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Simple Summary: Predicting suitable areas and paths for African swine fever (ASF) outbreaks is
crucial for early detection and removal of ASF virus (ASFV)-infected carcasses in ASF-prevalent
regions, as well as for the establishment of preemptive quarantine measures in ASF-free regions. In
this study, we utilized the MaxEnt model and shortest-path betweenness centrality to predict areas
with a high likelihood of ASF outbreaks in wild boars while also identifying individual pig farms
and pig farm sectors at high risk of ASFV spillover from wild boars. The results of this study are
intended to help to save time and cost in searching for carcasses by specifying the search range for
ASFV-infected wild boar carcasses. Additionally, the study’s findings could help pig farms at high
risk of ASFV spillover establish preemptive quarantine measures such as reinforcing biosecurity
inside the farms and routinely searching for carcasses around the farms.

Abstract: African swine fever (ASF) is a highly contagious disease affecting domestic pigs and wild
boars, with no effective vaccine or treatment available. In South Korea, extensive measures have
been implemented to prevent ASF transmission between wild boars and ASF spillover from wild
boars to pig farm sectors, including the search for ASF-infected carcasses in mountainous forests
and the installation of fences across wide areas of these forests. To determine the priority search
range for infected carcasses and establish pig farm-centered quarantine measures, it is necessary to
predict the specific path of ASF outbreaks in wild boars and identify pig farms at high risk of ASF
spillover from wild boars. Here, we aimed to predict suitable areas and geographical paths for ASF
outbreaks in wild boars using the MaxEnt model and shortest-path betweenness centrality analysis.
The analysis identified a high frequency of ASF outbreaks in areas with a suitability value ≥0.4 on the
suitability map and in areas within a 1.8 km range from the path on the shortest-path map, indicating
these areas were high-risk zones for ASF outbreaks. Among the 5063 pig farms analyzed, 37 were in
the high-risk zone on the suitability map, 499 were in the high-risk zone on the shortest-path map,
and 9 were in both risk zones. Of the 51 pig farm sectors with a dense distribution of pig farms
(kernel density ≥ 8), 25 sectors were in contact with or partially overlapped the high risk zone on
the suitability map, 18 sectors were located within the high risk zone on the shortest-path map, and
14 sectors were located within both risk zones. These findings aided in determining the priority range
for searches for wild boar carcasses and enabled the establishment of preemptive ASF prevention
measures around the pig farming sectors that are at risk of ASF spillover from wild boars.
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1. Introduction

African swine fever (ASF) is a highly contagious disease affecting domestic pigs and
wild boars, caused by infection with the African swine fever virus (ASFV) [1]. Currently, no
effective vaccine or treatment has been developed for the disease, and lethality can reach
100% [2–4].

ASFV can survive within wild boar populations with a low incidence rate of less
than 5% [5] and can maintain a chronic infection with low-virulence ASFV isolates [6].
Therefore, wild boars can act as a reservoir for ASFV [7] and pose a constant risk of
ASFV spillover in domestic pigs [8–10]. ASF outbreaks in wild boars have been highly
related to those on domestic pig farms in the EU and Russia [7,11–13]. ASFV spillover
from wild to domestic pigs has frequently been reported in small backyard pig farms with
inadequate fences and relatively low biosecurity [9,14–17]. In South Korea, ASFV is unlikely
to be transmitted through direct contact between wild boars and domestic pigs because
domestic pigs are raised in pigsties enclosed in buildings surrounded by fences. Thus,
ASFV could be transmitted to domestic pigs via humans [18–20] or wildlife [5,21–23] that
have come into contact with ASFV-infected wild boar carcasses and their remnants around
pig farms. Thus, predicting the possibility and location of wild boar ASF outbreaks near pig
farms is essential to establishing the specific range of preemptive quarantine measures for
pig farms.

ASFV is a stable DNA virus that can survive for at least 11 days in feces, approxi-
mately 15 weeks in corrupted serum, and months in the spinal cord [24,25]. Although it
is not transmitted by direct contact, farmers who come into contact with contaminated
environmental substances, such as soil and water contaminated during the decay process
of ASFV-infected wild boar carcasses, may introduce ASFV into pig farms [5,11,26]. Wild
animals that come into contact with carcasses are also suspected carriers of ASFV [5,21].
Although there is no direct evidence that wild animals can transmit ASFV, there is consider-
able evidence that wild animals such as wild boars, rats, raccoons, leopard cats, and birds
come in contact with or consume wild boar carcasses [21–23]. Thus, rapid detection and
removal of ASFV-positive wild boar carcasses is essential to preventing the spread of ASF
among wild boars and the spillover of ASF into the pig farm sector [27].

Identifying the areas and paths suitable for the transmission of ASF in wild boars
plays an important role in selecting fence installation areas, identifying the range of ASFV
infection detection, setting up hunting areas to control the population of wild boar, and
establishing intensive quarantine measures for pig farms at high risk of ASF.

Ecological niche modeling (ENM) is the process of exploring non-random relation-
ships between known species occurrence locations and corresponding environmental
variables [28,29]. ENM can be applied to explain and predict present and future spa-
tiotemporal distribution of species [30,31]. It has been widely used in the epidemiol-
ogy of infectious diseases and wildlife habitat management [31,32] to predict the geo-
graphic distribution of pathogens [33–35], parasites [36], hosts [37–40], and vectors [41–44]
and to explore biotic and abiotic conditions associated with the locations of disease out-
breaks [29,31,33,38,41,43,45]. Maximum entropy (MaxEnt) is a general purpose ecological
niche model that predicts a species’ geographic distribution based on occurrence data
alone [46,47]. The MaxEnt model uses environmental data to predict the distribution of
targeted species across geographic space and time [46]. It has also been used to predict
disease outbreak risks [29,48–50].

Connectivity analyses, such as shortest-path betweenness centrality (BC), current flow
models, and network flow, have been widely used not only to conserve regional habitat
connectivity [51–53] but also to predict the spatial spread route of pathogens or hosts [54].
Shortest path BC analysis identifies one or several shortest paths (a minimal network of
linkages) that connect each pair of nodes on a graph and counts the number of shortest
paths in which a node is included [52,55]. It has been applied in various fields, ranging
from connecting wildlife habitats [52,56–58] to predicting the path of wildlife disease or
vector spread [59,60].
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In South Korea, on September 16, 2019, the first ASF outbreak was reported on a pig
farm in Gyeonggi-do (GG), South Korea. Shortly thereafter, on October 2, 2019, ASFV was
first detected in a wild boar carcass near the Demilitarized Zone (DMZ) in the northern
part of GG. Since then, the virus has spread widely throughout the eastern part of GG and
most parts of Gangwon-do (GW), which is located east of GG (Figure 1a). On 19 November
2021, ASF was reported in wild boars in Chungchungbuk-do (CB) and subsequently in
Gyeongsangbuk-do (GB), the local region bordering the southern part of GW (Figure 1a).
To prevent ASF spillover from wild boars into pig farm sectors, a 2809 km-long fence has
been installed within mountainous forests and at the forest boundary, and an active search
for wild boar carcasses has been conducted in a wide range of mountainous forests by the
Ministry of the Environment, local governments, and the National Park Service.
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Figure 1. Geographical distribution map of (a) 920 wild boar ASF outbreaks (colored circles) and
(b) 5063 pig farms. Among the 920 ASF outbreaks, GPS locations of 668 cases (yellow-circled dots) in
GW and GG (light orange-shaded local regions) were used in the analysis dataset, and GPS locations
of 252 cases (red-circled dots) in CB and GB (light green-shaded local regions) were used for the
field-evaluation dataset. The mountain ranges in this region include Baekdudaegan, which stretches
across the entire Korean Peninsula, also known as the geographical backbone of the Korean peninsula,
and nine Jeongmaeks, which are mountain ranges that branch off from the Baekdudaegan (Figure S1).
The Korean administrative district boundary shapefile was provided by GIS Developer [61].

Previous studies predicting the spread of ASF in wild boars have primarily focused on
scenarios involving the range of expansion of ASF within wild boar populations [1,62–64]
and the correlation of ASF outbreaks between wild boars and domestic pigs [31,48,50,65,66].
However, few studies have predicted specific paths of ASF outbreaks in ASF-free areas
where ASF is expected to spread in the near future. Furthermore, in areas where ASF
has not yet spread, the potential risk of ASF spillover from wild boars to pig farm sectors
has not been predicted by linking the expected paths of wild boar ASF outbreak to the
geographical distribution of pig farms. This study predicts specific pathways of ASF spread
through wild boars in ASF-free areas as well as ASF-contaminated areas using modeling
approaches and field evaluation of ASF outbreak in wild boars.

The study makes an important contribution to the field by facilitating preemptive ASF
quarantine measures in two key aspects. First, it aids in determining the priority range of
searches for wild boar carcasses. Second, it enables the establishment of preemptive ASF
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prevention measures around pig farm sectors that are at potential risk of ASF spillover
from wild boars in ASF-free areas.

To this end, we predicted potentially suitable areas for ASF outbreaks in wild boars by
combining environmental data with the locations of ASF outbreaks, using the combined
MaxEnt model and GIS-based methodology. We then predicted the geographical path of
ASF outbreaks through shortest-path BC analysis. We also identified pig farm sectors with
high densities of pig farms using the kernel density estimate (KDE). Finally, we selected
individual pig farms and pig farm sectors in the high-risk zone of ASF outbreaks by linking
the geographical distribution of pig farms to potential spread areas of ASF in wild boars
predicted by the models in ASF-contaminated- and ASF free-areas.

2. Materials and Methods
2.1. Status of ASF Outbreaks and Dataset Construction

Two datasets were constructed for the analysis and evaluation: an analysis dataset
and a field-evaluation test dataset containing the GPS locations of ASF outbreaks in wild
boars (Figure 1a). The analysis dataset consisted of GPS locations of ASF outbreaks in
the local regions of GG and GW, where ASF was widespread in the wild boar population.
The analysis dataset was used for the MaxEnt model and shortest-path betweenness
centrality (BC) analysis to predict suitable areas and shortest paths for ASF outbreaks in
wild boars. The field-evaluation dataset comprised GPS locations of ASF outbreaks in the
local regions of CB and GB, where ASF spread had newly commenced; ASF outbreaks have
been restricted in some areas of these local regions. The field-evaluation dataset was used
to evaluate suitable areas and paths of ASF outbreaks predicted using the MaxEnt and
shortest-path BC analyses.

To construct the analysis dataset, the GPS locations of 1567 ASF outbreaks reported in
wild boars in GW and GG until 19 November 2021 were selected. Among them, 899 cases
were found in the Civilian Control Area (CCA) south of the DMZ between South and
North Korea. However, environmental information related to these 899 cases, such as
land cover map and forest type map, was unavailable (Figure S1). Therefore, the GPS
locations of 668 cases were included in the analysis. The field-evaluation dataset contained
the GPS locations of 252 ASF outbreaks reported in wild boars from 20 November 2021 to
14 November 2022, in CB and GB (Figure 1a). The GPS locations of ASF outbreaks in wild
boars were provided by the Ministry of Agriculture, Food, and Rural Affairs website [67].

We constructed a pig farm dataset for KDE to identify the geographical distribution
and density of pig farms. The dataset included the GPS locations of 5063 pig farms as of
3 February 2022 (Figure 1b) and was provided by the Korea Animal Health Integrated
System (Figure 1b).

2.2. Environmental Variables

Eleven environmental variables (Table 1 and Figure S2) were used for the analysis.
These variables were categorized into forest (n = 4), topographic (n = 4), and anthropogenic
(n = 3).

(1) Forest type (frtp), age class (agcl), diameter at breast height of trees (dbht), and
crown density (crde) were extracted from a 1:5000 forest map (shapefile) obtained from
the Korea Forest Service. The extracted data were converted into a raster file with a 90-m
resolution using the Polygon-to-Raster Tool in ArcMap 10.3.1.

(2) The topographic variables of elevation (elev), slope (slop), aspect (aspe), and
water, which affect habitat selection in terrestrial animals [68], were extracted from a 90-m
resolution digital elevation model (DEM) provided by the National Geographic Information
Institute of the Republic of Korea. The slope and aspect variables were calculated using the
Slope and Aspect Tools in QGIS Desktop 3.22.11. For the water variable (water), we used
the Euclidean distance tool in ArcMap 10.3.1 to generate the distance to water (raster) with
a resolution of 90 m based on a shapefile provided by the Water Resources Management
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Information System (WAMIS) of Republic of Korea, which contains data on all water
systems in the country, from streams to lakes.

(3) The anthropogenic environmental variables included the distance from the settle-
ment (setl), plow (plow), and road (road). Settlement and plow (shape files) were extracted
from a land cover map (1:5000) provided by the Ministry of the Environment of the Repub-
lic of Korea. The data for road (shapefile) was extracted from the Korean Road Network
Data provided by the Ministry of Land, Infrastructure, and Transport. The distances from
the three variables (raster) were created with 90 m resolution using the Euclidean Distance
Tool in ArcMap 10.3.1. All variables with a 90 m resolution were converted to Ascii files for
use as input data for MaxEnt.

Table 1. Variables selected for modeling.

Category Variable Abbreviation Source

Forest
environment

Forest type Frtp Forest Type Map (1:5000)
from Korea Forest Service

(accessed on 24 November 2021)
https://www.forest.go.kr/

Age classes of trees Agcl
Diameter at breast height of trees Dbht

Crown density Crde

Topographic

Elevation Elev
Digital Elevation Model

from National Geographic Information Institute of the
Republic of Korea

(accessed on 5 November 2021)
http://data.nsdi.go.kr/

Slope Slop
Aspect Aspe

Water Water

Stream Order Map
from Water Resources Management Information System

of the Republic of Korea
(accessed on 23 November 2021)

http://www.wamis.go.kr/

Anthropogenic

Settlement Setl
Subdivision Land Cover Map

from Ministry of Environment of the Republic of Korea
(accessed on 25 November 2021)

https://egis.me.go.kr/Plow Plow

Road Road

Road map of Korea
from Ministry of Land of the Republic of Korea

(accessed on 21 November 2021)
https://www.its.go.kr/

Correlation and collinearity were analyzed to produce a reliable and unbiased model of
species distribution. We evaluated the correlations between the 11 environmental variables
using Spearman’s correlation coefficient in R version 4.2.2. None of the variables showed a
correlation (absolute value less than 0.75) or multicollinearity. Therefore, all 11 variables
were included in the analysis. The relative importance of the variables was evaluated using
the Jackknife test in MaxEnt [69].

2.3. Data Analysis
2.3.1. Predicting Suitable Areas for ASF Outbreaks

The MaxEnt model was used to predict suitable areas of ASF outbreaks using Max-
Ent 3.4.4 software [46]. We used the overview, data, model, assessment, and prediction
method (ODMAP protocol) described in [70] to develop suitability models for ASF out-
breaks in South Korea (Table S1). Duplicate records (multiple records in the same grid cell)
were removed by default command “Remove duplicate presence records,” resulting in
591 locations for the MaxEnt model out of the 668 ASF outbreak locations in the analysis
dataset. Data sets for testing and training were not spatially autocorrelated (Moran’s I test,
p-value: 0.973) and therefore all occurrence records were retained for spatial analysis [71].
To correct for sampling bias, 20,000 background points were randomly selected and used, of
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which 80% (473) were used for training and the remaining 20% (118) were used for testing.
All other parameters were set to their default values (maximum iterations = 500, conver-
gence threshold = 0.00001, default prevalence = 0.5) [72]. The final prediction model for the
ASF outbreak was selected as the mean model from ten bootstrap replicates. Model perfor-
mance was evaluated based on the AUC (Area Under the ROC Curve) value calculated from
the area under the Receiver Operating Characteristic Curve [73] and TSS (True Skill Statis-
tic) value [74]. With respect to MaxEnt model performance, the AUC value ranges from
0–1, where an AUC < 0.7 denotes poor model performance, 0.7–0.9 denotes moderately
useful model performance, and >0.9 denotes excellent model performance [73,75]. The TSS
values ranges from −1 to 1, where −1 to 0.4 = poor, 0.4 to 0.5 = fair, 0.5 to 0.7 = good, 0.7 to
0.85 = very good, 0.85 to 0.9 = excellent, 0.9 to 1 = almost perfect to perfect [74,76,77]. To
produce suitability maps for the ASF outbreak, a logistic link function was used to yield a
suitability index between 0 and 1 in MaxEnt. The continuous habitat suitability index was
further divided into five classes (0–0.2: very low suitability, 0.2–0.4: low suitability, 0.4–0.6:
medium suitability, 0.6–0.8: high suitability, 0.8–1: very high suitability) [78,79].

2.3.2. Predicting the Shortest Path for an ASF Outbreaks

Shortest-path BC analysis was performed using the Connectivity Analysis Toolkit
(CAT) 1.3.2 [52]. First, HexSim 4.0.18 was used to create a workspace (grid file) covering
South Korea, which consisted of 32,629 hexagons with an area of 5 km2 each [52]. Subse-
quently, the suitability map produced by MaxEnt was loaded into the workspace. Each
hexagon contained 617 pixels, with an area of 0.0081 km2 each. The suitability score of each
hexagon was calculated by summing the suitability index values of all pixels within the
hexagon extracted from the suitability map. Hexmap, a lattice of 32,629 hexagons with
suitability scores, was loaded into CAT 1.3.2 to generate the graph. After setting Edge
List-Distance (Betweenness) as the graph type, a graph file was produced and used to
calculate the shortest-path BC with a probability of 0.05 as the default value. The resulting
shortest-path BC routes were classified into three categories (low, medium, and high) using
Jenks Natural Break in QGIS Desktop 3.22 [80]. The density of the crossing points and
routes of the shortest path, BC, was estimated using the Kernel Density Estimation Tool in
QGIS Desktop 3.22 [81]. KDE is a spatial analysis technique that accounts for the relative
locations of features to each other [81].

2.3.3. Pig Farm Density

To identify areas with high concentrations of pig farms throughout South Korea,
the kernel density of 5063 pig farm locations was estimated using the Kernel Density
Estimation Tool in QGIS Desktop 3.22. According to the standard operating procedure
(SOP) for ASF [82], three types of ASF management zones have been established: a control
zone within a 500 m radius from an infected farm, a protection zone within a 3 km radius,
and a surveillance zone within a 3–10-km radius. In the KDE analysis, the protection zone
was selected as the buffer among the three criteria for ASF management presented in the
SOP. Therefore, a buffer with a radius of 3 km was set around the location of each farm,
and the resolution of the pixels on the output map was set to 100 m.

3. Results
3.1. Suitable Areas for ASF Outbreaks

The average test AUC for the 10 replicate runs in the MaxEnt model was 0.793 (n = 10,
standard deviation = ± 0.008, range = 0.784–0.809) (Figure S3) and that of TSS value was
0.4 (standard deviation = ± 0.04, range = 0.37–0.45). The regularized training gains of
the Jackknife tests indicated that the variables of elevation, settlement, and road made
the highest contribution to the model; the four variables of aspect, slope, forest type
and plow contributed moderately, and age class; and diameter at breast height of trees
and crown density (crde) contributed weakly (Figure 2). According to the percentage
contribution, elevation was the most important variable, contributing 33% to the model
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prediction, followed by distance from road (16%) and distance from settlement (15.6%),
which accounted for 64.6% of the total contribution (Table S2). Permutation importance
also showed that the three variables were important, accounting for 56.7% of the total
importance (Table S2). In the response curves of the top three contributing variables, the
probability of an ASF outbreak increased between 100 m and 550 m elevation (Figure 3a)
and between 700 m and 10,000 m distance from the road (Figure 3b). The probability of
an outbreak increased at a distance of 150 m from the settlement, decreased slightly from
500 m to 1000 m, and increased again as the distance increased (Figure 3c).
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A forest area of 52,790 km2, excluding forests in the CCA and islands, was included in
the MaxEnt model and the shortest-path BC analysis. Of the 52,790 km2 of forests included
in the analysis, the MaxEnt model predicted that 17,193 km2 had a very low suitability
for ASF outbreaks, 21,071 km2 had low suitability, 11,647 km2 had medium suitability,
2682 km2 had high suitability, and 197 km2 very high suitability. The total area with a
suitability value ≥ 0.4 was 14,526 km2, accounting for 28% of the analyzed forests. The
suitable area with a suitability value ≥ 0.4 was mainly distributed in the northern region in
GW and near Baekdudaegan (Figure 4). Additionally, a high probability of an ASF outbreak
was predicted near an eastern mountain range (NDJM) in the eastern part of GB, which
extends southward from Baekdudaegan.
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Figure 4. Suitable areas for ASF outbreaks predicted using the MaxEnt model.

In CB and GB, a forest area of 16,469.1 km2 was included in the MaxEnt analysis. The
total area with a suitability value ≥ 0.4 was 4824.2 km2, which accounted for 29.3% of the
analyzed forest area in CB and GB. Of the 252 ASF outbreaks in the field-evaluation dataset,
173 cases (68.6%) were located in areas with a suitability value ≥ 0.4 (Table 2). The number
of ASF outbreaks per km2 in areas with a suitability value ≥ 0.4 was 0.036. However, the
number of ASF outbreaks in areas with suitability values < 0.4 was only 0.007, indicating a
5.1-fold increase in the number of outbreaks in areas with higher suitability area than in
those with lower suitability.

3.2. Shortest-Path of ASF Outbreak

The shortest-path BC values ranged from 0.00–0.149 and were classified into three
categories, strong (0.064–0.149), medium (0.026–0.064), and weak shortest-path (0.007–
0.026), using the Jenks natural breaks method. The shortest paths were primarily generated
along the mountain ranges. A strong shortest path (marked in red) was produced from the
north to the southwest in the middle of South Korea. In the eastern part, a medium-shortest
path (marked in yellow) was produced from the north to the south along Baekdudaegan
and NDJM, which branches off from south of Baekdudaegan, east of GW and GB (Figure 5).
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Table 2. Suitable areas for ASF outbreaks in CB and GB predicted using the MaxEnt model and the
distribution of 252 ASF outbreaks in the field-evaluation dataset.

Level of
Suitability Value

Area (km2) at
Suitability Levels

Percentage of Area in Each
Suitability Level out of the Total

Area (16,469.1 km2)

No. of ASF
OutBreaks at

Suitability Level

Percentage of ASF Outbreaks at
Suitability Level out of the Total

ASF Outbreaks (252 Cases)

No. ASF
OutBreaks/km2

Very high
(0.8–1) 15.8 0.1 2 0.8 0.127

High
(0.6–0.8) 760.7 4.6 59 23.4 0.078

Medium
(0.4–0.6) 4047.7 24.6 112 44.4 0.028

Low
(0.2–0.4) 7482.4 45.4 73 29.0 0.010

Very low
(0–0.2) 4162.5 25.3 6 2.4 0.001

Total 16,469.1 100 252 100 0.015
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The KDE analysis revealed that the kernel density values of the center points of the
hexagons (n = 2375) in the shortest paths ranged between 1–1.86. These values were
classified into four levels (Low: 1.46–1.5, Medium: 1.5–1.56, High: 1.56–1.67, Very High:
1.67–1.86) using the Jenks natural breaks method. The analysis predicted a very high kernel
density value of 1.67 or higher (VHKD) for 7 parts (R1–R7) and 11 intersections (I1–I11)
on the shortest paths (Figure 5); 7 of the 18 VHKD locations were close to national parks:
Chiaksan National Park (I1), Woraksan National Park (R3), Songrisan National Park (R5),
Deogyusan National Park (I8), Gayasan National Park (I10), Gyeryongsan National Park
(I6), and Juwangsan National Park (R7).

All of 252 ASF outbreaks in the field evaluation dataset were distributed at dis-
tances of 0.25–9.2 km from the shortest paths, with an average range of 1.8 (standard
deviation = ± 1.3 km). Among them, 233 cases (92%) were found within a range of 3.6 km
from the shortest-paths, with 167 cases (66%) within a 1.8 km range and 66 cases (26%)
within a 1.8–3.6 km range from the paths. The number of ASF outbreak per km2 was
2.5 times higher within a 1.8 km range (0.032 cases/km2) from the paths compared to those
within a 1.8–3.6 km range (0.013 cases/km2).

In the range of 1.8 km from the shortest paths, the number of ASF outbreaks per km2

was the highest in the strong shortest paths, followed by the medium and weak shortest
paths (0.073 > 0.030 > 0.026). In contrast, within 1.8–3.6 km from the shortest paths, the
number of ASF outbreak per km2 was higher in the medium, strong, and weak paths order
(0.026 > 0.015 > 0.008) (Table 3).

Table 3. Distribution of the 252 ASF outbreaks in the field-evaluation dataset based on the distance
from the shortest-path.

Distance from
Shortest-Path

Level of
Shortest-Path BC

Area Size
(km2)

No. of ASF
Outbreaks

No. of ASF
Outbreaks/km2

1.8 km
Low (0.007~0.026) 3329 87 0.026

Medium (0.026~0.064) 1457 43 0.030
High (0.064~0.149) 505 37 0.073

1.8~3.6 km
Low (0.007~0.026) 3373 26 0.008

Medium (0.026~0.064) 1312 34 0.026
High (0.064~0.149) 394 6 0.015

3.3. Density of Pig Farms

The kernel density values of the 5063 pig farms ranged from 1–76.6, with an average of
8 (standard deviation = ± 11.7). The kernel density values of 51 pig farm sectors, including
1319 pig farms, were higher than the average kernel density value (≥8). The number of
pig farms with a kernel density of 8 or higher was the highest in GG (15 pig farm sectors).
In GW, where ASF was the most widespread in wild boars, only one sector (GW-1) was
identified in Cheorwon-gun, adjacent to GG (Figure 6). Three large-scale pig farm sectors
(GG-12, CN-9, JB-5) with more than 100,000 heads each were distributed in GG, CN, and
JB, respectively (Figure 6). The average shortest distance between individual pig farms was
457 m (standard deviation = ±315, range = 51–1677 m) in GG-12 with 216 pig farms, 444 m
(standard deviation = ±284, range = 41–1758 m) in CN-9 with 285 pig farms, and 241 m
(standard deviation = ±266, range = 49–1222 m) in JB-5 with 66 pig farms.

3.4. Pig Farms at High-Risk of ASF Outbreak

Of the 5063 pig farms, 37 were located in areas with a suitability value of ≥0.4
(Figure S4), 499 within a range of 1.8 km from the shortest-path (Figure S5), and 9 (P1–P9)
in both areas with a suitability value ≥0.4 and those within a range of 1.8 km from the
shortest-paths (Figure 7). The pig farms P2 and P4 were located 2.6 km and 4.9 km from
HNGBJM, respectively, whereas P8 was located at a distance of 5.5 km from NDJM and P9
was 3.8 km from HONJM. The other five pig farms were located at distances greater than
10 km from the mountain ranges.
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Of the 51 pig farm sectors with a kernel density greater than or equal to the average
of 8, 18 were located within 1.8 km of the shortest path and 25 sectors were in contact
with or partially overlapped areas with a suitability value ≥ 0.4 (Table 4). Among these
sectors, 14 were both located within 1.8 km of the shortest path and were in contact with
or partially overlapped with areas with a suitability value ≥ 0.4 (Table 4). Of the three
large-scale sectors (GG-12, CN-9, and JB-5), CN-9 was adjacent to the shortest path and
GG-12 was situated 0.6 km away from the path. Additionally, both of these sectors partially
overlapped areas with a suitability value ≥ 0.4. (Table 4).
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Table 4. Information on 51 pig farm sectors with farm density of average kernel density of 0.8
or higher.

Local
Region Pig Farm Sector Locality No. of Pig Farms No. of Heads

Distance from
the Shortest
Path (km)

Overlap Area *
(km2)

Gyeonggi-do
(GG)

GG-1 Yeoncheon-gun 10 17,555 5.8
GG-2 Pocheon-si 28 82,880 5.9 0.11
GG-3 Pocheon-si 14 14,735 8.6 0.56
GG-4 Dongducheon-si ** 13 24,140 1.2 0.01
GG-5 Yangju-si 13 25,720 5.0

GG-6 * Yangpyeong-gun 10 21,710 0.0 0.49
GG-7 Icheon-si 10 17,340 6.0 0.00

GG-8 * Cheoin-gu ** 13 9932 0.0 0.38
GG-9 Icheon-si ** 12 33,795 15.5

GG-10 Yeoju-si 4 6024 11.5
GG-11 Icheon-si 8 14,900 10.9 0.00
GG-12 Cheoin-gu ** 216 364,060 0.6 1.93
GG-13 Pyeongtaek-si ** 10 6373 11.9

GG-14 * Anseong-si 12 17,700 0.0 0.02
GG-15 Pyeongtaek-si ** 21 48,546 14.8

Gangwon-do
(GW) GW-1 Cheorwon-gun ** 10 36,414 25.5

Chungcheongbuk-do
(CB)

CB-1 Goesan-gun 9 14,490 0.0
CB-2 Cheongwon-gun ** 5 10,195 3.9

Chungcheongnam-do
(CN)

CN-1 Dangjin-si 12 16,785 12.5
CN-2 Dongnam-gu ** 8 25,830 3.8 0.08
CN-3 Asan-si 2 3200 16.6
CN-4 Dangjin-si ** 36 72,427 6.7
CN-5 Asan-si ** 2 6000 12.7
CN-6 Yesan-gun 17 36,004 11.6

CN-7 * Hongseong-gun ** 16 39,220 0.0 0.02
CN-8 Hongseong-gun 1 2000 0.0

CN-9 * Boryeong-si ** 285 604,359 0.0 0.80
CN-10 Gongju-si 4 6550 0.0
CN-11 Gongju-si ** 34 33,483 2.9
CN-12 Nonsan-si 25 37,540 9.9 1.12

Sejong-si
(SJ) SJ-1 Yuseong-gu ** 13 26,230 13.6 0.35

Jeollabuk-do
(JB)

JB-1 Iksan-si 21 19,750 3.1
JB-2 Gunsan-si ** 13 22,900 0.0
JB-3 Iksan-si ** 97 80,999 8.9
JB-4 Gimje-si 11 25,630 13.4
JB-5 Gimje-si ** 66 133,895 16.1

Jeollanam-do
(JN)

JN-1 Hwasun-gun 9 13,773 8.3 0.32
JN-2 Naju-si 5 16,150 12.2
JN-3 Muan-gun 9 16,150 3.0

Gwangju-si
(GJ) GJ-1 Gwangsan-gu ** 30 38,482 11.9

Gyeongsangbuk-do
(GB)

GB-1 Yeongcheon-si 12 28,900 4.7 0.03
GB-2 * Yeongcheon-si 4 7400 0.0 0.21
GB-3 * Seongju-gun 12 12,860 0.0 1.34
GB-4 * Gyeongju-si ** 21 29,985 0.0 0.01
GB-5 Gyeongsan-si 11 20,442 8.5

GB-6 * Hapcheon-gun ** 10 26,200 0.0 0.04

Gyeongsangnam-do
(GN)

GN-1 Hapcheon-gun ** 20 33,510 0.1 1.80
GN-2 Miryang-si 13 10,280 6.0 0.35
GN-3 Yangsan-si 13 17,896 4.0 0.44
GN-4 Gimhae-si 57 97,584 0.1 1.26

GN-5 * Goseong-gun 12 18,578 0.0 0.10

* Pig farm sectors overlapping or adjacent (0 km) to areas with a suitability value of 0.4 or higher. ** indicates
sectors are distributed across two or more localities.

Of the 18 pig farm sectors located within a 1.8-km range from the shortest path,
11 sectors overlapped or were adjacent to mountain ranges (Figure 8). In the GG and GW
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(Figure 8a) regions, GG-8 was adjacent to HNJM and GG-14 overlapped with HNGBJM.
The large-scale pig farm sector GG-12 was situated only 0.6 km from the shortest path, and
the eastern and southern sides of the sector are near HNJM and HNGBJM, respectively.
In CB and CN (Figure 8b), CB-1 was adjacent to HNGBJM, CN-7 and CN-8 to GBJM, and
CN-10 to GNJM. In the large-scale pig farm sector CN-9, the eastern side of the sector
overlaps with the GBMJ. In GB and GN (Figure 8c), GB-2 and GB-4 overlapped with the
NDJM. GN-4, a cluster of 57 pig farms with 97,584 heads, is adjacent to the NNJM. In JB and
JN (Figure 8d), only one sector (JB-2) was located on the shortest path, but it was located at
a considerable distance from the mountain range.
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Figure 8. Geographic distribution of 51 pig farm sectors with a kernel density value equal to the
average kernel density or higher (≥8). 18 pig farm sectors were located within 1.8 km of the shortest-
path: (a) 5 sectors (GG-4, GG-6, GG-8, GG-12, GG-14) in GG; (b) 1 sector (CB-1) in CB and 4 sectors
(CN-7, CN-8, CN-9, CN-10) in CN; (c) 4 sectors (GB-2, GB-3, GB-4, GB-6) in GB, and 3 sectors (GN-1,
GN-4, GN-5) in GN; and (d) 1 sector (JB-2) in JB; 14 sectors also partially overlapped with or were
adjacent to areas with suitability values of 0.4 or higher: (a) 5 sectors (GG-4, GG-6, GG-8, GG-12,
GG-14) in GG; (b) 2 sectors (CN-7, CN-9) in CN; (c) and 4 sectors (GB-2, GB-3, GB-4, GB-6) in GB
and 3 sectors (GN-1, GN-4, GN-5) in GN (also refer to Table 4 for partially overlapping areas or areas
adjacent to those with a suitability value of 0.4 or higher).

4. Discussion
4.1. Suitable Areas for ASF Outbreaks in Wild Boars

A notable feature of our study is that the model evaluation was not limited to self-
evaluation metrics (AUC, TSS) alone (Figure S3), but also involved a comparison between
the model results and the actual locations of wild boar ASF outbreaks observed in the
field. Traditionally, evaluations of model performance have primarily relied on metrics
such as AUC, TSS, and AIC [31,66,83–85]. In this study, a nationwide prediction model of
ASF outbreaks in wild boars was established using the GPS coordinates of wild boar ASF
outbreaks from widely affected areas, specifically GW and GG. To assess the effectiveness of
the model, the model results were compared with the locations of wild boar ASF outbreaks
(field-evaluation dataset) in GB and CB, where ASF in wild boars recently started spreading.

The MaxEnt model showed moderately useful performance in predicting suitable
areas for ASF outbreaks in wild boars, with an average AUC value of 0.793 and TSS
value of 0.4 for model reliability [75]. This was lower than the AUC value of the MaxEnt
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model built using the locations of ASF outbreaks in wild boars in North Sumatra Province,
Indonesia (0.860) [86]. However, the field evaluation of our model provided meaningful
results to predict potential risk area of ASF outbreak in wild boars. When the model
results were evaluated with the field-evaluation dataset for CB and GB, 68.6% of 252 ASF
cases were distributed in only 29.3% of areas with suitability value ≥ 0.4 in CB and GB,
and the frequency of ASF outbreaks per km2 was higher in areas with the suitability
values ≥ 0.4. These results indicate that the MaxEnt model using ASF outbreak locations
(analysis dataset) in GW and GG has high predictive power with a suitability value of
0.4 or higher. The suitability maps generated in this study could be used to predict ASF
outbreaks, particularly in areas in the early stages of the spread of ASF in wild boars.

A study in GG in South Korea used the MaxEnt model to predict the geographical
distribution of ASF spread using the ASF outbreak locations [23]. In this study, settlement,
elevation, and road were selected as important variables contributing to the model using the
Jackknife test, similar to a previous study [23]. The AUC value obtained in this study was
similar to that reported in a previous study (0.774). Both studies predicted highly suitable
areas for ASF outbreaks in wild boars near the DMZ in the north of GG, Baekdudaegan
in the east of GG, and the western part of GG. However, these results differed from
the distribution of suitable areas for wild boar habitats based on wild boar occurrence
locations (Baekdudaegan and south-eastern GG) [87] and hunting locations (south-central
GG) [22]. This suggests that the spread area of ASF may differ from the preferred habitats of
wild boar.

Integration with GIS and remote sensing (RS) has great potential to predict the spread
of wildlife-borne diseases [13,88–91]. In order to further improve the results of the present
study, additional environmental information obtained from RS is required for GIS analy-
sis [91,92]. Meteorological data such as precipitation are known to be related to wild boar
ASF outbreaks [93]. Therefore, to predict the spread area of repeated ASF outbreaks on a
long-term basis, a spatiotemporal analysis of the ASF outbreak needs to be performed in
conjunction with climate change scenarios in further studies.

4.2. Shortest-Path for ASF Outbreaks in Wild Boars

Animal movement networks play a critical role in understanding the spread of infec-
tious diseases through wildlife vectors such as ASF [94]. Using shortest-path BC analysis
to predict the propagation path of ASF in wild boars, we found that 66% of the 252 ASF
outbreaks in the field-evaluation dataset were within a range of 1.8 km from the shortest
path, and 92% were within a range of 3.6 km. The frequency of ASF outbreaks per km2

was 2.5 times higher in the range of 1.8 km than in the range of 1.8–3.6 km. Thus, we can
confirm that the shortest-path map of the ASF outbreak generated in this study is useful
in predicting the locations of ASF outbreaks in wild boars and a high-risk area for ASF
outbreaks is predicted within 1.8 km of the path.

Most of the shortest paths of the ASF outbreak were distributed along mountain ranges
(Baekdudaegan and Jeongmaeks) and were consistent with the locations of wild boar ASF
outbreaks in 2014–2018 [64,95]. Among the main paths that run from north to south in
South Korea, wild boar ASF outbreaks were high along the path connecting R1 to I8 via R5
in the central are, and the path with R7 and I11 was along the NDJM in the east. Among
the main paths across South Korea from east to west, wild boar ASF outbreaks were high
in the paths from I4 in the west to I11 via I8 and to Gyeongju National Park, located below
I11 in the east.

ASF has spread to R5 from GW but has not yet spread to I4, I5, and I6 in the west
of R5; I7, I8, I9, and I10 in the middle; or R7 and I11 in the east. ASF has not yet spread
to three locations, R7, I8, and I9, located south of R5. Of the seven national parks near
VHKD locations, ASF has not yet spread to four (Deogyusan National Park, Gayasan
National Park, Gyeryongsan National Park, and Juwangsan National Park) or those in
close proximity to the VHKD locations (I8, I10, I6, and R7). If VHKD locations are invaded,
they are likely to serve as hubs for the spread of ASF; therefore, they should be included
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in the priority areas for controlling wild boar populations and searching for carcasses
in advance.

4.3. Pig Farming Sectors at High Risk of ASF Spillover and Its Management Implications

After the first outbreak of ASF on September 16, 2019, in South Korea [23], the disease
has been limited to only 0.59% of 5063 pig farms, with a few outbreaks in some localities
in GG and GW [67]. However, the disease has begun to spread widely among wild boars
to the south of GW, which increases the risk of ASF spillover to the pig farm sector near
mountain ranges.

Predicting suitable areas for ASF outbreaks in wild boars is essential in determining
management strategies and policies for preemptive quarantine of ASF. This is achieved
by specifying search areas for the rapid detection and removal of ASF-infected carcasses,
fence installation, and hunting [23,96,97], particularly in mountainous countries such as
South Korea. To date, studies on the spread of ASF in South Korea have been limited to
ASF-affected areas [1,98], some areas adjacent to ASF-affected areas [98], and the potential
growth trend of ASF-affected areas [64]. However, no studies have predicted the future
distribution of ASF outbreaks in wild boars on a nationwide scale.

This study predicted areas with a high probability of ASF outbreaks in wild boars
and specified pig farm sectors at high risk of ASFV spillover, located in areas with a high
possibility of ASF outbreaks in wild boars. Using the field-evaluation dataset, we compared
the model results with the location of ASF outbreaks in wild boars in local regions (CB
and GG) where ASF is newly spreading and, based on the results of the field evalution,
predicted area with a high risk of ASF outbreak on a national level (areas within 1.8 km
from the shortest path and areas with a suitability value ≥ 0.4). Among the 5063 pig farms,
9 individual farms and 14 pig farm sectors were located in high-risk zones in both the
shortest-path and suitability maps.

In South Korea, mountain forests account for 63% of the land area [99], which includes
the Baekdudaegan Mountain Range and nine mountain ranges that branch off from the
Baekdudaegan Mountain Range [100]. Wild boars primarily inhabit mountain forests and
can damage crops during cultivation [101,102]. Mountain ranges render the systematic
search for wild boar carcasses difficult, resulting in them becoming a significant channel
for the spread of ASF in wild boars in South Korea [23]. ASFV-infected carcasses serve as
ASFV reservoirs and mediums for ASF transmission between wild boars and between wild
boars and domestic pigs [103–107]. Therefore, regular and strengthened carcass searches,
particularly around the 11 pig farm sectors in the high-risk zones adjacent to mountain
ranges, are required as essential quarantine measures to prevent ASF spillover into pig
farm sectors.

In South Korea, search teams have been organized and operated by the Korea National
Park Service and local environment agencies to search for wild boar carcasses in forests [67].
However, appropriate standards for selecting the geographical range of the search have
not been established. Searching for carcasses in a wide range of mountain forests in
mountainous countries such as South Korea requires considerable time and cost. Therefore,
it is necessary to limit the range of the search to areas with a high possibility of carcass
detection to increase search efficiency. This study identified a high-risk area for ASF
outbreaks, contributing towards establishing priorities for searching areas for carcasses
and controlling wild boar populations. Additionally, identifying pig farms with a high risk
of ASFV spillover through wild boar carcasses helps to preemptively establish quarantine
measures, such as strengthening biosecurity within pig farms and searching for carcasses
in the surrounding forests.

5. Conclusions

Our study has facilitated the selection of a priority range for searching for wild boar
carcasses by accurately predicting the specific pathways of ASF outbreaks in wild boars.
Furthermore, by linking the prediction model of ASF outbreaks in wild boars with the



Animals 2023, 13, 2148 21 of 26

distribution of pig farms, we have successfully identified pig farms that face a high risk of
ASF spillover from wild boars. This significant contribution has enabled the establishment
of preemptive farm-centered quarantine measures.

This study highlights the need for field evaluation as well as model self-tests for the
evaluation of model quality, such as comparing the frequency of actual ASF outbreaks in
areas predicted to be potentially high and low risk by models, when evaluating a predic-
tion model for a rapidly spreading disease such as ASF. The field evaluation contributes
significantly to verifying and more specifying the model’s results. The results of MaxEnt
model and shortest-path BC analysis combined with the field evaluation predicted a high
likelihood of ASF outbreaks in areas with a suitability value of 0.4 or higher and within a
range of 1.8 km from the shortest path. These ranges could be defined as high-risk zones
for ASF outbreak, particularly in the early stages of its spread. Of the 5063 pig farms in
South Korea, 9 pig farms and 14 pig farm sectors with a kernel density ≥ 8 were located in
both high-risk zones identified by the MaxEnt model and the shortest-path BC analysis.

This study provides critical insights for preventing and controlling ASF outbreaks.
Predicting suitable areas and paths for ASF outbreaks can help to implement preemptive
measures to minimize the impact of ASF on wild boars and pig farms. Improved biosecurity
measures and regular carcass searches around pig farm sectors at high risk can help mitigate
the risk of ASF spillover from wild boars.

The spatial range of our study was limited to South Korea and was designed to predict
the extent of ASF spread within a relatively short timeframe. Therefore, we did not include
climate factors as variables in our analysis. Given the global spread of ASF and repeated
ASF outbreaks on a long-term basis, future studies should include weather variables,
including climate change scenarios, to establish comprehensive long-range prediction
models that extend beyond the borders of Korea and cover larger geographic areas. This
study, based on the South Korean situation, which directly links the potential spread routes
of ASF predicted by theoretical models with the given distribution of pig farms, shows
how scientific research can contribute to establishing ASF quarantine policies and will be a
reference for epidemiologists, ecologists, and policy makers in countries where ASF occurs.
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nine mountain ranges (Jeongmaeks) that branch off from the Baekdudaegan [100]. Civilian Control
Line (CCL), which, located 10 km south along the Military Demarcation Line (MDL), is intended to
control citizen access. The area between MDL and CCL is called the Civilian Control Area (CCA);
Figure S2: Map for each environmental variable; Figure S3: Area Under the ROC Curve (AUC)
value, which is calculated from the area under the Receiver Operating Characteristic Curve obtained
through 10 bootstrap replicates; Figure S4: Geographical distribution of 37 individual pig farms
located in an area with a suitability value of 0.4 or higher; Figure S5: Geographical distribution of
499 pig farms within a 1.8-km range of the shortest-path; Table S1: Standardized protocol of the
SDM process, following the ODMAP v1 [70]; Table S2: Relative importance of variables used in the
MaxEnt model.
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