Skip to main content
. 2023 Jun 29;13:1159798. doi: 10.3389/fcimb.2023.1159798

Table 2.

Summary of the antibiotics employed and the resistance mechanisms evolved by the ESKAPE pathogens

Class of antibiotic Molecular target Function of the targeted molecule Organism Resistance mechanism Genes involved References
β-Lactams Penicillin-binding proteins (PBPs) Synthesis of peptidoglycan Enterococcus sp. Alteration of PBPs pbp5 (Beta-Lactam Antibiotics - an overview | ScienceDirect Topics; Miller et al., 2014; Maréchal et al., 2016)
Production of β-lactamases pbp5
Staphylococcus aureus Alteration of PBPs pbp2 (Hackbarth et al., 1995; Foster, 2017)
Production of β-lactamases blaZ
Klebsiella pneumoniae Alteration of PBPs pbp2 and pbp4 (Lin et al., 2006; Sutaria et al., 2018)
Production of extended-spectrum β-lactamases (ESBLs) shv-27 and tem-116
Acinetobacter baumannii Alteration of PBPs ponA, mrcB, pbpA, and fts1 (Cayô et al., 2011; Alkasaby and El Sayed Zaki, 2017; Abdi et al., 2020; Uppalapati et al., 2020)
Alterations in outer membrane proteins (OMPs) ompA, carO, and oprD
Production of extended-spectrum β-lactamases tem, shv, and ctx-m
High activity of efflux pumps ade gene cluster
Pseudomonas aeruginosa Alteration of PBPs pbp2 and pbp3 (Pechère and Köhler, 1999; Giske et al., 2008; Poole, 2011)
Alterations in permeability oprD
Production of β-lactamases ampC and poxB
High activity of efflux pumps mexAB-oprM, mexCD-oprJ, and mexXY-oprM
Enterobacter sp. Alteration of PBPs pbp3 (Chen et al., 2017; Wu et al., 2018)
Production of β-lactamases bla-shv12 and bla-mir
Aminoglycosides Ribosome Bacterial protein synthesis Enterococcus sp. Aminoglycoside-modifying enzyme aph(2″)-Ib, aph(2″)-Ic, and aph(2″)-Id (Chow, 2000)
S. aureus Aminoglycoside-modifying enzymes (AMEs) aac(6′)-Ie +aph(2″, ant(4’)Ia,
aph(3′)IIIa, and ant(6)-Ia
(Rahimi, 2016)
K. pneumoniae Aminoglycoside-modifying enzymes (AMEs) aac(3)ii, aac (6′)-ib, ant (3″)-i, and ant (2″)-i (Liang et al., 2015)
A. baumannii Aminoglycoside-modifying enzymes (AMEs) aac(3)-i, aph(3′)-vi, and ant(3″)-i (Tahbaz et al., 2019)
P. aeruginosa Aminoglycoside-modifying enzymes (AMEs) aac(6′)-Ib, aphA1, and aadB (Teixeira et al., 2016)
Enterobacter sp. Ribosomal modification rmtE (Garneau-Tsodikova and Labby, 2016)
Chloramphenicol* 50S ribosomal subunit Peptidyl transferase activity Enterococcus sp. Inactivation of chloramphenicol catA7, catA8, and catA9 (Hasani et al., 2012)
S. aureus Inactivation of chloramphenicol cat genes (Genetics of Antimicrobial Resistance in Staphylococcus Aureus)
K. pneumoniae Inactivation of chloramphenicol catB3, catA1, and catA2 (Mbelle et al., 2020)
A. baumannii Inactivation of chloramphenicol by the action of chloramphenicol acyltransferase ABUW_0982 of CHL gene cluster (Karalewitz and Millera, 2018)
P. aeruginosa Inactivation of chloramphenicol catB7 (White et al., 1999)
Enterobacter sp. Efflux pumps AcrAB–TolC and eefABC (Davin-Regli and Pagès, 2015)
Glycopeptides Peptidoglycan precursors Synthesis of peptidoglycan, by preventing transglycosylation and transpeptidation Enterococcus sp. Change in the amino acid sequence of the precursor of peptidoglycan vanH, vanA, and vanZ (Miller et al., 2014)
S. aureus Modification of the target molecule pbp2 (Foster, 2017; Yushchuk et al., 2020)
Modification of the target vanA
K. pneumoniae -
A. baumannii -
P. aeruginosa Adhesin factor*// lecA (Pang et al., 2019)
Enterobacter sp. -
Tetracyclines* 30S ribosomal subunit Bacterial protein synthesis Enterococcus sp. Efflux pumps tetM and tetL
S. aureus Efflux pumps tetA(K) and tetA(L) (Foster, 2017)
K. pneumoniae Efflux pumps tetA and tetB (Bokaeian et al., 2014)
A. baumannii Efflux pumps tetA and tetB (Maleki et al., 2014)
P. aeruginosa Efflux pumps tetR, lysR, marR, and araC (Issa et al., 2018)
Enterobacter sp. Efflux pumps AcrAB–TolC and eefABC (Davin-Regli and Pagès, 2015)
Oxazolidinones* Ribosome Bacterial protein synthesis Enterococcus sp. Alterations in oxazolidinone binding sites G2576T mutation in the V domain of the 23S rRNA gene (Chen et al., 2019)
S. aureus Alterations in oxazolidinone binding sites U2500A and G2447U mutations in the 23S rRNA encoding gene (Long and Vester, 2012)
K. pneumoniae PhoPQ‐governed lipid A remodeling mgrB mutation (Kidd et al., 2017)
A. baumannii Modification of target Mutations in the 23S rRNA encoding gene (Vrancianu et al., 2020a)
P. aeruginosa -
Enterobacter sp. Modification of target G2576T mutations (Deshpande et al., 2018)
Mobile Genetic Elements optrA
Macrolides* Ribosome Bacterial protein synthesis Enterococcus sp.
Staphylococcu
S. aureus
Modification of target erm(B) (Schmitz et al., 2000; Wolter et al., 2005; Taitt et al., 2014)
Efflux pumps mef(A), msrA, and msrB
Modification of binding site Mutations in 23S rRNA and riboproteins L4 and L22
K. pneumoniae
A. baumannii Efflux pump adeRS (Vrancianu et al., 2020a)
P. aeruginosa Efflux pump Mutation in MexCD-OprJ (Pang et al., 2019)
Enterobacter sp.
Ansamycins RNA polymerase Transcription Enterococcus sp. Modification of target Substitution in rpoB gene (Enne et al., 2004)
S. aureus Modification of target Mutation in rpoB gene (Wang C. et al., 2019)
K. pneumoniae Modification of target *// arr2 (Tribuddharat and Fennewald, 1999; Arlet et al., 2001)
A. baumannii Modification of target Mutation in rpoB gene (Giannouli et al., 2012)
P. aeruginosa Modification of target Mutation in rpoB gene (Yee et al., 1996)
Enterobacter sp. Alteration of binding sites Mutation in Rifampin resistance-determining region (RRDR) (Weinstein and Zaman, 2019)
Modification of target Substitution in rpoB gene
Streptogramins 23S rRNA of 50S ribosomal subunit Bacterial protein synthesis Enterococcus sp. Alteration of binding sites erm (Hershberger et al., 2004)
S. aureus Alteration of binding sites ermA and ermC (Lina et al., 1999)
K. pneumoniae rRNA modification erm (Ogawara, 2019)
A. baumannii -
P. aeruginosa -
Enterobacter sp. Efflux pump Lsa (Poole, 2007)
Lipopeptides Multiple targets Multiple functions Enterococcus sp. Modification of cell envelope stress response LiaR (Arias et al., 2011; Tran et al., 2013; Reyes et al., 2015)
Modification of membrane phospholipid mechanism Cls and GdpD
S. aureus Mutations in RNA polymerase rpoC and rpoB (Montera et al., 2008)
Mutation in lysylphosphatid-ylglycerol synthetase mprF
Mutation in histidine kinase yycG
K. pneumoniae -
A. baumannii Persister formation Mutation in ΔrelA (Monem et al., 2020)
P. aeruginosa -
Enterobacter sp. -

In some cases, resistance is caused when combinatorial therapy is employed. In fact, it is reported that certain combinations of antibiotics could induce resistance (Liu et al., 2020). Therefore, it is important to choose the right combination of antibiotics.

*Bacteriostatic activity.

"-" denotes insufficient information.