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Abstract

The ability to successfully predict the three-dimensional structure of a protein from its amino 

acid sequence has made considerable progress in the recent past. The progress is propelled by 

the improved accuracy of deep learning-based inter-residue contact map predictors coupled with 

the rising growth of protein sequence databases. Contact map encodes interatomic interaction 

information that can be exploited for highly accurate prediction of protein structures via contact 

map threading even for the query proteins that are not amenable to direct homology modeling. 

As such, contact-assisted threading has garnered considerable research effort. In this chapter, we 

provide an overview of existing contact-assisted threading methods while highlighting the recent 

advances and discussing some of the current limitations and future prospects in the application of 

contact-assisted threading for improving the accuracy of low-homology protein modeling.
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1 Introduction

The computational prediction of the three-dimensional (3D) structure of a protein from its 

amino acid sequence remains elusive [1–4]. Despite the encouraging recent progress in ab 

initio protein structure prediction [5–12], template-based modeling (TBM) [13] remains one 

of the most reliable approaches in protein structure prediction [14–21], especially when 

homologous templates are available in the Protein Data Bank (PDB) [22]. TBM approaches 

can be broadly classified into homology modeling and protein threading based on the degree 

of homology. Homology modeling or comparative modeling is the process of building a 

structure of a query protein from a homologous template with a high degree of sequence 

similarity [23], whereas threading or fold recognition corresponds to an advanced template 

identification strategy where only distant homologs are available in the PDB but are not 
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easily identifiable [3, 24, 25]. The primary objective of threading is to recognize one or 

more templates that are consistent with the query sequence, that is, existing folds that might 

be potentially analogous to the query sequence. Since its inception at the beginning of the 

1990s [3, 24], threading remains an active area of research. The general principle behind 

protein threading is that there exists a finite number of unique folds in nature and many 

proteins (~90% [14]) share the same folds [26, 27], even though their sequences differ, 

illustrating that in theory the structure of most proteins can be successfully predicted by 

threading a query protein sequence onto a library of structural templates [14].

Current threading strategies are based on various techniques ranging from dynamic 

programming to profile-profile comparison based on hidden Markov models to more 

advanced machine learning approaches [18, 21, 28–49]. Some of these methods use only 

sequence-based features, while others [14, 18, 19, 31] use sequence and structure-based 

features for calculating the fitness score between the query and template. With the recent 

advances in residue-residue contact prediction [50–61] driven by sequence coevolution and 

deep learning, predicted contact information has become an additional structural feature 

in protein threading, leading to the development of numerous contact-assisted threading 

methods in the last few years [16, 20, 62–65]. The usefulness of these cutting-edge contact-

assisted threading methods are particularly noteworthy in low-homology (see Note 1) 

protein modeling scenarios [63, 64, 66]. Here, we provide an overview of existing contact-

assisted threading methods, highlighting some of the recent advances in low-homology 

protein modeling. We also discuss some of the current limitations and future prospects in 

contact-assisted threading.

2 Materials

Most threading methods have certain aspects in common. Here, we provide a brief overview 

of the common methodologies used in threading.

2.1 Template Library

Template library is a collection of representative protein structures (aka templates) from the 

PDB. A query protein sequence is threaded (or aligned) across each template in the library. 

Therefore, in order to minimize the time to search the whole template library, it is a common 

practice to make the library nonredundant by considering a small fraction of representative 

templates from a group of highly similar templates [14].

2.2 Query and Template Feature Set

Threading approaches use different sequential and structural features for the query protein 

and the templates. Below, we briefly discuss various common features used in threading.

2.2.1 Sequence Profiles—Sequence profile contains the evolutionary information as 

well as the sequence diversity among homologous sequences of the query protein. A 

sequence profile is considered as a rich source of information in threading because 

1.Low homology refers to the lack of available sufficient homologous information for the query sequence.
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homologous proteins tend to have similar sequence profiles. Programs such as PSI-BLAST 

[17] and HHblits [67] can be used to generate sequence profiles.

2.2.2 Secondary Structures—A protein’s local conformation may be defined in terms 

of its secondary structure and using the secondary structure as a feature in threading has 

attracted much attention since the early days of threading approaches. The secondary 

structure of a query protein can be predicted using secondary structure predictors such 

as PSIPRED [68], SPIDER3 [69], and RaptorX Property [70]. Most of these methods 

predict the likelihood of various secondary structure types. Most popular secondary structure 

predictors [16, 18, 71] use the three-class secondary structures (alpha helices, beta strands, 

and loop), even though some of the recent threading methods [72] use both three-class and 

eight-class secondary structure types. While the secondary structure of a query protein is 

typically predicted from its sequence information, the secondary structures of the template 

proteins are calculated directly from the PDB structures using programs such as DSSP [73] 

and STRIDE [74].

2.2.3 Solvent Accessibility—Solvent accessibility is related to the spatial organization 

and packing of residues and is therefore considered as an important feature for threading. 

Solvent accessibility can be categorized using binary classification (buried or exposed) 

or using a three-class classification (buried, intermediate, and exposed). While solvent 

accessibility predictors such as PSIPRED, SPIDER3, and RaptorX Property are typically 

used to predict the solvent accessibility of each residue in the query protein, DSSP and 

STRIDE can be used for calculating that of the template.

2.2.4 Backbone Dihedral Angles—A protein’s dihedral angle is the angle of the 

polypeptide backbone where two neighboring planes meet. The dihedral angles for the query 

protein can be predicted using predictors such as PSIPRED and SPIDER3.

2.2.5 Additional Features—In addition to these features, structure profiles, 

hydrophobicity, and amino acid substitution matrix such as BLOSUM are also considered 

as features for threading [71, 72]. Contact-assisted threading methods use the pairwise 

predicted (or native) contact information for a query (or template) protein because contact 

information is considered as a rich source of information for threading. Contact-assisted 

threading methods use contact information either implicitly such as in PROSPECT [46], 

PROSPECTOR [75, 76], and RAPTOR [14] or explicitly such as in EigenTHREADER 

[20], map_align [62], CEthreader [63], CATHER [64], ThreaderAI [65], and our in-house 

threading method [16].

2.3 Threading Performance Measure

Measuring the structural similarity between the predicted and the native protein 3D structure 

is critically important for objectively evaluating the performance of a threading method. 

Some most commonly used scores are the template modeling score (TM-score) [77], the 

root-mean-square deviation (RMSD) [78], the global distance test (GDT) [79], and the local 

distance difference test (lDDT) [80]. TM-score is one of the most widely used scoring 
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metrics having scores in the range (0, 1) with higher scores indicating better similarities. A 

TM-score >0.5 typically indicates the correct overall fold [81].

3 Methods

3.1 Overview of Protein Threading

The goal of protein threading is to optimally align a query sequence to a known structural 

template [82]. This requires identifying the correct or best-fit template from a library of 

templates and the optimal query-template alignment from the space of all possible query-

template alignments. The query-template alignment represents a correspondence between 

each query residue and the spatial positioning of the aligned template residues. Overall, 

protein threading can be mainly considered to involving three components: (1) a threading 

scoring function that evaluates the fitness of query-template alignments, (2) identification of 

the best-fit structural template from the library of templates, and (3) an optimal alignment 

of the query sequence to the template. In the following, we discuss each component in more 

details.

3.1.1 Threading Scoring Function—The scoring function plays an important role to 

quantitatively assess the fitness of query-template alignments [14]. The scoring function 

normally consists of the profile similarity score, the structural consistency score, and the 

gap penalty. The profile similarity score can be calculated by comparing the query and 

template profiles. It quantifies how the query is evolutionary related to the template. The 

structural consistency score contains two components: consistency of local structures such 

as secondary structure and solvent accessibility compatibility and consistency of global 

structures or pairwise interatomic interactions. Weights can be used in the scoring function 

to control the relative importance of different scoring terms.

3.1.2 Template Selection—Identifying the best-fit template inevitably requires using 

the alignment score of query-template alignments. The raw query-template alignment score 

cannot be directly used to rank templates due to the biases introduced by the protein 

length [14]. Both machine learning-based methods and Z-score are used to mitigate the 

bias. Several protein threading methods [40, 46, 83–85] use machine learning models such 

as the neural network for the template ranking by formulating the template selection as a 

classification problem, even though a majority of the threading methods [18, 63, 64] rely on 

Z-score for the template selection. Z-scores of the query-template pair are computed from 

the means and standard deviations of the scores of the query sequence with all templates of 

the template library. However, it cannot cancel out all the biases introduced by the protein 

length. A large protein appears to have a high Z-score. It is also difficult to interpret the 

Z-score, particularly when the scoring function is the weighted sum of different scoring 

terms [14].

3.1.3 Optimal Query-Template Alignment—The optimal query-template alignment 

is the alignment that optimally aligns residues in the query sequence homologous to residues 

in the template. It is often the case that a threading scoring function is effective in selecting 

the homologous template, but the query-template alignment is significantly weak [25, 86]. In 
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such cases, the alignment may be suboptimal, which might result in less accurate template-

based models built from such an alignment, that is, the sensitivity of query-template 

alignment directly affects the overall performance of template-based modeling.

3.2 Contact-Assisted Protein Threading

3.2.1 Residue-Residue Contact Map—A contact map of a protein is a binary, square, 

symmetric matrix with vertices corresponding to residues of the protein, and a contact edge 

indicates that the distance between a residue pair is smaller than a given threshold. Typically, 

this distance threshold is considered 8 Å between the Cα and Cβ atoms of the residue pairs 

[16, 20]. Here, the set of contacts between residue pair (i, j) is defined as:

C(i, j) = 1  if dij ≤ 8Å
0  otherwise 

(1)

where dij is the distance between the residue pair (i, j). Figure 1 shows a representative 

protein 3D structure and its corresponding 2D residue-residue contact map.

3.2.2 Contact Map Alignment—Contact map alignment is a way of measuring the 

similarity between two contact maps. The maximum contact map overlap problem tries to 

evaluate the similarity of the two proteins by calculating the maximum overlap between 

their contact maps while preserving the ordering of residues of both sequences, leading to 

a pairwise sequence alignment as illustrated in Fig. 2. Since direct contact map alignment 

is computationally expensive [63], several approximation algorithms [62, 87–92] have been 

developed to address the contact map alignment problem including the eigendecomposition-

based strategy, graphlet degree-based approach, and iterative double dynamic programming-

based approach. Eigendecomposition decomposes a contact map into eigenvectors and 

corresponding eigenvalues. This approach compares two proteins by comparing their contact 

map eigenvectors, which can be performed in polynomial time. For example, approaches 

such as EIGAs [87], SABERTOOTH [89], and Al-Eigen [90] use the eigendecomposition 

to approximate contact maps using the top eigenvectors and use the global alignment of key 

eigenvectors to find the similarity between two contact maps. GR-Align [92] is a fast contact 

map alignment approach based on graphlet degree distribution. Moreover, [93] proposes a 

contact map alignment algorithm C-Align based on Cα atoms using dynamic programming. 

Recent methods such as map_align [62] employ iterative double dynamic programming to 

calculate contact map alignment, with the goal of optimizing the number of contact overlaps 

while minimizing the number of gaps.

3.3 Overview of Existing Contact-Assisted Threading Methods

Table 1 shows several publicly available contact-assisted threading methods. These 

approaches can be broadly subdivided into two classes: (1) methods that implicitly use 

contact information via pairwise contact potential such as PROSPECT [46], PROSPECTOR 

[75, 76], and RAPTOR [14]; and (2) methods that explicitly use contact information via 

predicted residue-residue contacts including the current state-of-the-art contact-assisted 

threading methods such as EigenTHREADER [20], map_align [62], CEthreader [63], 
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CATHER [64], ThreaderAI [65], and our in-house threading method [16]. We briefly discuss 

them below.

3.3.1 Threading Methods That Implicitly Use Contact Information via 
Pairwise Contact Potential—PROSPECT (PROtein Structure Prediction and Evaluation 

Computer Toolkit) [46] is one of the earliest protein threading methods, which makes use 

of pairwise contact potential by introducing a contact term into its scoring function. This 

study considers that pairwise contact potentials are measured only between core secondary 

structures. The contact cutoff is set at 7 Å between the Cβ atoms. Additionally, the 

method uses a divide-and-conquer algorithm for the alignment searching procedure. Another 

method, PROSPECTOR (PROtein Structure Predictor Employing Combined Threading 

to Optimize Results) [75, 76], uses a “partly thawed” technique to assess the contact 

potential based on the previous alignment iterations. RAPTOR (RApid Protein Threading 

by Operation Research technique) [14] is another protein threading method that introduces 

contact capacity score. It considers only contacts between two core residues where the 

spatial distance between Cα atoms is 7 Å with a sequence separation of 4. It addresses 

threading as a problem of wide-scale integer programming, relaxes it to a problem of 

linear programming, and uses a branch-and-bound approach to solve the integer program. 

However, the performance contribution of pairwise contact potential in the above methods 

is not significant compared to that of sequence profile, particularly for distantly related 

proteins. The underlying reason may be noisy contacts that do not hold any extra signal, 

yielding just modest improvement.

3.3.2 Threading Methods That Explicitly Use Contact Information via 
Predicted Residue-Residue Contacts—Recent successful applications of deep 

learning have resulted in significantly improved inter-residue contact prediction methods 

[53, 56, 60, 94]. As such, the newest contact-assisted threading methods have been explicitly 

integrating predicted residue-residue contact information to improve threading performance. 

EigenTHREADER [20], developed in 2017, extends Al-Eigen [90] to enable threading 

by predicting a protein’s contact map using classical neural network-based predictor 

MetaPSICOV [53] and then searching a library of templates’ contact maps. Despite the 

superior performance of EigenTHREADER over other profile-based threading methods for 

low-homology threading, it can be further improved by integrating other linear features such 

as sequence profiles along with inter-residue contact maps. map_align [62], developed in 

2017, proposes an iterative double dynamic programming algorithm [95] that aligns contact 

maps, predicted by pure coevolutionary-based predictor GREMLIN [96], in combination 

with metagenomic sequences of microbial DNA [97]. The elevated performance of 

map_align can be attributed to the contribution of contact maps in low-homology threading. 

However, considering that the outcomes rely on the initial estimate of the similarity matrix, 

which is not always optimal, this approach does not necessarily guarantee optimal solutions. 

CEthreader [63] (Contact Eigenvector-based threader), developed in 2019, uses contact 

maps predicted from deep residual neural-network-based predictor ResPRE [94]. Similar to 

Al-Eigen, this work uses the eigendecom-position technique to approximate contact maps by 

the cross product of single-body eigenvectors. CEthreader introduces a dot-product scoring 

function by incorporating contact information along with secondary structures and sequence 
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profiles to align contact eigenvectors and uses dynamic programming to generate the query-

template alignments. However, the method can be further strengthened by considering 

negative eigenvalues in addition to positive eigenvalues, since the incorporation of both 

positive and negative eigenvalues restores the contact map. Another new contact-assisted 

threading algorithm CATHER [64] (contact-assisted THreadER), developed in 2020, uses 

both conventional sequential profiles and contact maps predicted by a deep learning-based 

method MapPred [98]. A very recent method ThreaderAI [65] integrates deep learning-

based contact information with traditional sequential and structural features by formulating 

the task of threading as the classical computer vision’s classification problem. This 

work introduces a deep residual neural network to predict query-template alignments. 

Based on the reported results of the above methods, contact-assisted threading methods 

significantly outperform profile-based threading methods by a large margin, particularly for 

low-homology targets.

Our in-house threading method [16], developed in 2019, integrates the standard threading 

technique along with inter-residue contact information predicted by the state-of-the-art ultra-

deep learning-based method RaptorX [56]. First, our method applies the standard threading 

technique to select the top templates based on the Z-score and then applies the contact 

map overlap score using Al-Eigen along with the Z-score to calculate the final score for 

selecting the best-fit template. Based on large-scale bench-marking results, this method 

outperforms profile-based threading method MUSTER as well as other contact-assisted 

threading methods EigenTHREADER and map_align.

3.4 Significance of Contact Maps Quality in Threading

While incorporating contact information into threading is highly effective, our recent study 

[99] shows the impact of diverse quality of contact maps on contact-assisted threading 

performance in that integrating high-quality contacts having the Matthews correlation 

coefficient (MCC) ≥0.5 results in improved threading performance for ~30% of the cases, 

while low-quality contacts having MCC <0.35 degrade the threading performance for 50% 

of the cases. The results reveal the reciprocal coupling between the quality of predicted 

contact maps and contact-assisted threading performance and indicate that the rapid 

advancement in contact prediction methods powered by deep learning can synergistically 

assist contact-assisted threading, leading to improved low-homology protein modeling.

3.5 Growth of Protein Sequence Databases and Its Implication in Threading

Since most contact map predictions, secondary structure predictions, and sequence profiles 

depend on the evolutionary signal derived from multiple sequence alignments (MSA) 

(see Note 2), the adequate number of homologous sequences is critical to the success 

of these approaches. This limitation can be largely overcome by taking advantage of the 

fast-paced growth of whole-genome sequence databases such as the nr database compiled 

by the National Center for Biotechnology Information (NCBI), UniRef [100], UniProt 

[101], Uniclust [102], as well as metagenome databases from the European Bioinformatics 

Institute (EBI) Meta-genomics [103, 104] and Metaclust [105]. For instance, with the 

2.Multiple sequence alignment refers to the alignment of evolutionary-related protein sequences.
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addition of two billion metagenomic protein sequences, there is a significant increase in 

the number of families of unknown structures, which can now be reliably modeled by using 

the coevolutionary information [62]. A recent paper [106] demonstrates improved protein 

structure prediction through marine metagenomics for low-homology proteins, illustrating 

the potential usefulness of growing sequence databases on protein structure prediction. Two 

newest emerging sequence databases, BFD [107] and MGnify [108], may further enrich 

the evolutionary information. Recently, DeepMSA [109] method for generating multiple 

sequence alignment information shows the benefit of generating deep multiple sequence 

alignment by combining the multiple sequence databases for threading as well as contact 

predictions.

3.6 Discussion

The improved performance of contact-assisted threading methods is attributed to 

successfully integrating inter-residue contact information along with traditional linear and 

nonlinear threading features. Although contact-assisted threading approaches have witnessed 

promising progress so far, but there is still room for improvement with the advancement 

of deep learning-based inter-residue distance prediction [6, 7, 110–113] instead of binary 

contacts (see Note 3). A protein can be represented by a 2D inter-residue distance map, 

where a distance map is a square, symmetric matrix with vertices corresponding to 

residues of the protein and an edge indicates the distance between a residue pair. As 

distances carry more information than contacts [85], recent distance-based threading method 

DeepThreader [85] shows further improvement, particularly for low-homology threading, 

by outperforming existing contact-assisted threading approaches. Inspired by the promising 

results, CEthreader method is extended to distance-guided threading method DEthreader in 

the recently concluded 14th critical assessment of protein structure prediction (CASP14) 

experiment (see Note 4) by adding a distance map-based energy term in the threading 

scoring function. Similarly, CATHER has also replaced contacts with distances in CASP14. 

Our most recent threading method DisCovER [71] (distance- and orientation-based 

Covariational threadER) goes one step further by effectively integrating information from 

inter-residue distance and orientation along with the topological network neighborhood (see 
Note 5) of a query-template alignment. DisCovER shows the usefulness of incorporating 

inter-residue orientation along with distance information together with the neighborhood 

effect induced by the query-template alignment, leading to improved threading performance.

While no single-template threading method works well for all types of targets [13], multiple-

template approaches as well as meta-approaches work better in protein structure prediction 

[41, 45, 66]. For instance, previous multiple-template approaches [45, 114–119] demonstrate 

their superior performance over the best single-template threading method by attaining 

better alignments. Moreover, meta-approaches [41, 66, 120] show promising results over 

individual approaches, particularly for distantly homologous proteins. In the case of meta-

servers, there is a need to select the top model based on various scoring functions by 

3.A binary contact indicates that the distance between a residue pair is smaller than a given distance threshold, typically 8 Å.
4.CASP is a community-wide blind assessment of protein structure prediction, taking place in each alternative year since 1994.
5.Network neighborhood attempts to capture the similarity between the neighboring residues. It works on the assumption that a pair of 
query-template residues are likely to be aligned if their adjacent residues are also aligned.

Bhattacharya et al. Page 8

Methods Mol Biol. Author manuscript; available in PMC 2023 July 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



scoring predicted 3D models using model quality assessment programs (MQAPs), including 

single-model [121–130] and consensus [131–134] methods. Furthermore, even when using 

the most advanced template-based modeling pipeline, predicted models often fail to reach 

near-native accuracy. Protein structure refinement methods [135–144] are needed to bring 

these moderately accurate predicted models closer to the native state.

Acknowledgments

This work was supported in part by the National Science Foundation (IIS2030722, DBI1942692 to DB) and the 
National Institute of General Medical Sciences (R35GM138146 to DB).

References

1. Dill KA, MacCallum JL (2012) The protein-folding problem, 50 years on. Science 338: 1042–1046. 
10.1126/science.1219021 [PubMed: 23180855] 

2. Baker D, Sali A (2001) Protein structure prediction and structural genomics. Science 294: 93–96. 
10.1126/science.1065659 [PubMed: 11588250] 

3. Jones DT, Taylor WR, Thornton JM (1992) A new approach to protein fold recognition. Nature 
358:86–89. 10.1038/358086a0 [PubMed: 1614539] 

4. Moult J, Fidelis K, Kryshtafovych A, Schwede T, Tramontano A (2014) Critical assessment of 
methods of protein structure prediction (CASP) — round x. Proteins 82: 1–6. 10.1002/prot.24452

5. Wang S, Li W, Zhang R, Liu S, Xu J (2016) CoinFold: a web server for protein contact prediction 
and contact-assisted protein folding. Nucleic Acids Res 44:W361–W366. 10.1093/nar/gkw307 
[PubMed: 27112569] 

6. Yang J, Anishchenko I, Park H, Peng Z, Ovchinnikov S, Baker D (2020) Improved protein 
structure prediction using predicted interresidue orientations. PNAS 117:1496–1503. 10.1073/
pnas.1914677117 [PubMed: 31896580] 

7. Greener JG, Kandathil SM, Jones DT (2019) Deep learning extends de novo protein modelling 
coverage of genomes using iteratively predicted structural constraints. Nat Commun 10:1–13. 
10.1038/s41467-019-11994-0 [PubMed: 30602773] 

8. Adhikari B, Bhattacharya D, Cao R, Cheng J (2015) CONFOLD: residue-residue contact-guided ab 
initio protein folding. Proteins 83: 1436–1449. 10.1002/prot.24829 [PubMed: 25974172] 

9. Adhikari B, Cheng J (2018) CONFOLD2: improved contact-driven ab initio protein structure 
modeling. BMC Bioinformatics 19: 22. 10.1186/s12859-018-2032-6 [PubMed: 29370750] 

10. Marks DS, Colwell LJ, Sheridan R, Hopf TA, Pagnani A, Zecchina R, Sander C (2011) Protein 
3D structure computed from evolutionary sequence variation. PLoS One 6:e28766. 10.1371/
journal.pone.0028766 [PubMed: 22163331] 

11. Roche R, Bhattacharya S, Bhattacharya D (2020) Hybridized distance- and contact-based 
hierarchical structure modeling for folding soluble and membrane proteins. PLoS Comput Biol 
17:e1008753. 10.1371/journal.pcbi.1008753

12. Xu J (2019) Distance-based protein folding powered by deep learning. PNAS 116: 16856–16865. 
10.1073/pnas.1821309116 [PubMed: 31399549] 

13. Zhang Y (2008) Progress and challenges in protein structure prediction. Curr Opin Struct Biol 
18:342–348. 10.1016/j.sbi.2008.02.004 [PubMed: 18436442] 

14. Xu J, Li M, Kim D, Xu Y (2003) Raptor: optimal protein threading by linear programming. J 
Bioinforma Comput Biol 01:95–117. 10.1142/S0219720003000186

15. Källberg M, Wang H, Wang S, Peng J, Wang Z, Lu H, Xu J (2012) Template-based 
protein structure modeling using the RaptorX web server. Nat Protoc 7:1511–1522. 10.1038/
nprot.2012.085 [PubMed: 22814390] 

16. Bhattacharya S, Bhattacharya D (2019) Does inclusion of residue-residue contact information 
boost protein threading? Proteins 87: 596–606. 10.1002/prot.25684 [PubMed: 30882932] 

Bhattacharya et al. Page 9

Methods Mol Biol. Author manuscript; available in PMC 2023 July 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



17. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped 
BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids 
Res 25:3389–3402. 10.1093/nar/25.17.3389 [PubMed: 9254694] 

18. Wu S, Zhang Y (2008) MUSTER: improving protein sequence profile–profile alignments by using 
multiple sources of structure information. Proteins 72:547–556. 10.1002/prot.21945 [PubMed: 
18247410] 

19. Wu S, Zhang Y (2010) Recognizing protein substructure similarity using segmental threading. 
Structure 18:858–867. 10.1016/j.str.2010.04.007 [PubMed: 20637422] 

20. Buchan DWA, Jones DT (2017) EigenTHREADER: analogous protein fold recognition by efficient 
contact map threading. Bioinformatics 33:2684–2690. 10.1093/bioinformatics/btx217 [PubMed: 
28419258] 

21. Lobley A, Sadowski MI, Jones DT (2009) pGenTHREADER and pDomTHREADER: new 
methods for improved protein fold recognition and superfamily discrimination. Bioinformatics 
25:1761–1767. 10.1093/bioinformatics/btp302 [PubMed: 19429599] 

22. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE 
(2000) The protein data bank. Nucleic Acids Res 28:235–242. 10.1093/nar/28.1.235 [PubMed: 
10592235] 

23. Moult J (1996) The current state of the art in protein structure prediction. Curr Opin Biotechnol 
7:422–427. 10.1016/S0958-1669(96)80118-2 [PubMed: 8768901] 

24. Bowie JU, Luthy R, Eisenberg D (1991) A method to identify protein sequences that fold into 
a known three-dimensional structure. Science 253:164–170. 10.1126/science.1853201 [PubMed: 
1853201] 

25. Petrey D, Honig B (2005) Protein structure prediction: inroads to biology. Mol Cell 20: 811–819. 
10.1016/j.molcel.2005.12.005 [PubMed: 16364908] 

26. Kinch LN, Grishin NV (2002) Evolution of protein structures and functions. Curr Opin Struct Biol 
12:400–408. 10.1016/S0959-440X(02)00338-X [PubMed: 12127461] 

27. Zhang Y, Skolnick J (2005) The protein structure prediction problem could be solved using the 
current PDB library. PNAS 102: 1029–1034. 10.1073/pnas.0407152101 [PubMed: 15653774] 

28. Yang Y, Faraggi E, Zhao H, Zhou Y (2011) Improving protein fold recognition and template-
based modeling by employing probabilistic-based matching between predicted one-dimensional 
structural properties of query and corresponding native properties of templates. Bioinformatics 
27:2076–2082. 10.1093/bioinformatics/btr350 [PubMed: 21666270] 

29. Ma J, Wang S, Zhao F, Xu J (2013) Protein threading using context-specific alignment potential. 
Bioinformatics 29:i257–i265. 10.1093/bioinformatics/btt210 [PubMed: 23812991] 

30. Peng J, Xu J (2010) Low-homology protein threading. Bioinformatics 26:i294–i300. 10.1093/
bioinformatics/btq192 [PubMed: 20529920] 

31. Söding J (2005) Protein homology detection by HMM–HMM comparison. Bioinformatics 21:951–
960. 10.1093/bioinformatics/bti125 [PubMed: 15531603] 

32. Peng J, Xu J (2009) Boosting protein threading accuracy. In: Batzoglou S (ed) Research in 
computational molecular biology. Springer, Berlin Heidelberg, pp 31–45

33. Ma J, Peng J, Wang S, Xu J (2012) A conditional neural fields model for protein threading. 
Bioinformatics 28:i59–i66. 10.1093/bioinformatics/bts213 [PubMed: 22689779] 

34. Jaroszewski L, Rychlewski L, Li Z, Li W, Godzik A (2005) FFAS03: a server for profile–
profile sequence alignments. Nucleic Acids Res 33:W284–W288. 10.1093/nar/gki418 [PubMed: 
15980471] 

35. Rychlewski L, Li W, Jaroszewski L, Godzik A (2000) Comparison of sequence profiles. Strategies 
for structural predictions using sequence information. Protein Sci 9:232–241. 10.1110/ps.9.2.232 
[PubMed: 10716175] 

36. Cheng J, Baldi P (2006) A machine learning information retrieval approach to protein fold 
recognition. Bioinformatics 22:1456–1463. 10.1093/bioinformatics/btl102 [PubMed: 16547073] 

37. Marti-Renom MA, Madhusudhan MS, Sali A (2004) Alignment of protein sequences by their 
profiles. Protein Sci 13:1071–1087. 10.1110/ps.03379804 [PubMed: 15044736] 

Bhattacharya et al. Page 10

Methods Mol Biol. Author manuscript; available in PMC 2023 July 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



38. Ginalski K, Pas J, Wyrwicz LS, Grotthuss M v, Bujnicki JM, Rychlewski L (2003) ORFeus: 
detection of distant homology using sequence profiles and predicted secondary structure. Nucleic 
Acids Res 31:3804–3807. 10.1093/nar/gkg504 [PubMed: 12824423] 

39. Zhou H, Zhou Y (2005) Fold recognition by combining sequence profiles derived from evolution 
and from depth-dependent structural alignment of fragments. Proteins 58: 321–328. 10.1002/
prot.20308 [PubMed: 15523666] 

40. Jones DT (1999) GenTHREADER: an efficient and reliable protein fold recognition method for 
genomic sequences 11 Edited by B. Honig. J Mol Biol 287:797–815. 10.1006/jmbi.1999.2583

41. Wu S, Zhang Y (2007) LOMETS: a local meta-threading-server for protein structure prediction. 
Nucleic Acids Res 35:3375–3382. 10.1093/nar/gkm251 [PubMed: 17478507] 

42. Gniewek P, Kolinski A, Kloczkowski A, Gront D (2014) BioShell-threading: versatile Monte 
Carlo package for protein 3D threading. BMC Bioinformatics 15:22. 10.1186/1471-2105-15-22 
[PubMed: 24444459] 

43. Rost B, Schneider R, Sander C (1997) Protein fold recognition by prediction-based threading 11 
Edited by F. E. Cohen. J Mol Biol 270: 471–480. 10.1006/jmbi.1997.1101 [PubMed: 9237912] 

44. Olmea O, Rost B, Valencia A (1999) Effective use of sequence correlation and conservation in fold 
recognition 11 Edited by J. M. Thornton. J Mol Biol 293:1221–1239. 10.1006/jmbi.1999.3208 
[PubMed: 10547297] 

45. Peng J, Xu J (2011) A multiple-template approach to protein threading. Proteins 79: 1930–1939. 
10.1002/prot.23016 [PubMed: 21465564] 

46. Xu Y, Xu D (2000) Protein threading using PROSPECT: design and evaluation. Proteins 40:343–
354. 10.1002/1097-0134(20000815)40:3<343::AIDPROT10>3.0.CO;2-S [PubMed: 10861926] 

47. Ma J, Wang S, Wang Z, Xu J (2014) MRFalign: protein homology detection through alignment of 
Markov random fields. PLoS Comput Biol 10:e1003500. 10.1371/journal.pcbi.1003500 [PubMed: 
24675572] 

48. Yan R, Xu D, Yang J, Walker S, Zhang Y (2013) A comparative assessment and analysis of 
20 representative sequence alignment methods for protein structure prediction. Sci Rep 3:2619. 
10.1038/srep02619 [PubMed: 24018415] 

49. Lee SY, Skolnick J (2010) TASSER_WT: a protein structure prediction algorithm with accurate 
predicted contact restraints for difficult protein targets. Biophys J 99:3066–3075. 10.1016/
j.bpj.2010.09.007 [PubMed: 21044605] 

50. Jones DT, Buchan DWA, Cozzetto D, Pontil M (2012) PSICOV: precise structural contact 
prediction using sparse inverse covariance estimation on large multiple sequence alignments. 
Bioinformatics 28:184–190. 10.1093/bioinformatics/btr638 [PubMed: 22101153] 

51. Seemayer S, Gruber M, Söding J (2014) CCMpred—fast and precise prediction of protein 
residue–residue contacts from correlated mutations. Bioinformatics 30:3128–3130. 10.1093/
bioinformatics/btu500 [PubMed: 25064567] 

52. Kaján L, Hopf TA, Kalaš M, Marks DS, Rost B (2014) FreeContact: fast and free 
software for protein contact prediction from residue co-evolution. BMC Bioinformatics 15:85. 
10.1186/1471-2105-15-85 [PubMed: 24669753] 

53. Jones DT, Singh T, Kosciolek T, Tetchner S (2015) MetaPSICOV: combining coevolution methods 
for accurate prediction of contacts and long range hydrogen bonding in proteins. Bioinformatics 
31:999–1006. 10.1093/bioinformatics/btu791 [PubMed: 25431331] 

54. Adhikari B, Hou J, Cheng J (2018) DNCON2: improved protein contact prediction using two-
level deep convolutional neural networks. Bioinformatics 34:1466–1472. 10.1093/bioinformatics/
btx781 [PubMed: 29228185] 

55. Hanson J, Paliwal K, Litfin T, Yang Y, Zhou Y (2018) Accurate prediction of protein 
contact maps by coupling residual two-dimensional bidirectional long short-term memory with 
convolutional neural networks. Bioinformatics 34:4039–4045. 10.1093/bioinformatics/bty481 
[PubMed: 29931279] 

56. Wang S, Sun S, Li Z, Zhang R, Xu J (2017) Accurate De novo prediction of protein contact map 
by ultra-deep learning model. PLoS Comput Biol 13:e1005324. 10.1371/journal.pcbi.1005324 
[PubMed: 28056090] 

Bhattacharya et al. Page 11

Methods Mol Biol. Author manuscript; available in PMC 2023 July 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



57. Ovchinnikov S, Kamisetty H, Baker D (2014) Robust and accurate prediction of residue–residue 
interactions across protein interfaces using evolutionary information. eLife 3: e02030. 10.7554/
eLife.02030 [PubMed: 24842992] 

58. Wang S, Li Z, Yu Y, Xu J (2017) Folding membrane proteins by deep transfer learning. Cell Syst 
5:202–211.e3. 10.1016/j.cels.2017.09.001 [PubMed: 28957654] 

59. Morcos F, Pagnani A, Lunt B, Bertolino A, Marks DS, Sander C, Zecchina R, Onuchic JN, Hwa 
T, Weigt M (2011) Direct-coupling analysis of residue coevolution captures native contacts across 
many protein families. PNAS 108:E1293–E1301. 10.1073/pnas.1111471108 [PubMed: 22106262] 

60. Kandathil SM, Greener JG, Jones DT (2019) Prediction of interresidue contacts with 
DeepMetaPSICOV in CASP13. Proteins 87: 1092–1099. 10.1002/prot.25779 [PubMed: 
31298436] 

61. He B, Mortuza SM, Wang Y, Shen H-B, Zhang Y (2017) NeBcon: protein contact map prediction 
using neural network training coupled with naı¨ve Bayes classifiers. Bioinformatics 33:2296–
2306. 10.1093/bioinformatics/btx164 [PubMed: 28369334] 

62. Ovchinnikov S, Park H, Varghese N, Huang P-S, Pavlopoulos GA, Kim DE, Kamisetty H, 
Kyrpides NC, Baker D (2017) Protein structure determination using metagenome sequence data. 
Science 355:294–298. 10.1126/science.aah4043 [PubMed: 28104891] 

63. Zheng W, Wuyun Q, Li Y, Mortuza SM, Zhang C, Pearce R, Ruan J, Zhang Y (2019) Detecting 
distant-homology protein structures by aligning deep neural-network based contact maps. PLoS 
Comput Biol 15: e1007411. 10.1371/journal.pcbi.1007411 [PubMed: 31622328] 

64. Du Z, Pan S, Wu Q, Peng Z, Yang J (2020) CATHER: a novel threading algorithm with predicted 
contacts. Bioinformatics 36:2119–2125. 10.1093/bioinformatics/btz876 [PubMed: 31790141] 

65. Zhang H, Shen Y (2020) Template-based prediction of protein structure with deep learning. BMC 
Genomics 21:878. 10.1186/s12864-020-07249-8 [PubMed: 33372607] 

66. Zheng W, Zhang C, Wuyun Q, Pearce R, Li Y, Zhang Y (2019) LOMETS2: improved meta-
threading server for fold-recognition and structure-based function annotation for distant-homology 
proteins. Nucleic Acids Res 47:W429–W436. 10.1093/nar/gkz384 [PubMed: 31081035] 

67. Remmert M, Biegert A, Hauser A, Söding J (2012) HHblits: lightning-fast iterative protein 
sequence searching by HMM-HMM alignment. Nat Methods 9:173–175. 10.1038/nmeth.1818

68. McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. 
Bioinformatics 16:404–405. 10.1093/bioinformatics/16.4.404 [PubMed: 10869041] 

69. Heffernan R, Yang Y, Paliwal K, Zhou Y (2017) Capturing non-local interactions by long 
short-term memory bidirectional recurrent neural networks for improving prediction of protein 
secondary structure, backbone angles, contact numbers and solvent accessibility. Bioinformatics 
33:2842–2849. 10.1093/bioinformatics/btx218 [PubMed: 28430949] 

70. Wang S, Peng J, Ma J, Xu J (2016) Protein secondary structure prediction using deep convolutional 
neural fields. Sci Rep 6:18962. 10.1038/srep18962 [PubMed: 26752681] 

71. Bhattacharya S, Roche R, Bhattacharya D (2020) DisCovER: distance- and orientation-
based covariational threading for weakly homologous proteins. bioRxiv. 2020.01.31.923409 
10.1101/2020.01.31.923409

72. Wu F, Xu J (2021) Deep template-based protein structure prediction. PLoS Comput Biol 
17:e1008954. 10.1371/journal.pcbi.1008954 [PubMed: 33939695] 

73. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of 
hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637. 10.1002/bip.360221211 
[PubMed: 6667333] 

74. Heinig M, Frishman D (2004) STRIDE: a web server for secondary structure assignment from 
known atomic coordinates of proteins. Nucleic Acids Res 32:W500–W502. 10.1093/nar/gkh429 
[PubMed: 15215436] 

75. Skolnick J, Kihara D (2001) Defrosting the frozen approximation: PROSPECTOR— a new 
approach to threading. Proteins 42: 319–331. 10.1002/1097-0134(20010215)42:3<319::AID-
PROT30>3.0.CO;2-A [PubMed: 11151004] 

76. Skolnick J, Kihara D, Zhang Y (2004) Development and large scale benchmark testing of 
the PROSPECTOR_3 threading algorithm. Proteins 56:502–518. 10.1002/prot.20106 [PubMed: 
15229883] 

Bhattacharya et al. Page 12

Methods Mol Biol. Author manuscript; available in PMC 2023 July 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



77. Zhang Y, Skolnick J (2004) Scoring function for automated assessment of protein structure 
template quality. Proteins 57:702–710. 10.1002/prot.20264 [PubMed: 15476259] 

78. Kabsch W (1976) A solution for the best rotation to relate two sets of vectors. Acta Crystallogr A 
32:922–923. 10.1107/S0567739476001873

79. Zemla A (2003) LGA: a method for finding 3D similarities in protein structures. Nucleic Acids 
Res 31:3370–3374. 10.1093/nar/gkg571 [PubMed: 12824330] 

80. Mariani V, Biasini M, Barbato A, Schwede T (2013) lDDT: a local superposition-free score for 
comparing protein structures and models using distance difference tests. Bioinformatics 29:2722–
2728. 10.1093/bioinformatics/btt473 [PubMed: 23986568] 

81. Xu J, Zhang Y (2010) How significant is a protein structure similarity with TM-score =0.5? 
Bioinformatics 26:889–895. 10.1093/bioinformatics/btq066 [PubMed: 20164152] 

82. Bienkowska J, Lathrop R (2005) Threading algorithms. In: Encyclopedia of genetics, genomics, 
proteomics and bioinformatics. American Cancer Society

83. Xu Y, Xu D, Uberbacher EC (1998) An efficient computational method for globally optimal 
threading. J Comput Biol 5:597–614. 10.1089/cmb.1998.5.597 [PubMed: 9773353] 

84. Akutsu T, Miyano S (1999) On the approximation of protein threading. Theor Comput Sci 
210:261–275. 10.1016/S0304-3975(98)00089-9

85. Zhu J, Wang S, Bu D, Xu J (2018) Protein threading using residue co-variation and deep learning. 
Bioinformatics 34:i263–i273. 10.1093/bioinformatics/bty278 [PubMed: 29949980] 

86. Venclovas Č (2003) Comparative modeling in CASP5: Progress is evident, but alignment errors 
remain a significant hindrance. Proteins 53:380–388. 10.1002/prot.10591 [PubMed: 14579326] 

87. Shibberu Y, Holder A, Lutz K (2010) Fast protein structure alignment. In: Borodovsky M, 
Gogarten JP, Przytycka TM, Rajasekaran S (eds) Bioinformatics research and applications. 
Springer, Berlin, Heidelberg, pp 152–165

88. Shibberu Y, Holder A (2011) A spectral approach to protein structure alignment. IEEE/ACM Trans 
Comput Biol Bioinform 8:867–875. 10.1109/TCBB.2011.24 [PubMed: 21301031] 

89. Teichert F, Bastolla U, Porto M (2007) SABERTOOTH: protein structural alignment based 
on a vectorial structure representation. BMC Bioinformatics 8:425. 10.1186/1471-2105-8-425 
[PubMed: 17974011] 

90. Di Lena P, Fariselli P, Margara L, Vassura M, Casadio R (2010) Fast overlapping of protein contact 
maps by alignment of eigenvectors. Bioinformatics 26:2250–2258. 10.1093/bioinformatics/btq402 
[PubMed: 20610612] 

91. Teichert F, Minning J, Bastolla U, Porto M (2010) High quality protein sequence alignment 
by combining structural profile prediction and profile alignment using SABERTOOTH. BMC 
Bioinformatics 11: 251. 10.1186/1471-2105-11-251 [PubMed: 20470364] 

92. Malod-Dognin N, Pržulj N (2014) GR-align: fast and flexible alignment of protein 3D structures 
using graphlet degree similarity. Bioinformatics 30:1259–1265. 10.1093/bioinformatics/btu020 
[PubMed: 24443377] 

93. Skolnick J, Zhou H (2017) Why is there a glass ceiling for threading based protein structure 
prediction methods? J Phys Chem B 121: 3546–3554. 10.1021/acs.jpcb.6b09517 [PubMed: 
27748116] 

94. Li Y, Hu J, Zhang C, Yu D-J, Zhang Y (2019) ResPRE: high-accuracy protein contact prediction 
by coupling precision matrix with deep residual neural networks. Bioinformatics 35:4647–4655. 
10.1093/bioinformatics/btz291 [PubMed: 31070716] 

95. Taylor WR (1999) Protein structure comparison using iterated double dynamic programming. 
Protein Sci 8:654–665. 10.1110/ps.8.3.654 [PubMed: 10091668] 

96. Kamisetty H, Ovchinnikov S, Baker D (2013) Assessing the utility of coevolution-based residue–
residue contact predictions in a sequence- and structure-rich era. PNAS 110: 15674–15679. 
10.1073/pnas.1314045110 [PubMed: 24009338] 

97. Söding J (2017) Big-data approaches to protein structure prediction. Science 355:248–249. 
10.1126/science.aal4512 [PubMed: 28104854] 

98. Wu Q, Peng Z, Anishchenko I, Cong Q, Baker D, Yang J (2020) Protein contact prediction using 
metagenome sequence data and residual neural networks. Bioinformatics 36: 41–48. 10.1093/
bioinformatics/btz477 [PubMed: 31173061] 

Bhattacharya et al. Page 13

Methods Mol Biol. Author manuscript; available in PMC 2023 July 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



99. Bhattacharya S, Bhattacharya D (2020) Evaluating the significance of contact maps in 
low-homology protein modeling using contact-assisted threading. Sci Rep 10:2908. 10.1038/
s41598-020-59834-2 [PubMed: 32076047] 

100. Suzek BE, Wang Y, Huang H, PB MG, Wu CH, The UniProt Consortium (2015) Uni-Ref 
clusters: a comprehensive and scalable alternative for improving sequence similarity searches. 
Bioinformatics 31:926–932. 10.1093/bioinformatics/btu739 [PubMed: 25398609] 

101. The UniProt Consortium (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids 
Res 47:D506–D515. 10.1093/nar/gky1049 [PubMed: 30395287] 

102. Mirdita M, von den Driesch L, Galiez C, Martin MJ, Söding J, Steinegger M (2017) Uniclust 
databases of clustered and deeply annotated protein sequences and alignments. Nucleic Acids 
Res 45:D170–D176. 10.1093/nar/gkw1081 [PubMed: 27899574] 

103. Mitchell AL, Scheremetjew M, Denise H, Potter S, Tarkowska A, Qureshi M, Salazar GA, 
Pesseat S, Boland MA, Hunter FMI, ten Hoopen P, Alako B, Amid C, Wilkinson DJ, Curtis 
TP, Cochrane G, Finn RD (2018) EBI metagenomics in 2017: enriching the analysis of 
microbial communities, from sequence reads to assemblies. Nucleic Acids Res 46: D726–D735. 
10.1093/nar/gkx967 [PubMed: 29069476] 

104. Markowitz VM, Chen I- MA, Chu K, Szeto E, Palaniappan K, Pillay M, Ratner A, Huang J, 
Pagani I, Tringe S, Huntemann M, Billis K, Varghese N, Tennessen K, Mavromatis K, Pati A, 
Ivanova NN, Kyrpides NC (2014) IMG/M 4 version of the integrated metagenome comparative 
analysis system. Nucleic Acids Res 42:D568–D573. 10.1093/nar/gkt919 [PubMed: 24136997] 

105. Steinegger M, Söding J (2018) Clustering huge protein sequence sets in linear time. Nat Commun 
9:2542. 10.1038/s41467-018-04964-5 [PubMed: 29959318] 

106. Wang Y, Shi Q, Yang P, Zhang C, Mortuza SM, Xue Z, Ning K, Zhang Y (2019) Fueling ab initio 
folding with marine metagenomics enables structure and function predictions of new protein 
families. Genome Biol 20:229. 10.1186/s13059-019-1823-z [PubMed: 31676016] 

107. Steinegger M, Mirdita M, Söding J (2019) Protein-level assembly increases protein 
sequence recovery from metagenomic samples manyfold. Nat Methods 16:603–606. 10.1038/
s41592-019-0437-4 [PubMed: 31235882] 

108. Mitchell AL, Almeida A, Beracochea M, Boland M, Burgin J, Cochrane G, Crusoe MR, Kale 
V, Potter SC, Richardson LJ, Sakharova E, Scheremetjew M, Korobeynikov A, Shlemov A, 
Kunyavskaya O, Lapidus A, Finn RD (2020) MGnify: the microbiome analysis resource in 2020. 
Nucleic Acids Res 48:D570–D578. 10.1093/nar/gkz1035 [PubMed: 31696235] 

109. Zhang C, Zheng W, Mortuza SM, Li Y, Zhang Y (2020) DeepMSA: constructing deep multiple 
sequence alignment to improve contact prediction and fold-recognition for distant-homology 
proteins. Bioinformatics 36:2105–2112. 10.1093/bioinformatics/btz863 [PubMed: 31738385] 

110. Ding W, Gong H (2020) Predicting the real-valued inter-residue distances for proteins. Adv Sci 
7:2001314. 10.1002/advs.202001314

111. Adhikari B (2020) A fully open-source framework for deep learning protein real-valued distances. 
Sci Rep 10:13374. 10.1038/s41598-020-70181-0 [PubMed: 32770096] 

112. Wu T, Guo Z, Hou J, Cheng J (2020) Deep-Dist: real-value inter-residue distance prediction with 
deep residual convolutional network. bioRxiv. 2020.03.17.995910 10.1101/2020.03.17.995910

113. Kukic P, Mirabello C, Tradigo G, Walsh I, Veltri P, Pollastri G (2014) Toward an accurate 
prediction of inter-residue distances in proteins using 2D recursive neural networks. BMC 
Bioinformatics 15:6. 10.1186/1471-2105-15-6 [PubMed: 24410833] 

114. Larsson P, Wallner B, Lindahl E, Elofsson A (2008) Using multiple templates to improve quality 
of homology models in automated homology modeling. Protein Sci 17:990–1002. 10.1110/
ps.073344908 [PubMed: 18441233] 

115. Cheng J (2008) A multi-template combination algorithm for protein comparative modeling. BMC 
Struct Biol 8:18. 10.1186/1472-6807-8-18 [PubMed: 18366648] 

116. Fernandez-Fuentes N, Madrid-Aliste CJ, Rai BK, Fajardo JE, Fiser A (2007) M4T: a comparative 
protein structure modeling server. Nucleic Acids Res 35:W363–W368. 10.1093/nar/gkm341 
[PubMed: 17517764] 

Bhattacharya et al. Page 14

Methods Mol Biol. Author manuscript; available in PMC 2023 July 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



117. Rykunov D, Steinberger E, Madrid-Aliste CJ, Fiser A (2009) Improved scoring function 
for comparative modeling using the M4T method. J Struct Funct Genom 10:95–99. 10.1007/
s10969-008-9044-9

118. Joo K, Lee J, Lee S, Seo J-H, Lee SJ, Lee J (2007) High accuracy template based modeling by 
global optimization. Proteins 69:83–89. 10.1002/prot.21628

119. Meier A, Söding J (2015) Automatic prediction of protein 3D structures by probabilistic multi-
template homology modeling. PLoS Comput Biol 11:e1004343. 10.1371/journal.pcbi.1004343 
[PubMed: 26496371] 

120. Ginalski K, Elofsson A, Fischer D, Rychlewski L (2003) 3D-jury: a simple approach to 
improve protein structure predictions. Bioinformatics 19:1015–1018. 10.1093/bioinformatics/
btg124 [PubMed: 12761065] 

121. Derevyanko G, Grudinin S, Bengio Y, Lamoureux G (2018) Deep convolutional networks 
for quality assessment of protein folds. Bioinformatics 34:4046–4053. 10.1093/bioinformatics/
bty494 [PubMed: 29931128] 

122. Karasikov M, Pagès G, Grudinin S (2019) Smooth orientation-dependent scoring 
function for coarse-grained protein quality assessment. Bioinformatics 35:2801–2808. 10.1093/
bioinformatics/bty1037 [PubMed: 30590384] 

123. Olechnovič K, Venclovas Č (2017) Voro-MQA: assessment of protein structure quality using 
interatomic contact areas. Proteins 85:1131–1145. 10.1002/prot.25278 [PubMed: 28263393] 

124. Ray A, Lindahl E, Wallner B (2012) Improved model quality assessment using ProQ2. BMC 
Bioinformatics 13:224. 10.1186/1471-2105-13-224 [PubMed: 22963006] 

125. Uziela K, Shu N, Wallner B, Elofsson A (2016) ProQ3: Improved model quality assessments 
using Rosetta energy terms. Sci Rep 6:33509. 10.1038/srep33509 [PubMed: 27698390] 

126. Uziela K, Menéndez Hurtado D, Shu N, Wallner B, Elofsson A (2017) ProQ3D: improved model 
quality assessments using deep learning. Bioinformatics 33:1578–1580. 10.1093/bioinformatics/
btw819 [PubMed: 28052925] 

127. Sato R, Ishida T (2019) Protein model accuracy estimation based on local structure 
quality assessment using 3D convolutional neural network. PLoS One 14:e0221347. 10.1371/
journal.pone.0221347 [PubMed: 31487288] 

128. Pagès G, Charmettant B, Grudinin S (2019) Protein model quality assessment using 3D oriented 
convolutional neural networks. Bioinformatics 35:3313–3319. 10.1093/bioinformatics/btz122 
[PubMed: 30874723] 

129. Shuvo MH, Bhattacharya S, Bhattacharya D (2020) QDeep: distance-based protein model quality 
estimation by residue-level ensemble error classifications using stacked deep residual neural 
networks. Bioinformatics 36:i285–i291. 10.1093/bioinformatics/btaa455 [PubMed: 32657397] 

130. Baldassarre F, Menéndez Hurtado D, Elofsson A, Azizpour H (2020) GraphQA: protein 
model quality assessment using graph convolutional networks. Bioinformatics 37:360. 10.1093/
bioinformatics/btaa714

131. Alapati R, Bhattacharya D (2018) clustQ: efficient protein decoy clustering using superposition-
free weighted internal distance comparisons. In: Proceedings of the 2018 ACM international 
conference on bioinformatics, computational biology, and health informatics. Association for 
Computing Machinery, New York, pp 307–314

132. Benkert P, Tosatto SCE, Schwede T (2009) Global and local model quality estimation at 
CASP8 using the scoring functions QMEAN and QMEANclust. Proteins 77:173–180. 10.1002/
prot.22532 [PubMed: 19705484] 

133. Cheng J, Wang Z, Tegge AN, Eickholt J (2009) Prediction of global and local quality of CASP8 
models by MULTICOM series. Proteins 77:181–184. 10.1002/prot.22487

134. McGuffin LJ, Roche DB (2010) Rapid model quality assessment for protein structure predictions 
using the comparison of multiple models without structural alignments. Bioinformatics 26:182–
188. 10.1093/bioinformatics/btp629 [PubMed: 19897565] 

135. Bhattacharya D (2019) refineD: improved protein structure refinement using machine 
learning based restrained relaxation. Bioinformatics 35:3320–3328. 10.1093/bioinformatics/
btz101 [PubMed: 30759180] 

Bhattacharya et al. Page 15

Methods Mol Biol. Author manuscript; available in PMC 2023 July 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



136. Wang D, Geng L, Zhao Y-J, Yang Y, Huang Y, Zhang Y, Shen H-B (2020) Artificial intelligence-
based multi-objective optimization protocol for protein structure refinement. Bioinformatics 
36:437–448. 10.1093/bioinformatics/btz544 [PubMed: 31274151] 

137. Lee GR, Won J, Heo L, Seok C (2019) GalaxyRefine2: simultaneous refinement of inaccurate 
local regions and overall protein structure. Nucleic Acids Res 47:W451–W455. 10.1093/nar/
gkz288 [PubMed: 31001635] 

138. Heo L, Feig M (2020) High-accuracy protein structures by combining machine-learning with 
physics-based refinement. Proteins 88: 637–642. 10.1002/prot.25847 [PubMed: 31693199] 

139. Park H, Lee GR, Kim DE, Anishchenko I, Cong Q, Baker D (2019) High-accuracy refinement 
using Rosetta in CASP13. Proteins 87:1276–1282. 10.1002/prot.25784 [PubMed: 31325340] 

140. Heo L, Arbour CF, Feig M (2019) Driven to near-experimental accuracy by refinement 
via molecular dynamics simulations. Proteins 87: 1263–1275. 10.1002/prot.25759 [PubMed: 
31197841] 

141. Bhattacharya D, Cheng J (2013) 3Drefine: consistent protein structure refinement by optimizing 
hydrogen bonding network and atomic-level energy minimization. Proteins 81:119–131. 10.1002/
prot.24167 [PubMed: 22927229] 

142. Bhattacharya D, Nowotny J, Cao R, Cheng J (2016) 3Drefine: an interactive web server for 
efficient protein structure refinement. Nucleic Acids Res 44:W406–W409. 10.1093/nar/gkw336 
[PubMed: 27131371] 

143. Bhattacharya D, Cheng J (2013) i3Drefine software for protein 3D structure refinement and 
its assessment in CASP10. PLoS One 8: e69648. 10.1371/journal.pone.0069648 [PubMed: 
23894517] 

144. Bhattacharya D, Cheng J (2013) Protein structure refinement by iterative fragment exchange. 
In: Proceedings of the international conference on bioinformatics, computational biology 
and biomedical informatics. Association for Computing Machinery, New York, pp 106–114. 
10.1145/2506583.2506601

Bhattacharya et al. Page 16

Methods Mol Biol. Author manuscript; available in PMC 2023 July 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
A representative protein 3D structure and its corresponding 2D binary contact map. (a) 

3D structure of a representative protein (PDB ID 1cc8A), (b) the corresponding 2D residue-

residue contact map, considering Cα atoms and a distance threshold of 8 Å
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Fig. 2. 
Contact map alignment. (a) contact map of a representative protein (PDB ID 1cc8A), (b) 

contact map of another representative protein (PDB ID 1wvnA), (c) sequence alignment of 

1cc8A and 1wvnA using Al-Eigen. In both cases, Cα atoms and the distance threshold of 8 

Å are considered. (d) 1wvnA (in rainbow) is structurally superimposed on 1cc8A (in gray)
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Table 1

Selected publicly accessible threading methods that implicitly or explicitly use contact information

Name (reference) Method Availability

PROSPECT (Xu and coworkers [46]) Divide-and-conquer algorithm http://compbio.ornl.gov/structure/prospect/

PROSPECTOR (Skolnick and coworkers 
[75, 76])

Hierarchical approach http://bioinformatics.danforthceneter.org/services/
threading.html

RAPTOR (Xu and coworkers [14]) Linear programming http://www.cs.uwaterloo.ca/~j3xu/
RAPTOR_form.htm

EigenTHREADER (Jones and coworkers 
[20])

Dynamic programming and 
eigendecomposition

http://bioinfadmin.cs.ucl.ac.uk/downloads/
eigenTHREADER/

map_align (Baker and coworkers [62]) Iterative double dynamic programming https://github.com/sokrypton/map_align

CEthreader (Zhang and coworkers [63]) Dynamic programming and 
eigendecomposition

https://zhanglab.ccmb.med.umich.edu/CEthreader/

CATHER (Yang and coworkers [64]) Iterative double dynamic programming https://yanglab.nankai.edu.cn/CATHER/

ThreaderAI (Shen and coworkers [65]) Deep residual neural network and 
dynamic programming

https://github.com/ShenLab/ThreaderAI
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