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Abstract: Inflammasome complexes and their integral receptor proteins have essential roles in reg-
ulating the innate immune response and inflammation at the post-translational level. Yet despite
their protective role, aberrant activation of inflammasome proteins and gain of function mutations in
inflammasome component genes seem to contribute to the development and progression of human
autoimmune and autoinflammatory diseases. In the past decade, our understanding of inflamma-
some biology and activation mechanisms has greatly progressed. We therefore provide an up-to-date
overview of the various inflammasomes and their known mechanisms of action. In addition, we
highlight the involvement of various inflammasomes and their pathogenic mechanisms in common
autoinflammatory, autoimmune and neurodegenerative diseases, including atherosclerosis, rheuma-
toid arthritis, systemic lupus erythematosus, inflammatory bowel disease, Alzheimer’s disease,
Parkinson’s disease, and multiple sclerosis. We conclude by speculating on the future avenues of
research needed to better understand the roles of inflammasomes in health and disease.

Keywords: inflammasome; interleukin 1; pyroptosis; autoinflammatory; autoimmune; neuroinflammatory
and neurogenerative disorders

1. Introduction

Inflammation is crucial in the protective immune response to harmful stimuli, such as
microbial insults or cell death, yet it must be tightly regulated, as excessive inflammation is
implicated in numerous systemic and chronic inflammatory diseases. Inflammation is initi-
ated when pattern-recognition receptors (PRRs) recognize pathogen-associated molecular
patterns (PAMPs) and/or danger-associated molecular patterns (DAMPs). This process
subsequently induces pro-inflammatory cytokine production via downstream signaling
pathways. PRRs can be either membrane-bound and sense extracellular signals, such as
Toll-like receptors (TLR), or cytosolic, such as nucleotide-binding domain and leucine-rich
repeat-containing receptors (NLRs), absent in melanoma 2 (AIM2)-like receptors (ALRs)
and tripartite motif (TRIM) receptors [1].

As we discuss in this review, certain NLRs, ALRs and TRIM receptors assemble
into inflammasome complexes that regulate inflammation at the post-translational level.
Typical inflammasome configurations generally consist of a sensor protein, the adaptor
apoptosis-associated speck-like protein containing CARD (ASC) and pro-caspase-1 [2].
NLR sensor proteins usually contain a central nucleotide-binding and oligomerization
domain (NACHT), a C-terminal leucine-rich repeats domain (LRR), and an N-terminal
effector domain that can be either a Pyrin domain (PYD) or a caspase recruitment do-
main (CARD) in the case of NLRC4 (Figure 1) [3]. NLRP1, specifically, also contains a
C-terminal CARD and a function-to-find domain (FIIND) [4]. ALR and Pyrin sensors
contain an N-terminal PYD but lack NACHT or LRR domains. Instead, these sensors
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have a C-terminal HIN200 double-stranded DNA (dsDNA) binding domain in the case
of ALR [5], and a zinc-finger domain (B-box), a coiled coil (CC) domain and C-terminal
B30.2 domain in the case of Pyrin [6]. Interaction of the sensor protein with their specific
activator results in the assembly of the inflammasome complex and the clustering of their
PYDs [7]. This allows the recruitment of the ASC adaptor protein composed of a PYD
and CARD and initiates the ASC polymerization into filaments. Cross-linking of these
filaments results in the formation of a speck-like macromolecular protein complex known
as the ASC speck. The exposed CARD domains of this complex subsequently recruit pro-
caspase 1 through CARD-CARD interactions resulting in its proximity-induced activation.
Inflammasome assembly and later activation facilitate pro-caspase-1 autoproteolysis into
active caspase-1, which in turn activates the pro-inflammatory cytokines interleukin (IL)-1β
and IL-18 (Figure 2) [8]. Caspase-1 also cleaves gasdermin D (GSDMD), after which the
N-terminal GSDMD domain oligomerizes to form transmembrane pores that facilitate
the release of intracellular contents and induce inflammatory cell death or pyroptosis.
Specifically, GSDMD-mediated pyroptosis enhances the release of IL-1β and IL-18 and
other alarmins, including high mobility group protein B1 (HMGB1) and IL-1α, that mediate
the inflammatory response.
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Figure 1. Domain organization of common inflammasome component proteins. NLRP1, NLRP3,
NLRP6, NLRP7, NLRP10, NLRP12 and NLRC4 belong to the nucleotide-binding domain and leucine-
rich repeat-containing receptor (NLR) protein family, which typically contains a central nucleotide-
binding and oligomerization domain (NACHT) domain, an N-terminal Pyrin domain (PYD) domain
and a C-terminal leucine-rich repeats (LRR) domain. NLRP1, NLRP10 and NLRC4 deviate from this
typical NLR structure. In addition to the common structure, NLRP1 contains a C-terminal function-to-
find domain (FIIND) and caspase recruitment domain (CARD), while NLRP10 lacks the LRR domain.
The NLRC4 does not have the N-terminal PYD domain but, instead, has an N-terminal CARD domain.
AIM2 belongs to the AIM2-like receptor (ALR) protein family and comprises an N-terminal PYD
domain and a C-terminal HIN200 domain. Finally, Pyrin consists of an N-terminal PYD domain, a
bZIP, B box, coiled-coil and an N-terminal B30.2 domain. Apoptosis-associated speck-like protein
containing CARD (ASC) acts as an adaptor protein, consisting of a PYD and CARD, which connects
the inflammasome sensor to pro-caspase through PYD and CARD interactions, respectively.
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Figure 2. Formation and activation of Pyrin, NLRP1 and AIM2 inflammasomes. (Left) NLRP1 inflam-
masome formation. Under homeostatic conditions, NLRP1 is inactivated through auto-inhibition or
by binding to the inhibitor dipeptidyl peptidases 8 and 9 (DPP8/9). The Kaposi sarcoma-associated
herpes virus protein ORF45 is shown to bind to the Linker 1 region, lifting the auto-inhibition and
DPP8/9 inhibition of NLRP1 and allowing NLRP1CT to assemble the inflammasome. Another activa-
tion mechanism of the NLRP1 is through proteasomal degradation of the NLRP1NT. When bacteria
or ubiquitin ligases ubiquitinate NLRP1, NLRP1 is directed to the proteasome, where NLRP1NT is de-
graded, and NLRP1CT is released for inflammasome assembly. The DPP8/9 inhibitor Val-boroPro can
also direct proteasomal degradation of NLRP1 and subsequent release of NLRP1CT. (Middle) Pyrin
inflammasome activation mechanism. RhoA activity is induced by geranylgeranylation (mevalonate
kinase pathway). Pyrin is subsequently phosphorylated by the RhoA effector kinases PKN1 and
PKN2, which then bind to the inhibitory protein 14-3-3. When PKN1/2 inhibiting substances are
present—i.e., TcdB, C3 toxin, VopS—or when the mevalonate kinase (MVK) pathway is not func-
tioning correctly, PKN1/2 is inactivated and reduced pyrin phosphorylation results in the release
of mature IL-1 and IL-18 from the pyrin inflammasome. The creation of the gasdermin D (GSDMD)
N-terminal fragment, which forms plasma membrane pores, further promotes the release of IL-1 and
IL-18. (Right) AIM2 canonical and non-canonical activation. The canonical activation, which does not
involve type I interferon (IFN) activation, is induced when dsDNA is directly recognized by AIM2,
triggering the inflammasome formation. On the contrary, the non-canonical activation depends on
IFN activity. It is principally involved in bacterial infections that escape the vacuoles, releasing a
small amount of DNA that activates cyclic-GMP-AMP synthase and IFI204. Secreted IFN exits the
cells and binds to IFN receptors, driving the downstream activation and inducing bacteriolysis which
releases large quantities of bacterial DNA recognized by the AIM2 inflammasome. The activated
AIM2 inflammasome drives the proteolytic maturation of IL-1β and IL-18 and the maturation of
GSDMD, which induces pyroptosis.
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Inflammasomes have gained a lot of attention in the past decades due to their
involvement in many inflammatory and autoimmune diseases and much research has
been focused on targeting these inflammasomes as potential anti-inflammatory therapy.
However, there is a lack of understanding on the biology and activation mechanisms
of many of the known inflammasome complexes and, although their involvement in
several human diseases is being uncovered, not much is known on the exact pathogenic
mechanisms. Understanding all of this is essential for the development of new therapies
for inflammasome-driven pathologies.

In this review, we will give a detailed overview of the different inflammasomes and
their known mechanisms of action. In addition, we will highlight the involvement of the
different inflammasomes and discuss what is known about their pathogenic mechanisms in
some of the most common autoinflammatory, autoimmune and neurodegenerative diseases.

2. Inflammasome Structures and Mechanisms of Action

Over the past two decades, several receptor proteins have been confirmed to assemble
into inflammasomes. However, the exact activation and regulation mechanisms have only
been well characterized for a few of these inflammasome complexes. Here, we give a brief
overview of recent advances in the activation mechanisms of several inflammasomes in
order to better understand their role in human diseases.

2.1. NLRP1

NLRP1 was the first NLR shown to form a cytosolic inflammasome complex that
specifically recruits and activates a downstream caspase-1 [9]. The human NLRP1 (hNLRP1)
is encoded by a single gene, differently from its murine counterpart, which instead is
encoded by three paralogues (NLRP1a, NLRP1b, and NLRP1c), with the latter considered
a pseudogene [10]. In addition, the expression and activation of mouse NLRP1 has been
mostly studied in myeloid lineage cells, such as macrophages, whereas human NLRP1 is
found to be primarily expressed at the epithelial barrier, including in keratinocytes and
bronchial epithelial cells [11].

hNLRP1 is the only NLR known to undergo constitutive post-translational autopro-
teolysis, at position Ser1213 between the subdomains ZU5 and UPA in the FIIND [12],
that results in the C-terminal (NLRP1CT) and N-terminal (NLRP1NT) portions remaining
noncovalently linked. Although only a fraction of the total NLRP1 protein undergoes
autoproteolysis [4], this event is essential for subsequent NLRP1 activation as the released
NLRP1CT self-oligomerizes and assembles the inflammasome [12,13]. Besides FIIND au-
tocleavage, hNLRP1 also undergoes N-terminal cleavage between the PYD and NACHT
domains. Interestingly, while the N-terminal PYD is fundamental for hNLRP1 activity, it is
not present in the mouse NLRP1 homolog [4]. Due to these differences between mice and
humans, the results of mouse studies could only partially contribute to understanding the
role of hNLRP1.

The hNLRP1 CARD motif can recruit caspase-1 directly, but the interaction can also be
stabilized by the PYD-CARD adaptor protein ASC. Indeed, ASC is necessary for caspase-1,
auto-processing caused by hNLRP1, but not for pyroptosis or IL-1 secretion [14]. An
auto-inhibitory role has also recently been attributed to the region between the PYD and
NACHT domains called Linker1; at steady state, the interaction between Linker1 and the
FIIND silences hNLRP1 activation in auto-inhibitory complexes (Figure 2) [15]. Another
mechanism of autoinhibition relies on dipeptidyl peptidases (DPP) 8 and 9. Because
the CARD-containing NLRP1CT can activate caspase-1, CARD-containing NLRP1CT is
sequestered in a ternary complex made up of full-length NLRP1 and DPP8 and/or DPP9
(Figure 2) [16,17].

Current understanding of NLRP1 inflammasome activation is largely limited to the
degradation of the NLRP1NT by the proteasome [18,19]. Direct activators, such as the
B. anthracis lethal toxin, can activate NLRP1 by degrading NLRP1NT via the ubiquitin
ligase UBR2, which liberates NLRP1CT for inflammasome assembly [18–20]. Indirect
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activators include the inhibitors of DPP8/9. As previously mentioned, DPP9 forms a
ternary complex with full-length NLRP1 and NLRP1CT to sequester it and prevent its
oligomerization [16,17,21]. The DPP8/9 inhibitor Val-boroPro weakens hNLRP1–DPP9
interaction and indirectly accelerates hNLRP1NT degradation, promoting inflammasome
activation [16].

The panel of stimuli sensed by NLRP1 is expanding. For example, Bauernfried et al.
discovered that NLRP1 binds directly to double-stranded RNA (dsRNA) through its LRR
domain [22]. In addition, Yang et al. identified the first viral protein—tegument protein
ORF45—that directly binds to and activates the NLRP1 inflammasome in human epithelial
or macrophage-like cell lines without the aid of the proteasome [15]. They also showed that
ORF45 induces NLRP1 inflammasome activation in human epithelial or macrophage-like
cell lines. Mechanistically, ORF45 binding to Linker1 displaces UPA from the Linker1–
UPA complex and induces the release of the hNLRP1CT for inflammasome assembly.
NLRP1 has developed the ability to sense various molecular entities or perturbations.
The mechanisms by which NLRP1 senses these various modalities are more intricate
than those of a promiscuous receptor, which binds to various ligands through the same
ligand-binding domain and molecular mode of action. Overall, it is obvious that NLRP1
has not yet divulged all its secrets and that there is still much research to be done in this
new field.

2.2. NLRP3

While not the first inflammasome to be discovered, NLRP3 is the most well stud-
ied due to its critical role for host immune defenses against bacterial, fungal, and viral
infections [23]. NLRP3 is mainly expressed by myeloid cells (monocytes, neutrophils,
macrophages, dendritic cells) but can also be found at the level of the central nervous
system [24], and epithelium. NLRP3 is a tripartite protein that consists of a PYD, a NACHT
domain and a LRR domain and can be activated through canonical, non-canonical, and
alternative pathways (Figure 3). For canonical NLRP3 activation, macrophages must first
be exposed to priming stimuli, such as TLR, NLR (e.g., NOD1 and NOD2), or cytokine
receptor ligands. These ligands ultimately activate the NF-κB transcription factor, which, in
turn, upregulates NLRP3 and pro-IL-1β expression, which are not constitutively expressed
in resting macrophages [25,26].

Following priming, NLRP3 can be activated by diverse stimuli, including ATP, ion flux
(in particular, K+ efflux) [27,28], particulate matter [29–31], pathogen-associated RNA [32],
and bacterial and fungal toxins and components [1,33]. In addition, mitochondrial dys-
function, the release of reactive oxygen species (ROS), and lysosomal disruption have been
proposed to be signals for the assembly and activation of inflammasomes [34]. Given that
NLRP3 does not interact directly with any of these agonists and that they are biochemically
distinct, it is thought that they all cause a similar cellular signal.

Most NLRP3 stimuli cause macrophages and monocytes to experience K+ efflux.
In fact, IL-1 maturation and release from macrophages and monocytes in response to
ATP or nigericin, which are now known to be NLRP3 stimuli, is mediated by cytosolic
K+ depletion [27,35–37]. Additionally, K+ efflux alone was shown to activate NLRP3 in
murine macrophages, and high extracellular K+ blocks NLRP3 inflammasome activation
but not NLRC4 or AIM2 inflammasome activation [28,38]. It has, therefore, been assumed
that diminished intracellular K+ levels can trigger NLRP3 inflammasome activation [28].
Recent research, however, has found small chemical compounds—i.e., imiquimod and
CL097—that activate NLRP3 independently of K+ efflux [39]. This finding suggests that
either NLRP3 inflammasome activation is caused by an event downstream of K+ efflux, or
that K+ efflux-independent pathways also exist for NLRP3 inflammasome activation.
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Figure 3. Canonical and non-canonical NLRP3 inflammasome activation. Canonical NLRP3 inflam-
masome activation requires two steps: the priming step and the activation step. In the priming step,
TLR stimulation induces the transcription and expression of NLRP3 and pro-IL-1 through NF-κB.
Subsequently, various PAMPs and DAMPs induce the activation step by initiating numerous molec-
ular and cellular events, including K+ efflux, mitochondrial dysfunction, reactive oxygen species
(ROS) release, and lysosomal disruption. The NLRP3-dependent self-cleavage and activation of
pro-caspase-1 self-cleavage and activation leads to the maturation of the pro-inflammatory cytokine’s
interleukin 1 (IL-1) and interleukin 18 (IL-18). Additionally, gasdermin D (GSDMD) is cleaved by
activated caspase-1, releasing its N-terminal domain, which then integrates into the cell membrane
to create pores. These pores allow the release of cellular contents, including IL-1 and IL-18, and
trigger pyroptosis, a form of inflammatory cell death. The non-canonical NLRP3 inflammasome is
activated by cytosolic LPS, which directly interacts with caspase-4/5 in human (caspase-11 in mice).
This interaction results in the autoproteolysis and activation of these caspases. The activated caspases
subsequently open the pannexin-1 channel, allowing ATP release from the cell and activating the
P2X7R, causing K+ efflux, canonical NLRP3 activation and the maturation of IL-1 and IL-18. In addi-
tion, activated caspase-4/5-11 cleaves GSDMD to cause membrane pore formation and pyroptosis,
contributing to the release of IL-1 and IL-18.
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During non-canonical NLRP3 activation, cytoplasmic lipopolysaccharide (LPS) di-
rectly binds the CARD of caspase-4/5/11 (which induces pyroptosis via GSDMD) and
pannexin-1, a membrane channel that releases ATP (Figure 3) [40–42]. This extracellular
ATP activates the purinergic P2X7 receptor (P2X7R) [43], an ATP-gated cation selective
receptor that forms a pore in the plasma membrane that mediates K+ efflux. Besides directly
causing pyroptosis, the non-canonical inflammasome also induces the canonical NLRP3
inflammasome to promote IL-1β and IL-18 maturation and release [44].

Unlike both the canonical and non-canonical pathways, the alternative inflammasome
pathway does not require K+ efflux or ASC speck formation, and does not induce pyropto-
sis [45]. Rather, caspase-1 activation and IL-1 maturation and secretion in human monocytes
is induced by LPS stimulation alone [46]. This alternative pathway requires caspase4/5, Syk
activity, and Ca2+ flux instigated by CD14/TLR4-mediated LPS internalization. In murine
dendritic cells, prolonged LPS exposure, in the absence of any other activating signals,
resulted in NLRP3-mediated IL-1β processing and secretion independent of P2X7R [47].

NLRP3 inflammasome activation is likely regulated by various post-translational mod-
ifications, with ubiquitination and phosphorylation being the most thoroughly studied [48],
as well as nitrosylation and sumoylation [49].

Several groups have demonstrated that the mitotic spindle kinase NEK7 is a crucial
regulator of NLRP3 inflammasome activation [50,51]. This role of NEK7 is distinct from
its function in the cell cycle, as its kinase activity is not required for NLRP3 activation [50].
According to the proposed activation model, NEK7 binding induces conformational changes
to NLRP3 whereby exposed PYDs can recruit ASC leading to subsequent caspase-1 activation.
Nevertheless, it was recently demonstrated that another kinase called IKKβ, which is activated
during priming, causes NLRP3 to be recruited to phosphatidylinositol-4-phosphate (PI4P),
an abundant phospholipid on the trans-Golgi network. When IKKβ recruits NLRP3 to PI4P,
NEK7—previously believed to be essential for NLRP3 activation—becomes redundant.

In the past decade, intense efforts have been put into the investigation of the mechanism
of NLRP3 inflammasome activation. However, much more work is needed to understand
how diverse cell signaling events are integrated to activate the NLRP3 inflammasome.

2.3. NLRP6

NLRP6 ensures microbial homeostasis, as shown in NLRP6-deficient mice that exhibit
decreased IL-18 levels and dysbiosis, altering the composition of the intestinal microbial
community. Indeed, NLRP6 is highly expressed in intestinal goblet cells and in lungs, liver,
and tubular epithelium of kidneys. Moreover, it seems to have a role in the regulation
of homeostasis in the periodontium and gingiva [52]. NLRP6 has an N-terminal PYD, a
nucleotide-binding domain, and a C-terminal LRR (Figure 1) [52]. Gram-positive, bacteria-
derived lipoteichoic acid activates the NLRP6 inflammasome by binding its LRR domain
and cleaves caspase-11 through the glycerophosphate repeat of lipoteichoic acid [53]. LPS
also directly binds the NLRP6 monomer via its LRR, inducing conformational changes
and dimerization, which, together with ASC and caspase-1, form the inflammasome
complex responsible for the maturation of the pro-inflammatory cytokines IL-1β and
IL-18 [54]. NLRP6 is also involved in the anti-viral response, as seen in NLRP6-deficient
mice that are more susceptible to encephalomyelitis virus infections than their wildtype
counterparts [55]. This function of NLRP6 is achieved in collaboration with DHX15, which
together recognize dsRNA to induce type I interferon (IFN) and IFN-stimulated gene
activation via mitochondrial antiviral signaling proteins to counteract viral infections.

2.4. NLRP7

NLRP7 belongs to the family of signal-transducing ATPases and, to date, it has been
described in humans and sheep. It has been reported that human NLRP7 is expressed in
B, T, and monocytic cells, as well as in the lung, spleen, thymus, testis, and ovaries [56].
The ability of NLRP7 to form an inflammasome complex remains controversial. A study in
human macrophages showed that NLRP7 can form an inflammasome complex in response
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to bacterial infections [57]. Specifically, mycoplasma and Gram-positive bacterial infections
can activate NLRP7, which, in turn, induces IL-1β secretion. To form an inflammasome,
NLRP7 requires binding and hydrolysis of ATP in its NACHT domain [58]. Moreover,
complex post-translational modifications regulate its activity; namely, NLRP7 is either
ubiquitinated to regulate its functions, or deubiquitinated by the STAM-binding protein to
prevent its trafficking to lysosomes and its degradation [59]. Some observations also suggest
that NLRP7 might have anti-inflammatory activity under certain conditions. NLRP7 can
inhibit IL-1β secretion mediated by the NLRP3 inflammasome without affecting NF-κB
activation required for the priming [60,61]. These features have led to the hypothesis
that the interaction between NLRP7, pro-caspase-1, and pro-IL-1βmay inhibit pro-IL-1β
maturation. Indeed, peripheral blood mononuclear cells from hydatidiform mole patients
with mutations in NLRP7 exhibit reduced IL-1β secretion upon LPS treatment compared to
healthy individual cells [62]. Whether these mutations are gain- or loss-of-function remains
to be elucidated.

Altogether, these observations need to be better characterized to evaluate the in-
volvement of NLRP7 in regulating inflammation. Moreover, the observation of an anti-
inflammatory role in non-immune cells represents a good starting point to elucidate the
mechanism that leads to NLRP7 inflammasome activation.

2.5. NLRP10

NLRP10 (also known as NOD8, PAN5, or PYNOD) is the only NLR lacking the char-
acteristic LRR domain involved in protein–protein interactions, suggesting that NLRP10
might have an inflammasome-independent function. NLRP10 is expressed in various hu-
man and mouse tissues and cell types, including epithelial cells, keratinocytes, macrophages,
DCs, and T cells [63]. However, the expression patterns seem to be cell-type- and context-
dependent, and its function may vary depending on the cellular environment and the
signaling pathways involved. Although the physiological role of NLRP10 has been largely
uncharacterized, data suggest a role in the recognition and response to bacterial pathogens
(Salmonella and Mycobacterium tuberculosis) and parasites (Leishmania major) [64–66].

Early studies showed that NLRP10 negatively regulates NF-κB activation, cell death,
and IL-1β release [67], and inhibits caspase-1-mediated maturation of IL-1β [64]. Con-
versely, others reported normal canonical activation of NLRP3 and IL-1β production in
NLRP10-deficient mouse DCs [65]. These pieces of evidence point to the possibility that
NLRP10 may operate variably in different cellular environments. Indeed, Próchnicki et al.
and Zheng et al. identified that the phospholipase C activator 3m3-FBS is the first trigger
for NLRP10-based inflammasome assembly in colonic epithelial cells and differentiated
keratinocytes [68,69]. Mechanistically, 3m3-FBS causes mitochondrial destabilization that
recruits NLRP10 to damaged mitochondria, where it assembles, independently of the
priming step, to form a canonical inflammasome together with ASC and caspase-1. Further
research is needed to fully understand the immune and non-immune functions of NLRP10.

2.6. NLRP12

NLRP12 was described in 2012 as a negative regulator of the NF-κB in activated
B-cell signaling, with a crucial role in controlling inflammation in both hematopoietic
and non-hematopoietic compartments [70]. Indeed, we now know it is expressed in
bone marrow DCs, neutrophils, macrophages, and granulocytes [71]. NLRP12 negatively
regulates the canonical NF-κB signaling pathways by interacting with hyperphosphorylated
IRAK1, which inhibits its accumulation. On the other hand, NLRP12 dampens the non-
canonical pathway by inducing the degradation of NF-κB-inducing kinase via interaction
with TRAF3 [70,72,73]. One of the consequences of suppressing NFκB signaling is that
macrophages do not produce the chemoattractant factor CXCL1, negatively impacting
neutrophil migration and recruitment to infection sites during microbial infections [74–76].
Moreover, NLRP12 negatively regulates T-cell responses, as shown by the higher production
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of IFN-γ, IL-17, and Th2-associated cytokines in NLRP12-deficient compared to wildtype T
cells [77,78].

Besides negatively regulating immune signaling, NLRP12 has been studied as an
inflammasome component. For example, during Yersinia pestis infection, NLRP12 acti-
vation induces the caspase-1, IL-1β, IL-18 cascade [79]. Although the NLRP12 activa-
tion mechanisms remain unknown, NLRP12 ligand generation requires the presence of
virulence-associated type III secretion systems, suggesting NLRP12 activation may involve
sensing damage associated with type III secretion. However, even if NLRP12 is involved in
in vivo resistance against Yersinia infection, NLRP3 activation is required in both Yersinia
and Plasmodium infections, suggesting that differential NLR activation might contribute to
optimal protection and host defenses [80].

2.7. Pyrin

Pyrin encoded by MEFV is expressed largely in granulocytes, eosinophils, and mono-
cytes. Early structural investigations of Pyrin revealed a nuclear role, indicated by the
presence of a bZIP transcription factor domain and two overlapping nuclear localization
signals [81]. Although full-length Pyrin is primarily found in the cytosol, later studies
looking into its localization and function discovered the colocalization of the N-terminal
Pyrin fraction with microtubules and the actin cytoskeleton [82].

The Pyrin C-terminal B30.2 domain is of particular significance because most familial
Mediterranean fever (FMF)-associated mutations cluster there and functional data suggest
that this domain is necessary for the molecular pathways causing FMF. In vitro overex-
pression studies demonstrated direct interaction between caspase-1 and pyrin B30.2 but
others examining the impact of FMF-related mutations on the binding affinity of B30.2 to
caspase-1 produced contradictory findings [6,83].

The ligand or signals that activate Pyrin have long been unknown. In 2014, Xu et al. [84]
showed that Pyrin is able to sense pathogen-induced changes in the host Rho guanosine
triphosphatases (Rho GTPases) (Figure 2). For example, the Clostridium difficile virulence
factor TcdB, which glycosylates and subsequently inhibits the activity of a minor Rho
GTPase called RhoA, can activate the Pyrin inflammasome [85]. When exposed to wildtype
TcdB, bone-marrow-derived macrophages show a potent Pyrin-mediated inflammasome
response, enhanced caspase-1 activity, and pyroptosis, which does not occur upon ex-
posure to mutant TcdB. Inhibition of RhoA is not restricted to TcdB, as other bacterial
toxins also, such as C3 (Clostridium botulinum), pertussis toxin (Bordetella pertussis), VopS
(Vibrio parahaemolyticus), IbpA (Histophilus somni), and TecA (Burkholderia cenocepacia), can
distinctly modify the RhoA switch I region domain [86–88]. Due to the lack of direct
interaction between Pyrin and RhoA, Pyrin is believed to be activated by an indirect signal
downstream of RhoA, rather than through direct recognition of specific RhoA modifica-
tions. Given that Rho GTPases regulate many aspects of actin cytoskeleton dynamics, it
is, therefore, hypothesized that changes in the cytoskeleton organization might trigger
Pyrin. Moreover, Pyrin activation relies on the RhoA-dependent serine/threonine-protein
kinases PKN1 and PKN2, that directly phosphorylate Pyrin at Ser208 and Ser242 [89]. As
a result, the chaperone proteins 14-3-3ε and 14-3-3τ interact with phosphorylated Pyrin,
preventing the development of an active inflammasome and maintaining Pyrin in an in-
active state. Bacterial toxins that inactivate RhoA result in decreased PKN1 and PKN2
activity and decreased amounts of phosphorylated Pyrin, which frees pyrin from 14-3-3
inhibition and promotes the development of an active Pyrin inflammasome. Studies of
the autoinflammatory disorder caused by mevalonate kinase (MVK) deficiency offered
more proof that the Pyrin inflammasome regulation mechanism described there is accu-
rate. The mevalonate pathway is an important metabolic pathway that generates several
metabolites, including geranylgeranyl pyrophosphate. This metabolite acts as a substrate
for the geranylgeranylation of proteins, a post-translational lipid modification. RhoA is
geranylgeranylated, and its translocation from the cytosol to the cellular membrane, which
is required for activation, is dependent on this post-translational modification. Inhibiting
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the MVK pathway in bone-marrow-derived macrophages causes the release of membrane-
bound RhoA and Pyrin inflammasome-dependent production of IL-1β [89]. By adding
geranylgeranyl pyrophosphate, or by chemically activating PKN1 and PKN2, the synthesis
of IL-1 was prevented.

Recent research has identified a previously unknown regulatory and molecular con-
nection between AIM2, Pyrin, and ZBP1, which promotes the formation of the AIM2
PANoptosome, a multiprotein complex that includes various inflammasome sensors and
cell death regulators [90].

2.8. NLRC4

NLRC4 was first described in 2001 as an activator and recruiter of caspase-1 upon
bacterial pathogen sensing. Indeed, NLRC4 combines with pro-caspase-1 via CARD–CARD
interactions to induce its processing and activation [91]. Specifically, the NLRC4 CARD
interacts with the ASC adaptor protein CARD, thus linking NLRC4-ASC with caspase-1
to mediate downstream signaling [92]. Indeed, the CARD domain of ASC is necessary for
recruiting caspase-1 to ASC specks, ensuring correct pro-IL-1β and pro-IL-18 proteolytic
cleavage and activation [93–95], thus triggering proteolytic processing and oligomerization of
GSDMD leading to pyroptosis [96]. NLRC4 is mainly expressed in myeloid cells, astrocytes,
retinal pigmented epithelial cells, and intestinal epithelial cells [97].

NLRC4 forms an inflammasome complex with NAIP proteins, comprising three N-
terminal baculovirus IAP-repeat domains, a central NACHT, and a C-terminal LRR [8],
and acts as an upstream sensor of bacterial ligands in the cytoplasm. As such, the NAIP-
NLRC4 inflammasome recognizes cytoplasmic bacterial ligands (mainly Gram-negative
bacteria) and induces an inflammatory response via caspase-1 activation and pyroptosis.
The NAIP-NLRC4 inflammasome in human and murine macrophages is activated by
flagellin [98–100] and the type III [101,102] or type IV secretion system [103,104] proteins
through direct recognition via NAIP proteins. It has been shown in mice that IFN regulatory
factor 8 is responsible for the transcriptional induction of Nlrc4 and Naip 1, 2, 5, and 6 [105].
The formation of the NAIP-NLRC4 inflammasome is quite peculiar. NLRC4 activation
starts with the formation of a ligand-bound NAIP complex that changes the conformation of
an NLRC4 monomer, exposing the “catalytic surface” of the active monomer, allowing it to
interact with the “acceptor surface” of an inactive NLRC4 monomer. This contact activates
a second monomer responsible for engaging more NLRC4 monomers, thus triggering the
formation of an NLRC4 coil [7,92,106,107]. Consequently, NLRC4 oligomerization induces
ASC and caspase-1 recruitment. NLRC4 inflammasome activation is finely regulated by
phosphorylation and ubiquitination events [108,109].

NLRC4 was initially thought to induce inflammation by activating the caspase-1, IL-1β,
and IL-18 cascade and promoting GSDMD maturation. Later data showed, however, that
an artificial NAIP5-NLRC4 activator can induce the release of arachidonic acid by activating
the calcium-dependent phospholipase A2 [110]. Arachidonic acid, in turn, stimulates the
rapid production of prostaglandins and leukotrienes. The mechanism of arachidonic acid
release and its link with NLRC4 activation is still unclear; however, more than 1000 possible
targets of caspase-1 have been identified that might cooperate in NLRC4 activation to
activate numerous downstream signals involved in the inflammatory response [92].

2.9. AIM2

Unlike other inflammasome activators, dsDNA can activate an ASC-dependent, but
NLRP3-independent, inflammasome, the AIM2 inflammasome [111]. AIM2 is expressed by
myeloid cells, keratinocytes, and T regulatory cells [97], and it is composed of an N-terminal
PYD domain and a C-terminal hematopoietic expression, IFN-inducible, and nuclear
localization (HIN) domain that senses dsDNA (Figure 1). An HIN-dependent interaction
between AIM2 and dsDNA is enabled by two, high-affinity dsDNA binding folds in
the HIN domain. Under homeostatic conditions, PYD and HIN form an intramolecular
complex that inhibits inflammasome activation; this inhibition is relieved when the HIN
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domain binds dsDNA. Hence, the PYD can interact with ASC, allowing it to polymerize
and thereby activate AIM2 [5,112].

The interaction between dsDNA and the AIM2 complex is independent of the DNA
sequence or its origin, but the DNA must be at least 80 base pairs long to be sensed by the
HIN domain [113]. Indeed, host DNA (including mitochondrial DNA, damaged nuclear
DNA, and exosome-secreted host DNA released in the cytosol) and intracellular viral
and bacterial DNAs released upon microbial infections, can all trigger AIM2-dependent
innate immunity [114–116]. The AIM2 inflammasome has canonical and non-canonical
activation mechanisms (Figure 2) [117]. Canonical activation, which mostly occurs dur-
ing viral infections [118], is rapid and does not involve type I IFN activation [119]. By
this mechanism, dsDNA is directly recognized by AIM2, triggering the formation of the
inflammasome. Non-canonical activation, conversely, depends on IFN activity and is prin-
cipally involved in bacterial infections [120]. Unlike canonical activation, non-canonical
activation is thought to involve intracellular bacteria that escape the vacuoles and release
small amount of DNA, thereby activating cyclic-GMP-AMP synthase and IFI204, which
are two components of the cascade that drive IFN secretion [121]. At this point, secreted
type I IFN exits the cells where it binds IFN receptors, driving the downstream activation
of immunity-related GTPase family member b10 and guanylate-binding proteins, which, in
turn, induce bacteriolysis releasing large quantities of bacterial DNA that are eventually
recognized by the AIM2 inflammasome [122,123]. Unlike other DNA sensors involved in
IFN induction, AIM2 inflammasome assembly following detection of cytosolic dsDNA
drives the proteolytic maturation of IL-1β and IL-18 and the maturation of GSDMD, which
induces pyroptosis [5,124,125].

To prevent cytokine overexpression and cell death, AIM2 inflammasome activation
must be tightly regulated; this regulation is achieved through PYD:PYD or CARD:CARD
interactions [126]. The presence of three human PYD-only (POP) genes (POP1, POP2,
and POP3) suggests that POPs may negatively regulate inflammasomes [127–129]. POP1
and POP2 are broad-spectrum inhibitors that interfere with inflammasome assembly by
interacting with ASC PYD. Conversely, POP3 specifically inhibits AIM2 by binding to
AIM2 PYD, consequently blocking the AIM2 and ASC interaction [128].

Pathogens have evolved strategies to escape AIM2 inflammasome activation. For
example, the human cytomegalovirus virion protein pUL83 by interacting with AIM2
inhibits its activation [126]. Huang et al. demonstrated that THP-1-derived macrophages
infected with HCMV showed increased levels of AIM2 at early stages of infections, but 24
h post-infection AIM2 decreased to basal levels. They investigated the effect of pUL83 on
AIM2 in recombinant HEK293T cells expressing AIM2, ASC, pro-caspase-1, and pro-IL-1β
and found that, upon induction of AIM2 activation, the expression of pUL83 led to a
drastic reduction in AIM2, pro-caspase-1, and pro-IL-1β levels. These results demonstrate
that pUL83 is responsible for reducing AIM2 response leading to downstream reduction
of caspase-1 and IL-1β cleavage [130]. Moreover, since AIM2 inflammasome becomes
active every time it senses cytosolic dsDNA, some bacterial pathogens can escape AIM2
recognition by maintaining their structural integrity [131].

3. Role of Inflammasomes in Human Disease

Inflammasome activation is a crucial step in the protective immune response; however,
unchecked, it may lead to chronic inflammation, which, in turn, forms a major risk for the
development of autoinflammatory and autoimmune diseases. Inappropriate inflammasome
activation has been implicated in the pathogenesis of many human inflammatory and
autoimmune diseases. In this section, we will discuss the involvement of the different
inflammasomes in some of the most common autoinflammatory and autoimmune diseases,
such as arthrosclerosis, systemic lupus erythematosus, rheumatoid arthritis and psoriasis
and inflammatory bowel disease. In addition, we will discuss the role of inflammasomes in
neurological inflammatory diseases.
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3.1. Autoinflammatory Diseases
3.1.1. Inflammasomopathies

Inappropriate inflammasome activation results in autoinflammatory diseases called
inflammasomopathies that are characterized by aberrant IL-1β and IL-18 production and
excessive pyroptosis [132]. Although the various reported inflammasomopathies are often
mechanistically related, the pathologies can greatly differ depending on the inflammasomes
involved. The best described inflammasomopathies result from autosomal dominant
gain-of-function mutations in Nlrp3, which drive autoinflammatory diseases known as
cryopyrin-associated periodic syndrome (CAPS) [133].

CAPS is induced by uncontrolled IL-1β release and has three main clinical phenotypes:
familial cold autoinflammatory syndrome (FCAS), Muckle–Wells syndrome (MWS), and
neonatal-onset-multisystem inflammatory disease (NOMID). FCAS is the mildest form
of CAPS and is characterized by recurrent episodes of fever accompanied by arthralgias,
myalgias and maculopapular rash upon exposure to cold. Given the heterogeneity of clini-
cal symptoms, other inflammasome genes have been implicated in this syndrome. Several
case reports described mutations in Nlrp12 [134–136] and NLRC4 [137] that contribute to
FCAS2 and FCAS4, respectively (Table 1).

Table 1. Common symptomatic NLRP1, NLRP3, NLRP12, NLRC4 and MEFV gene variants linked to
the corresponding disease according to the Infevers database (https://infevers.umai-montpellier.fr/
web/index.php accessed on 4 June 2023). NLRP1-associated autoinflammation with arthritis and
dyskeratosis (NAIAD), familial cold autoinflammatory syndrome (FCAS), Muckle–Wells syndrome
(MWS), neonatal-onset-multisystem inflammatory disease (NOMID), autoinflammation with infantile
enterocolitis (AIFEC), pyrin-associated autoinflammation with neutrophilic dermatosis (PAAND).

Gene Disease Mutations Linked to Disease Phenotype
NLRP1 NAIAD A59P, R726W, L813P, P1214R and L1214L

NLRP3

FCAS C259W, L305P, L353P, T436A, A439V, E525K, Y563N, E627G, M659K

MWS R170S, R260L, L264V, D303A, E311K, H312P, R325W, T348M, A352V, K355T, A439T, F523C, E567K,
E567A, G569R

NOMID
R260P, V262A, L264F, L264H, L264R, D303H, E304K, G307S, G307V, F309S, G326E, A352T, E354D,
H358R, A374D, T405P, M406V, M406I, T436P, T436N, A439P, F443L, N477K, F523Y, E525V, F566L,
K568N, G569A, Y570C, Y570F, L571F

NLRP12 FCAS2 R284X, D294E, H304Y, W408X, S578G, L591M, L710P, R753H, N940S, S979G, R754H, F402L, G448A

NLRC4
FCAS4 H443P, T177A
AIFEC G172S, T177S, T337S, T337N, L339P, V341L, V341A, H443P, H443Q, W655C, Q657L, delexon5, Q880E

MEFV
FMF

K25R, R39G, E84K, A89T, Q97X, E167D, 606_621dup, K224del, S242R C > G, T267I, P313H, R354W,
L372P, L384P, D389V, L396F, E403K, Y471X, F479L, R501C, S503C, 1611-1G > C, S650Y, G668R, M680L,
M680V, M680IGA, G687D, Y688F, Y688X, I692DEL, M694V, M694L, M694DEL, M694K, M694I,
K695N, V726A, F743Y, Q753H, R761H, N766H, P769A, Q778Sfs*4

PAAND S242G, S242R C > A, E244K, S363N

MWS is a moderate/severe form of CAPS, which manifests with episodes of recurrent
fever, rash, and arthralgia, and usually leads to hearing loss [138]. Finally, NOMID, the most
severe form of CAPS, affects young infants who present with arthropathy, chronic urticaria,
and central nervous system effects. To date, the Infevers database (https://infevers.umai-
montpellier.fr/web/index.php accessed on 4 June 2023), a large registry for hereditary
autoinflammatory disease mutations, lists more than 200 sequence variants of Nlrp3. These
variants are classified as ‘benign’, ‘likely benign’, ‘uncertain significance’, ‘pathogenic’ and
‘likely pathogenic’. More than 100 variants are described as pathogenic/likely pathogenic,
with the majority located in exon 3 (Table 1) [139]. Some genotype/phenotype correlations
have been demonstrated in CAPS. For example, up to 75% of CAPS patients in North
America have the L353P mutation, which is associated with a mild FCAS phenotype, while
the R918Q variant is associated with late-onset hearing loss [140]. Nevertheless, several
case reports described patients with the same mutations but different clinical phenotypes,
suggesting that other factors might influence the disease phenotype [139].

https://infevers.umai-montpellier.fr/web/index.php
https://infevers.umai-montpellier.fr/web/index.php
https://infevers.umai-montpellier.fr/web/index.php
https://infevers.umai-montpellier.fr/web/index.php


Cells 2023, 12, 1766 13 of 31

Several NLRC4 variants have been described that cause a severe autoimmune disease
called autoinflammation with infantile enterocolitis (AIFEC) (Table 1) [141,142]; this recur-
rent fever syndrome shares many similarities with macrophage activation syndrome and,
in severe cases, with primary hemophagocytic lymphohistiocytosis [137,141,143,144]. A
major difference distinguishing AIFEC from macrophage activation syndrome and pri-
mary hemophagocytic lymphohistiocytosis, is the extremely elevated IL-18 levels found
in AIFEC. Interestingly, IL-18 is also the main driver of NLRP1-associated autoinflamma-
tion with arthritis and dyskeratosis [145]. This very rare inflammasomopathy is caused
by autosomal dominant or recessive mutations in Nlrp1, and is characterized by diffuse
skin dyskeratosis, recurrent fevers, autoinflammation, and arthritis. Patients have high
serum levels of caspase-1 and IL-18 compared to healthy controls. Currently, only five
Nlrp1 variants have been associated with this rare disease, including: A59P, R726W, L813P,
P1214R and L1214L (Table 1) [146].

Besides NLR inflammasomopathies, Pyrin-related autoimmune diseases have also
been described. As discussed earlier, MEFV mutations have been linked to FMF and pyrin-
associated autoinflammation with neutrophilic dermatosis [6,83]. FMF is characterized by
recurrent bouts of fever that resemble acute inflammation episodes; a severe complication
is secondary amyloid A amyloidosis, which mainly affects the kidneys and is a major cause
of mortality.

Current treatment options for inflammasomopathies are focused on targeting the
downstream effector cytokines. For example, in the case of CAPS, anti-IL-1 therapy
(anakinra, canakinumab, rilonacept) is the recommended treatment. However, since in-
flammation in many patients is not only mediated by inflammasome-dependent, but also
inflammasome-independent cytokine production, such as TNF-α and IL-6, supportive
treatment with anti-inflammatory drugs is necessary.

3.1.2. Atherosclerosis

NLRP3 has been best characterized for its role in atherosclerosis initiation and pro-
gression through its role in promoting vascular inflammation. Atherosclerotic plaques
show strong mRNA and protein NLRP3, ASC, caspase-1, IL-1β and IL-18 expression in
macrophages, foam cells and endothelial cells (Table 2) [147]. Several studies have impli-
cated inflammasome-derived IL-1β and IL-18 in the development of atherosclerosis [148].
Data from the Canakinumab Anti-Inflammatory Thrombosis Outcome Study (CANTOS),
in which the effect of treatment with the therapeutic monoclonal anti-IL-1β antibody
canakinumab on the recurrence of cardiovascular events was tested in a large randomized
double-blinded trial, showed that IL-1β neutralization significantly reduced the incidence
of cardiovascular events in atherosclerosis patients, suggesting a key role of IL-1β in disease
activity [149].

NLRP3 is associated with cholesterol crystals inside and outside macrophages and
foam cells. Indeed, cholesterol is a main driver of NLRP3 activation during atherogenesis:
data from an in vitro study by Duewell et al., showed that cholesterol crystals are ingested
by phagocytes and activate NLRP3 through a process that involves phagolysosomal dam-
age [150]. Cholesterol and triglycerides also activate NLRP1 in human endothelial cells
in vitro [151].

Other mechanisms of NLRP3 activation have been implicated in atherosclerosis. In
human macrophages, NLRP3 activation and IL-1β secretion are induced by hypoxia, and
IL-1β localizes to macrophage-rich areas with high caspase-1 and hypoxia marker expres-
sion in atherosclerotic plaques [152]. In mice, significant ATP release from necrotic cells
in atherosclerotic plaques has been linked with P2X7R-dependent NLRP3 activation [153].
Dying cells in the necrotic core might also drive AIM2 activation through releasing abun-
dant dsDNA. Pertinently, AIM2 expression was significantly increased in atherosclerotic
lesions of patients, suggesting a pathogenic role in atherosclerosis [154].

Despite the overwhelming evidence of the involvement of inflammasomes in the
pathogenesis of arthrosclerosis, limited clinical studies have focused on blocking inflam-
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masomes for the treatment of atherosclerosis. A clinical study with low-dose colchicine, a
drug preventing microtubule assembly and thereby disrupting inflammasome activation,
showed promising results in preventing coronary artery disease; however, increasing gas-
trointestinal intolerance against the drug was observed [155]. Additional clinical studies
are ongoing as well as studies investigating the potential of small molecule inhibitors of
NLRP3. In contrast, several studies have investigated the beneficial effects of IL-1 inhibition
with the above-mentioned CANTOS study demonstrating the benefits of canakinumab for
the treatment of atherosclerosis [149].

Table 2. Involvement of inflammasomes in human autoimmune and autoinflammatory diseases.
Overview of the different inflammasomes and inflammasome activators involved in the pathogenesis
of atherosclerosis, psoriasis, inflammatory bowel disease, rheumatoid arthritis, Sjogren’s disease,
systemic lupus erythematosus, Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis.

Disease Inflammasome Cell Type/Tissue Activator in Human Disease References

Atherosclerosis

NLRP1 Endothelial cells
(in vitro)

Cholesterol
Triglycerides (in vitro) [151]

NLRP3 Macrophages, foam
cells, endothelial cells

Cholesterol
Triglycerides

ATP (from necrotic cells)
[147,150,152,153]

AIM2 Necrotic lesions dsDNA [154]

Psoriasis

NLRP1 PBMCs, keratinocytes,
psoriatic lesions Psoriasin (S100A7) [156,157]

NLRP3
Psoriatic biopsies,

keratinocytes,
whole blood

CD100
IL-17, IL-22, TNF-α [156–158]

AIM2
Lesional and

non-lesional skin,
keratinocytes

dsDNA [159,160]

Inflammatory
bowel disease NLRP3

PBMCs,
colonic biopsies,

intestinal mucosal cells
Intestinal microbiota [161–163]

Rheumatoid arthritis NLRP1 PBMCs,
synovial cells P2X4 agonist [164,165]

NLRP3 PBMCs,
monocytes Unknown [166]

Sjogren’s syndrome
NLRP3

PBMCs,
salivary glands

circulating monocytes
ATP, circulating free DNA [167–169]

AIM2 PBMCs,
salivary glands Circulating free DNA [169,170]

Systemic Lupus
Erythematosus

NLRP3 Mononuclear cells,
monocytes

Neutrophil extracellular traps,
anti-dsDNA antibodies,
reactive oxygen species,

K+ efflux

[171,172]

AIM2 Renal tissue Neutrophil extracellular traps [173]

Alzheimer’s disease
NLRP1 Monocytes,

neurons
Amyloid-β

K+/Ca2+ imbalance [174–176]

NLRP3 Monocytes, microglia,
astrocytes Amyloid-β [174,177–179]

NLRC4 Brain samples Unknown [180]

Parkinson’s disease NLRP3 Monocytes, microglia α-synuclein (Lewy bodies),
reactive oxygen species [181,182]
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Table 2. Cont.

Disease Inflammasome Cell Type/Tissue Activator in Human Disease References

Multiple sclerosis NLRP3

Macrophages,
microglia,
astrocytes,
CNS tissue

Unknown [183,184]

NLRC4

Astrocyte-rich
brain tissue,
regions of

demyelination

Unknown [179]

3.1.3. Psoriasis

Epidermal AIM2 mRNA and protein expression are upregulated in skin diseases,
including psoriasis, atopic dermatitis, venous ulcers, and contact dermatitis [159]. In psori-
asis and atopic dermatitis, AIM2 expression was increased in both lesional and non-lesional
skin, and, in psoriatic lesions, cytosolic DNA triggers AIM2 activation in keratinocytes
(Table 2) [159,160]; however, the source of cytosolic DNA in psoriatic keratinocytes remains
unclear. In this context, autophagy was identified as a potential negative regulatory mech-
anism for AIM2 inflammasome activation, possibly through the elimination of damaged
mitochondria (and so preventing mitochondrial DNA release) and the removal of HMGB1-
DNA complexes known to activate AIM2 [185]. Interestingly, reduced autophagy was
observed in keratinocytes from psoriasis patients [186]. In addition, it was recently shown
that neutrophils from psoriatic patients were more prone to form NETs and that these NETs
were able to induce AIM2 activation in keratinocytes in vitro [187].

NLRP1 has also been implicated in psoriasis. Increased NLRP1 mRNA expression has
been detected in peripheral blood mononuclear cells isolated from psoriasis patients, and
NLRP1 can be activated by psoriasin (S100A7) and dsDNA in keratinocytes, resulting in
the caspase-5-dependent release of IL-1β [188,189]. Interestingly, vitamin D can suppress
the caspase-5-dependent release of IL-1β in keratinocytes and psoriatic lesions. Ekman et al.
also identified genetic variations of the NLRP1 gene that were correlated with increased
vulnerability to psoriasis. They reported a higher transmission of the rs878329C and
rs8079034C genotype in psoriasis patients and correlated the rs878329C allele with elevated
circulating IL-18 levels [190].

Finally, increased mRNA and protein expression of NLRP3 was also observed in psori-
atic biopsies and this was correlated to enhanced IL-1β and caspase-1 [156]. Zhang et al.
showed that the NLRP3 inflammasome in keratinocytes is activated by soluble CD100,
which is increased in the sera of psoriasis patients, through its interaction with the trans-
membrane receptor PlxnB2 on keratinocytes [157]. In addition, the inflammatory milieu
can also further aggravate psoriasis through activation of NLRP3. Both IL-17 and IL-22
were shown to activate the ROS-dependent NLRP3-caspase-1 pathway in keratinocytes,
resulting in increased IL-1β secretion [191]. Moreover, a recent study by Verma et al.
showed that TNF-α selectively primes the expression of pro-IL-1β, pro-IL-18 and NLRP3,
but not NLRP1, AIM2 or NLRC4, in whole blood samples of psoriasis patients [158]. TNF-α
inhibition has indeed been shown to be highly effective for the treatment of psoriasis.
Patients treated for at least 8 months with anti-TNF-α antibodies showed normal plasma
IL-1β and IL-18 levels and reduced caspase-1 activity in blood monocytes [158]. In contrast,
methotrexate, a folate antagonist used for the treatment of severe inflammatory conditions,
including psoriasis, did not reduce caspase-1 activity in psoriasis patients, suggesting that
TNF-α inhibition is superior in reducing NLRP3-dependent inflammation during psoriasis.

3.1.4. Inflammatory Bowel Disease

Dysregulation of gut homeostasis may lead to overreactive inflammatory responses
resulting in different types of inflammatory bowel diseases (IBD), such as Crohn’s disease
(CD) and ulcerative colitis (UC). Early reports showed increased expression and secretion
of IL-1β and IL-18 by intestinal mucosal cells from CD and UC patients, suggesting the in-
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volvement of inflammasomes in the pathogenesis of these diseases [192,193]. Furthermore,
single-cell analyses of mucosal tissue from IBD patients revealed an increased abundance of
IL-1β+ macrophages, monocytes, and dendritic cells [194]. Increased activation of NLRP3
in peripheral blood mononuclear cells was observed in the majority of patients with CD,
while increased expression of NLRP3, ASC, caspase-1 and IL-1β was found in colonic
biopsies from CD and UC patients (Table 2) [161,162]. Interestingly, a recent study found
upregulated NEK7, NLRP3, and caspase-1 expression, together with the pyroptosis-related
inflammasome GSDMD gene, in intestinal tissue from UC patients [163]. The authors fur-
ther showed that NEK7 knockdown in the intestinal epithelial cell line MODE-K reduced
the LPS-induced pyroptosis, suggesting a NEK7-NLRP3-dependent pyroptotic mechanism
in the pathogenesis of IBD. Next to NLRP3, increased mRNA levels of other inflammasome
sensors, including NLRP1, NLRC4, NLRP6, NLRP12 and AIM2, were observed in colon
biopsies from CD and UC patients [195]. In the case of NLRP6, a 131-fold and 3.9-fold
increase in expression was reported in ileal CD and colonic CD patients, respectively.

3.2. Autoimmune Diseases

Autoimmune disorders are characterized by sustained autoreactive immune responses
that result in organ damage and the production of autoantibodies. Although the exact
pathologic mechanisms of most autoimmune disorders remain unclear, many studies have
implicated inflammasomes in the pathogenesis.

3.2.1. Rheumatoid Arthritis

Rheumatoid arthritis (RA) causes inflammatory degradation of cartilage and joint
destruction and has a prevalence of 0.27% worldwide [196]. Of the known inflammasomes,
NLRP1 and NLRP3 have been implicated in RA pathogenesis. Gene expression studies have
revealed increased ASC, NLRP3, and caspase-1 expression in monocytes from RA patients
(Table 2) [166], and higher intracellular levels of inflammasome components, including
NLRP3, ASC, active caspase-1 and pro-IL-1β, as well as increased secretion of IL-1βwas
detected in patient monocytes [166,197]. In neutrophils, caspase-1 mediates IL-18 release
independent of NLRP3 activity, suggesting that caspase-1 activity in neutrophils during
RA is mediated by other inflammasomes or through the action of neutrophil proteolytic
enzymes, such as metalloproteases, serine proteases and cathepsins, that may activate
caspase-1 [198]. Other findings from the same study showed a positive correlation between
RA severity and serum IL-18, but not IL-1β levels suggesting that IL-18, rather than IL-1β,
contributes to disease progression. This may explain why, although the IL-1 receptor
antagonist anakinra is widely used for the treatment of this disease, several clinical studies
found poor effectiveness of direct IL-1β inhibition for the treatment of RA [199].

The role of NLRP1 in RA is less well understood. In Han Chinese, Sui et al., showed
that upregulated NLRP1 due to NLRP1 polymorphisms was associated with an elevated
risk of RA [164]. However, the role of NLRP1 polymorphisms in RA susceptibility is
controversial, as other studies found no such correlation [165,200]. Nevertheless, synovial
cells from RA patients show increased NLRP1, ASC and caspase-1 expression and high
IL-1β secretion in vitro; here, NLRP1 activation and IL-1β secretion could be abrogated
by inhibiting the P2X4 receptor [165]. P2X4 receptor inhibition could have promising
therapeutic potential; however, no clinical trials with P2X4 receptor antagonists for the
treatment of RA have been conducted. In contrast, several phase I and II trials did not find
any significant efficacy of P2X7 receptor antagonists in the treatment of RA, suggesting
that, at least, P2X7 is not a useful therapeutic target for RA [201,202].

3.2.2. Sjogren’s Syndrome

Sjogren’s syndrome (SS) is a rheumatic disease with heterogeneous clinical manifesta-
tions ranging from mild dryness of the mouth and eyes to more severe systemic compli-
cations including interstitial lung disease, tubulointerstitial nephritis and non-Hodgkin’s
lymphoma [203]. Studies of human SS samples found increased P2X7 receptor expression
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in the salivary glands and peripheral blood mononuclear cells of patients compared to
controls [167,168], which correlated with increased NLRP3, ASC, caspase-1 and pyrin ex-
pression in the salivary glands and elevated IL-18 levels in the saliva of SS patients (Table 2).
Elevated circulating levels and salivary gland expression of IL-18 also positively correlate
with disease activity, and the production of autoantibodies and lymphoid infiltrates [204].
This correlation between P2X7 receptor expression, and the production of inflammasome
components in SS, suggests an ATP-dependent mechanism of inflammasome activation. In-
deed, P2X7 receptor activation by ATP can induce inflammatory responses in salivary gland
epithelial cells in vitro [205], and salivary gland inflammation in a mouse model of autoim-
mune exocrinopathy [205]. Consequently, P2X7 receptor blockade can inhibit IL-1β release
from salivary gland epithelial cells and reduces inflammation in this mouse model [205]. In
addition, treating SS patient monocytes with ATP upregulates P2X7 receptor expression
compared to that seen in control cells [206]. Importantly, such elevated expression of the
P2X7 receptor, as well as NLRP3, ASC and caspase-1, predicts non-Hodgkin’s lymphoma
development in SS patients [207]. Given this clear evidence on the involvement of the P2X7
receptor/NLRP3 axis in SS, P2X7 receptor poses an interesting therapeutic target for the
treatment of the disease.

Besides ATP-dependent inflammasome activation, NLRP3 and AIM2 activation by
cell-free DNA (cfDNA) has been detected in SS patients [169]. cfDNA accumulates in the
peripheral blood of SS patients due to an impaired clearance of apoptotic cells and necrotic
cell debris, and reduced DNase activity [169,170]. Notably, SS patients with established
(or at high risk of) lymphoma exhibit high cfDNA levels, resulting in NLRP3 activation in
circulating monocytes and NLRP3 activation and pyroptosis in macrophages infiltrating
the salivary glands [169]. Finally, low DNase I expression in salivary epithelial cells and
AIM2 co-localization with damaged genomic DNA in SS specimens, implies a role for
defective cytosolic DNA degradation in the activation of AIM2 in SS [169].

3.2.3. Systemic Lupus Erythematosus

Systemic lupus erythematosus (SLE) is characterized by multisystem inflammation
with an overt IFN signature and autoantibody production against nuclear and cytoplasmic
antigens [208]. Most of these antigens derive from apoptotic cells and neutrophil extracel-
lular traps (NETs); as such, SLE severity strongly correlates with impaired degradation
of NETs and anti-dsDNA antibodies [209]. Elevated IL-1β levels have been reported in
SLE patient serum [210]. Mechanistically, it seems that anti-dsDNA antibodies can induce
NLRP3-dependent IL-1β secretion by mononuclear cells and monocytes, thus explaining
this elevation (Table 2) [171]. Others have found that NLRP3 activation is mediated via
binding between anti-dsDNA antibodies and TLR4, inducing mitochondrial ROS produc-
tion and K+ efflux [171,172]. Finally, Antichios et al. showed recently that AIM2 binds to
NETs, thereby preventing its degradation, and the resulting nucleoprotein complex serves
as an autoantigen that sustains IFN signaling [173].

3.3. Neuroinflammatory and Neurodegenerative Diseases

IL-1β and IL-18 have important roles in central nervous system (CNS) processes
including cognition, learning, and memory [211]. IL-1β, mainly produced by microglia
and astrocytes, has been linked to neural proliferation, differentiation, apoptosis, and
long-term potentiation [212]. Elevated IL-1β and IL-18 levels seen after brain injury and in
neurodegenerative diseases have also been implicated in their pathogenesis. In addition,
cell death, including pyroptosis, promotes neuroinflammation and neural degeneration in
multiple sclerosis, Parkinson’s disease and Alzheimer’s disease. In the following sections,
we outline the involvement and pathological mechanisms of inflammasome activation in
some of the most common neurological and neurological diseases.
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3.3.1. Alzheimer’s Disease

Accumulating data suggest an important role for inflammasome activation in the
pathogenesis of Alzheimer’s disease (AD). When stimulated with LPS and synthetic
Amyloid-β42 (Aβ), AD patient monocytes exhibit increased expression of the proteins in-
volved in the assembly, activation, and downstream effectors of inflammasomes, including
NLRP1, NLRP3, ASC, caspase-1, -5 and -8, IL-1β and IL-18 [174]. Furthermore, caspase
activity in the brains and IL-1β concentrations in the cerebrospinal fluid of AD patients is
generally increased compared to those in healthy controls [213]. High IL-1β expression is
also detected in the microglia surrounding Aβ plaques in affected patients [214]. Indeed,
activated microglia can release IL-1β upon in vitro stimulation with Aβ [177,215] in an
NLRP3- and ASC-dependent manner [177]. Recent findings showed that astrocytes have
functional NLRP3 inflammasomes and can also produce IL-1β upon Aβ stimulation, again,
in an NLRP3- and ASC-dependent manner [178,179].

ASC contributes to AD pathogenesis through the formation of ASC specks, which are
normally found within the microglia but can be released extracellularly upon microglial
pyroptosis. Extracellular ASC rapidly binds Aβ peptides, thereby facilitating their aggrega-
tion [216], and such aggregates have been detected in brain samples from AD patients.

NLRP1 has also been implicated in AD but its exact role remains unclear. For example,
NLRP1 levels have been found to be increased more than 25-fold in the neurons of AD
patients, which might relate to a K+/Ca2+ imbalance due to the neurotoxic effects of
Aβ on ion channels [175,176]. Furthermore, Aβ neural stimulation in mice resulted in
elevated caspase-1 activity, IL-1β secretion and neural pyroptosis, which was dependent
on NLRP1 activity [217]. Congruently, chronic treatment of PC12 cells with Aβ induced
NLRP1/caspase-1/GSDMD-dependent pyroptosis followed by the release of IL-1β and
IL-18 [218]. Finally, elevated NLRC4 and ASC expression was detected in brain samples
isolated from sporadic AD patients [180].

3.3.2. Parkinson’s Disease

Patients with Parkinson’s disease (PD) have increased levels of inflammasome-associated
proteins, including IL-1β and caspase-1 [219] that can cause neuroinflammation and sub-
sequent damage to dopaminergic neurons [220]. Central to PD pathophysiology are the
gradual loss of dopaminergic neurons in the substantia nigra pars compacta and the accu-
mulation of intraneural aggregates of fibrillar α-synuclein (α-syn), known as Lewy bodies.
Similar to Aβ in AD, fibrillar α-syn induces IL-1β release in monocytes and microglia
in a process dependent on NLRP3-mediated caspase-1 activity [181,182]. NLRP3 activa-
tion in these cells depends on the phagocytosis of fibrillar α-syn, resulting in increased
ROS production and cathepsin B release into the cytosol. Moreover, this effect requires
α-syn binding to TLR2, as evidenced by the blockade of α-syn-mediated NLRP3 activation
and subsequent IL-1β release in human monocytes following anti-TLR2 antibody treat-
ment [182]. Interestingly, Wang et al. found that caspase-1 colocalizes with Lewy bodies
in PD patients and, more importantly, detected direct cleavage of α-syn by caspase-1,
generating aggregation-prone fragments that were toxic to neuronal culture [221]. Together,
these findings suggest a disease model with a dual effect of the α-syn/inflammasome
interaction. In a first step, α-syn seems to activate the NLRP3 inflammasome, leading to
caspase-1 activation and subsequent inflammatory cytokine release. The exact contribution
of these inflammatory cytokines to PD pathophysiology needs further investigation. In a
second step, activated caspase-1 is suggested to cleave α-syn, resulting in increased α-syn
aggregation that potentially aggravates the disease. Given the central role of caspase-1
in this disease model, caspase-1 inhibition could be a potentially interesting therapeutic
target for PD.

3.3.3. Multiple Sclerosis

Multiple sclerosis (MS) is a common chronic inflammatory disease of the CNS charac-
terized by defects in the blood–brain barrier [222] that permit local activation of microglia
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and astrocytes and the infiltration of immune cells to the brain from the periphery. The
result is multifocal inflammation, demyelination, oligodendrocyte loss and neurodegener-
ation. Inflammasomes might mediate MS pathogenesis by contributing to inflammatory
demyelination. Both infiltrating macrophages, microglia and astrocytes accumulate at
sites of active demyelination and neurodegeneration [223]. These cells show increased
NLRP3, ASC, caspase-1 and IL-1β expression, which significantly decreases in chronic,
inactive MS lesions [183]. Recent research has revealed a pivotal role of NLRP3 poly-
morphisms in MS [224], with gain-of-function variants linked to MS susceptibility and
severity [225,226]. Notably, CAPS patients often develop MS later in life, supporting the
role of NLRP3-mediated inflammation in MS [227,228].

In a recent study with a small cohort (n = 14) of MS patients, NLRP3, ASC, caspase-1,
IL-1β and IL-18 were found to be significantly upregulated in postmortem CNS tissue
compared to non-MS controls [184]. Transcript levels of NLRP1, NLRP2, AIM2 and Pyrin
were also upregulated, although this was not statistically significant. Moreover, this study
reported for the first-time molecular evidence of GSDMD-mediated pyroptosis in both
myeloid (macrophages and microglia) cells and myelin-forming oligodendrocytes in the
CNS of MS patients. These observations could be reproduced in vitro by exposure of
human microglia and oligodendrocytes to inflammatory stimuli. Interestingly, caspase-1
inhibition by the small-molecule inhibitor VX-765 could strongly reduce the secretion of
IL-1β and pyroptosis of microglia in vitro and reduced the expression of inflammasome-
and pyroptosis-associated proteins in the CNS of a murine MS model. These observations
offer a new perspective on the pathogenesis of MS and suggest a potential new treatment
option for MS.

The roles of other inflammasomes in human MS are not well understood. NLRC4 was
found abundantly expressed in lesions and astrocyte-rich regions from human brain tissue
of three MS patients [179]. Moreover, NLRC4 has been detected in regions of demyelination,
suggesting a role in MS pathology. A loss-of-function mutation in NLRC4 was associated
with reduced IL-18 production and a beneficial response to IFN-β treatment—the main
treatment for MS [225]. IFN-β treatment also significantly decreases IL-1β, NLRP3 and
AIM2 expression in MS patients, suggesting that IFN-β might improve MS symptoms
by decreasing inflammasome-dependent IL-1β production. Finally, NLRP1 variants have
also been implicated in MS. For example, Maver et al. identified a potential causative
homozygous mis-sense variant in NLRP1 in a familial form of MS [229]; however, these
findings remain uncorroborated and additional research is needed to ascertain the role of
NLRP1 variants in familial MS [230].

4. Inflammasomes as Therapeutic Target for Inflammatory Diseases

Currently, immunosuppressive and anti-inflammatory treatment with cyclosporine,
steroids, methotrexate, and general anti-TNF-a therapy is commonly used to treat severe
cases of inflammatory diseases [231]. However, such treatments dampen the immune
response but do not target disease-specific pathological mechanisms. Moreover, these
treatments might interfere with the proper induction of protective immune responses.
Therefore, it is essential to thoroughly understand individual inflammasome mechanisms,
as this would allow aberrant inflammasomes to be targeted without dampening broader
immune responses needed to fight infections and inflammatory insults.

The first-generation drugs targeting the inflammasome pathway target the down-
stream IL-1β cytokine and IL-1 receptor signaling. Canakinumab, a monoclonal anti-IL-1β
antibody, is currently approved for treating several forms of arthritis, CAPS, and FMF, and
its efficacy in reducing cardiovascular events in atherosclerosis patients has been shown
in the large CANTOS trial [149]. In addition, Anakinra, a recombinant IL-1 receptor an-
tagonist (IL-1RA), is used as a first-line treatment for CAPS and FMF and as a secondary
treatment for rheumatoid arthritis [232]. A lentiviral IL-1RA gene therapy approach for
treating CAPS is currently under development [233]. Although these therapies already
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target inflammasome-specific effectors, they do not target individual inflammasomes and
might still interfere with the proper induction of protective immune responses.

Second-generation drugs are designed to specifically inhibit individual inflamma-
somes. To date, few inflammasome inhibitory drugs are under clinical development, all tar-
geting the NLRP3 inflammasome. Inflazome biotech, recently acquired by Roche, has com-
pleted a Phase I clinical trial with Somalix (IZD334; Clinical Trials Identifier NCT04086602)
and Inzomalid (IZD174; Clinical Trials Identifier NCT04015076) to assess safety and tol-
erability in healthy individuals and preliminary efficacy in adult patients with CAPS.
Both drugs are analogs of the NLRP3 inhibitor MCC950 and are believed to act similarly
by interacting with the NLRP3 NACHT domain, thereby inhibiting ATP hydrolysis and
inflammasome activation and formation [234]. NodThera has been granted patents on
inflammasome inhibitors based on carbamoyl derivates. Positive results in the Phase I clin-
ical trial were obtained with compound NT-0796, an orally available drug, showing good
blood–brain barrier penetration, highlighting its potential for treating neurodegenerative
diseases, such as Parkinson’s disease [235]. NT-0249, on the other hand, is a peripherally
restricted NLRP3 inhibitor that shows positive interim results from its Phase I trial, support-
ing the potential therapy of peripheral inflammatory diseases using a single daily dose. The
mechanism of action of these compounds is not known. However, they have been shown
to inhibit NLRP3 activation and concomitant IL-1β release [236]. Phase 2/3 is ongoing
with the drug dapansutrile (OLT1177; Olatec Therapeutics) to test the safety and efficacy
of this oral NLRP3 inhibitor for the treatment of acute gout flares, a form of inflammatory
arthritis (Clinical Trials Identifier: NCT05658575). The first results of this study are expected
by the end of 2023. Dapansutrile is a nitrile derivative that is believed to inhibit NLRP3
ATPase activity and NLRP3-ASC interaction through covalent interactions with the NLRP3
protein [237]. In addition, dapansutrile may also regulate IL1B, IL6, IL17A, IL18, MMP3
and TNF expression, thereby reducing the chemotaxis and activation of inflammatory
cells [238].

Although these clinical trials are promising and show great potential for inhibiting in-
flammasome activation, much progress still needs to be made. Especially, the development
of inflammasome inhibitors other than NLRP3 is lagging behind.

5. Conclusions and Future Directions

Inflammasomes have essential roles in the innate immune response. Still, aberrant
activation or gain-of-function mutations in inflammasome proteins can also contribute to
the development and progression of various autoimmune and autoinflammatory diseases.
Our knowledge of inflammasome biology and inflammasome activation mechanisms has
advanced significantly over the past decade, which, in turn, is driving our understanding
of their involvement in inflammatory diseases. To date, the best-described inflammasome is
NLRP3 and most research regarding the involvement of inflammasomes in human diseases
has focused on this inflammasome. As such, the mechanisms and involvement of other
inflammasomes in human disease need to be clarified. Future research should investigate
the specific mechanisms of activation and regulation of less characterized/explored in-
flammasomes, and how they contribute to inflammatory disorders. From a therapeutic
perspective, understanding the unique mechanisms of each inflammasome would open
new opportunities to selectively target aberrant inflammasomes in patients with inflamma-
tory diseases.

Pyroptosis is garnering attention as a critical mechanism driving inflammatory re-
sponses and pathology. The role of GSDMD in pyroptosis has been extensively studied, but
further research on the biochemical mechanisms of GSDMD-mediated pyroptosis is needed.
The role of GSDMD-mediated pyroptosis in autoimmune and autoinflammatory diseases
also remains unclear. Further studies should investigate the role of GSDMD in inflammatory
conditions and assess the potential of GSDMD inhibition as an anti-inflammatory therapy.

Finally, the role of different inflammasome-dependent caspases in the pathology of
human diseases needs to be further elucidated. Caspase inhibition might be a promising
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therapy for many inflammasome-driven pathologies and multiple caspase inhibitors have
been developed as a potential treatment for different pathologies; however, only few have
progressed to clinical trials. The major challenges regarding these inhibitors is their poor
efficacy and target specificity and the development of adverse side-effects. In general,
caspases play a central role in many cellular processes, including apoptosis. For example,
in the context of PD, apoptosis in neurons is thought to be triggered by mitochondrial
dysfunction; therefore, inhibition of apoptosis may prevent the removal of dysfunctional
neurons ultimately leading to necrosis, which might exacerbate the disease. A better
understanding of the various caspase functions in specific disease settings, as well as the
development of inhibitors targeting specific caspases, is needed.

Despite substantial progress, current understanding of inflammasome biology is in-
sufficient to exploit fully for the development of anti-inflammatory therapies. An in-depth
understanding of how the different inflammasomes are activated, as well as their assembly
and upstream signaling events, at both transcriptional and post-transcriptional levels, are
key to identifying novel therapeutic targets. To overcome the current challenges, further
studies on understanding the role of the different inflammasomes in inflammatory diseases is
fundamental to effectively develop their inhibitors as a treatment for the different pathologies.
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