone to disrupting 
vascular endothelial stability under hypoxic environ-
ments, inducing tumour cell proliferation and migra-
tion [86]. The formation of other tumours has also 
been found to be directly related to the exosomes, 
such as multiple myeloma (MM) and prostate cancer 
(PCa) [82,83].

3.4.  Exosomes and other diseases

Cardiovascular diseases, nervous system diseases and 
tumours are currently the most studied diseases that 
involve exosomes. Additionally, it is associated with 
skeletal muscle, rheumatic and endocrine diseases. For 
instance, in a tendon injury model, MSC-Exo-miR-29a-3p 
promoted tendon recovery and reduced muscle atro-
phy and is now considered a new approach for the 
treatment of tendon injury [87]. In an osteoarthritis 
model, delivering exosome miR-140 into chondrocytes 
inhibited osteocyte destruction and protected tissues 
[88]. Rheumatology-generated joint synovial fluid con-
tains many exosomes, and the T cell-derived exosome 
miR-204-5p can inhibit inflammatory responses [89], 
which are free to pass through biological membranes 
and delay rheumatoid arthritis (RA) progression.

In blood, exosomes act as important signalling mol-
ecules and can transfect leukaemia cells with miR-365, 
which can lead to the development of stronger drug 
resistance and affect the efficacy of chemotherapy 
drugs [90]. The mechanisms of type 1 diabetes in 
endocrine diseases are complex, and their develop-
ment is related to immunity and genetics. Mouse 
model studies have found that ADSCs derived exo-
somes exert immunomodulatory effects by altering 
the function of T cells, since mice treated with exo-
somes had significantly better control of blood glu-
cose [91]. Stem cell-derived exosomes have also been 
used to treat oral diseases such as periodontitis. 
Implanting exosomes can contribute to periodontal 

tissue regeneration and reduce inflammatory responses 
[92]. These studies all show a close link between exo-
somes and a variety of diseases, which requires further 
in-depth analysis.

4.  New advances and limitations of exosomes

The rapid development of stem cell technology and 
genetic engineering in recent years has made exo-
some research more convenient, and the effects of 
exosomes derived from stem cells originating from dif-
ferent sources can be investigated in various disease 
models, helping probe this connection better. MiRNAs 
are involved in the expression, transport and modifica-
tion of biological genes, and play essential roles in liv-
ing organisms (Figure 2).

Exosome miRNAs have great research outlook in 
clinical therapy due to their ease of synthesis and 
modification. The advantage of exosome miRNAs is 
that they can function freely through the cell mem-
brane and blood–brain barrier with high delivery 
efficiency and accuracy. They can not only act 
directly on nearby cells but also transmit informa-
tion to distant cells through signals. Another advan-
tage of exosomes is that they can either transport 
substances themselves or act as carriers. Compared 
to traditional carriers, they have better stability, 
lower immunogenicity and easier availability [93]. 
MSC-derived exosomes used for drug delivery have 
been found to have good effects with few side 
effects, indicating that they could serve as a new 
direction in the treatment of patients with 
graft-versus-host-disease [94].

Exosomes are also of great value as biomarkers and 
are the subject of several clinical trials. For example, by 
collecting urine from patients with PCa and healthy peo-
ple, the expression of exosomal miRNAs can be analysed 
to evaluate the accuracy of disease diagnosis [95]. The 
other trial has examined the specific expression of neu-
rogenic exosomal miRNAs in the blood of suicidal indi-
viduals, exploring how miRNA/mRNA-regulatory 
pathways contribute to suicide pathogenesis [96]. In 
tumour studies, exosomal miRNAs have been found to 
be more suitable for the diagnosis of early gastrointesti-
nal cancers than plasma free miRNAs, and some exo-
somes have been used for the early identification of 
tumours [97,98]. These characteristics and advantages 
make us believe that exosomes can have better research 
prospects in the future.

Previous exosome studies have mainly focused on 
certain diseases. In this review, we summarized the 
relationship between exosomal miRNAs and various 
diseases, comprehensively presenting the current 
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progress and future direction of research. However, 
exosomes also have limitations. Owing to technical 
and economic reasons, the large-scale extraction of 
exosomes cannot be widely performed. The purity of 
isolated exosomes also needs improvement, which 
requires better-quality technologies and equipment. 
Additionally, although exosome miRNAs do have the 
characteristics necessary to be used as biomarkers for 
disease diagnosis, they still lack high accuracy for dis-
ease diagnosis. Thus, more research needs to be con-
ducted [99].

This article introduces the role of exosome miRNAs 
in living organisms, demonstrating its value and poten-
tial use in terms of exosome source and mechanism of 
action. Due to the limitations of current technology, 
studies on exosomal miRNAs cannot be fully applied 
to clinical programmes, and need more research. 
Fortunately, an increasing number of researchers have 
begun to explore the link between exosomal miRNAs 
and diseases, especially in cardiovascular diseases and 

tumours, and have already made considerable prog-
ress. More exosome therapeutics will be used in future 
clinical trials, which may bring new hope for the diag-
nosis and treatment of several diseases.
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