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Abstract: The characteristics of maxillofacial morphology play a major role in orthodontic diagnosis
and treatment planning. While Sassouni’s classification scheme outlines different categories of max-
illofacial morphology, there is no standardized approach to assigning these classifications to patients.
This study aimed to create an artificial intelligence (AI) model that uses cephalometric analysis
measurements to accurately classify maxillofacial morphology, allowing for the standardization of
maxillofacial morphology classification. This study used the initial cephalograms of 220 patients aged
18 years or older. Three orthodontists classified the maxillofacial morphologies of 220 patients using
eight measurements as the accurate classification. Using these eight cephalometric measurement
points and the subject’s gender as input features, a random forest classifier from the Python sci-kit
learning package was trained and tested with a k-fold split of five to determine orthodontic classifi-
cation; distinct models were created for horizontal-only, vertical-only, and combined maxillofacial
morphology classification. The accuracy of the combined facial classification was 0.823 ± 0.060;
for anteroposterior-only classification, the accuracy was 0.986 ± 0.011; and for the vertical-only
classification, the accuracy was 0.850 ± 0.037. ANB angle had the greatest feature importance at
0.3519. The AI model created in this study accurately classified maxillofacial morphology, but it can
be further improved with more learning data input.

Keywords: orthodontics; cephalograms; artificial intelligence (AI); machine learning; random forest
classifier (RF); k-fold

1. Introduction

Digital technology in orthodontic treatment has seen rapid progression in recent years.
Some of the applications of these new technologies include tracking root movement by
CT scan, bending wires for orthodontic appliances using robotics, and comparison of soft
tissue before and after orthognathic surgery with 3D digital simulation [1–3]. These novel
solutions not only have exciting possibilities, they have also been found to be accurate and
reliable methods for providing orthodontic treatment.

In recent years, there has been an increasing trend of applying artificial intelligence
(AI) in medical and dental fields to enhance the accuracy of diagnoses and clinical decision-
making [4–12]. In particular, AI is a rapidly growing area in dental innovation, as seen with
the large amount of AI research being conducted for various clinical applications [13–18].
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An AI machine learning algorithm was used to determine tooth prognosis from electric
dental records, and its accuracy was compatible with the decisions made by prosthodon-
tists [13,15]. Another AI model was employed for a caries diagnosis, which reportedly
achieved significantly higher accuracy than dentists in detecting caries lesions on bitewing
radiographs, using a deep neural network [14]. In addition, a convolutional neural network
was applied in designing removable partial dentures, and the accuracy of the classification
of partially edentulous arches was over 99% for the maxilla and the mandible [16].

Machine learning was also used in the diagnostic prediction of root caries, based
on the National Health and Nutrition Examination Survey data. The study showed the
potential of machine learning methods in identifying previously unknown features, and
the developed method demonstrated high accuracy, sensitivity, specificity, precision, and
AUC in distinguishing between the presence and absence of root caries [17]. Recently, AI
convolutional neural networks (CNN) have been applied in the classification of elementary
oral lesions from clinical images, and the classification achieved a 95.09% accuracy [18].
Thus, AI methods have been successfully implemented in various areas of dentistry. Recent
reviews discussed the great potential and challenges of AI in dentistry, and there is a clear
need for trustworthy AI in dentistry [19–21].

A myriad of AI research is being conducted specifically in the field of orthodontics [22–27]. In
particular, many researchers have been implementing AI in cephalogram analysis [22,23,26].
Patients presenting with dentofacial deformities often require combined orthodontic and
surgical treatment, and a maxillofacial skeletal analysis is a critical component of diagnosis
and treatment planning, especially when determining whether surgical intervention is
necessary [22]. AI models have been found to accurately determine the need for correc-
tive orthognathic surgery using cephalograms [22]. Additionally, AI models analyze new
cephalometric X-rays at almost the same quality level as experienced human examiners [23].
These capabilities can be valuable tools for dental education and training. AI models have
also been applied when determining cervical vertebrae stages for growth and development
periods [26]. The timing of orthodontic treatment initiation is a crucial element of orthodon-
tics, and it is essential to know a patient’s growth stage in order to plan the most effective
treatment. Thus, accurate prediction of growth and development periods by AI could help
greatly in determining treatment sequences.

Even though digital technology can aid in selecting various treatment methods, it
is still essential to formulate an appropriate diagnosis and treatment plan with a clear
goal. For orthodontic diagnosis and treatment planning, each patient’s malocclusion status
determines the selection of orthodontic devices and extraction patterns, if needed, for
treatment. This is where the characteristics of maxillofacial morphology play a major
role. Recently, cone-beam computed tomography (CBCT) has been used to obtain a three-
dimensional view of maxillofacial morphological features, but it is not regularly used,
due to radiation exposure [28]. Therefore, the lateral cephalogram is more commonly
used in dental assessment. Lateral cephalograms are highly prevalent in orthodontic treat-
ment planning, as they are indispensable in aiding the understanding of the morphology
of malocclusion.

Various classification methods for maxillofacial morphology have been developed
in the past, most of which use measurements from lateral cephalograms [29–31]. Among
these approaches, the classification method developed by Sassouni uses cephalometric
measurements to classify the maxillofacial morphology into nine types, based on the
combination of anteroposterior (Classes I, II, and III) and vertical (Short-, Medium-, and
Long-frame) facial types [32]. While Sassouni’s classification scheme outlines different
categories of maxillofacial morphology, there is no standardized approach to assigning
these classifications to patients. For instance, Sassouni did not clarify the combination of
cephalometric measurements to use and the standard values for each classification [33].
As a result, currently, even among orthodontists with many years of experience, there are
variations in the classifications of borderline cases. AI has proven to be an effective and
accurate solution in orthodontic diagnosis and evaluation [34].
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With this study, we aimed to create an AI model that uses cephalometric analysis
measurements to accurately classify maxillofacial morphology. This can ensure accuracy,
regardless of a practitioner’s years of clinical experience, and lead to better standardization
of maxillofacial morphology classification.

2. Materials and Methods
2.1. Data Collection

The subjects of this study were Japanese males and females, aged 18 years or older,
who underwent orthodontic treatment at the Iwate Medical University, School of Dental
Medicine, Uchimaru Dental Center between August 2008 and June 2022. Data was collected
with the following exclusion criteria: (1) patients who already underwent orthodontic
intervention at the first visit, (2) patients with congenital diseases that affect maxillofacial
growth, such as cleft lip and palate and chromosomal abnormalities, and (3) patients with
prosthetic devices or missing teeth. Patients with jaw deformities were included. This
study was approved by the Institutional Review Board at Iwate Medical University, School
of Dental Medicine (approval number 01373).

2.2. Determining Training and Testing Data

Tracing paper was placed on each X-ray film of the 220 cephalograms to create a
tracing diagram. The tracing diagrams were then imported with a scanner (GT-X900,
Seiko Epson Co. Ltd., Suwa, Japan) at 100 dpi resolution. The analysis of the tracings was
performed with the software WinCeph Version 11 (Rise Co. Ltd., Sendai, Japan), in which
127 measurements were calculated for each patient. Calibration settings were established
by drawing a distance measurement scale on the tracing paper and using a scanner to
capture the measurements of two points on the scale. From these measurements, one
anteroposterior input measurement (ANB angle) and seven vertical input measurements
(mandibular plane to FH, mandibular plane to SN, ramus plane to FH, ramus plane to
SN, gonial angle, N-Me/Cd-Go, and overbite) were considered for analysis, illustrated
in Figure 1. Three orthodontists certified by the Japanese Orthodontic Society used these
eight measurements to categorize the maxillofacial morphology of each of the 220 patients
into one of three anteroposterior classifications (Classes I, II, or III) and one of three vertical
classifications (Short-, Medium-, or Long-frame), which placed each patient into one of
nine facial classifications combining three anteroposterior classifications and three vertical
classifications (Class I and Short-frame, Class II and Short-frame, Class III and Short-frame,
Class I and Medium-frame, Class II and Medium-frame, Class III and Medium-frame,
Class I and Long-frame, Class II and Long-frame, and Class III and Long-frame). Each
orthodontist individually assessed patient data in a blinded manner. In cases where there
was a discrepancy between two of the classifications for a patient, the final classification
was determined by consensus between the two orthodontists who made the different initial
classifications. Patients who were classified differently by all three of the orthodontists
were assigned to a classification with measurements in the middle, which were class I
and medium. To check inter-rater reliability, each of the three orthodontists classified
patients three different times, separated by time. The facial classification determined by the
orthodontists was set as an accurate classification for each patient.

A k-fold split of 5 was used to train and test each model. The 220 subjects were
randomly divided into 5 folds, or groups. For each iteration, 4 groups were used to train
the model, while 1 row was used to evaluate the model performance.

2.3. AI Model Creation

For the combined facial classification model (with nine possible outputs), three distinct
ML models within the scikit-learn (sklearn) package in Python (random forest classifier
(RF), logistic regression (LR), and support vector classification (SVC)) were trained, tested,
and compared in the evaluation of the cephalometric classification. The most successful
classification model was used for further analysis. The best classification model used gen-
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der and the 8 cephalometric measurements to determine the combined facial classification
for each patient in the training group. The accuracy score of the classification was deter-
mined for the training model by comparing the deduced AI combined facial classifications
to the accurate classifications determined by the certified orthodontists. Supervised AI
classification was also conducted separately for anteroposterior (Classes I, II, and III) and
vertical (Short-, Medium-, and Long-frame) classifications. Anteroposterior and vertical
cephalometric inputs were used for each model, respectively (Figure 2). Training and test-
ing were performed 5 separate times, with outcome measures calculated at each iteration.
The outcome measures were then averaged to find the overall model performance, and the
accuracy was compared to the separate anteroposterior and vertical classifications of the
accurate, combined facial classification.
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vertical analysis.
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2.4. Feature Selection

The feature importance function from the Python sklearn package was used to acquire
and graph the features of greatest importance in determining the output of the combined
facial classification model.

3. Results
3.1. Cephalogram Analysis Results

Cephalograms from 220 patients were collected and used in this study. The average
age was 23.3 ± 5.4, and 110 females and 110 males were involved.

Analysis of the cephalograms of 220 patients by 3 orthodontists resulted in the fol-
lowing classification frequencies: Class I and Short 34, Class I and Medium 49, Class I and
Long 9, Class II and Short 19, Class II and Medium 37, Class II and Long 14, and Class III
and Short. There were 23 patients, 28 Class III and Mediums, and 7 Class III and Longs.

3.2. Comparing ML Models

For the combined facial classification, three distinct ML models within the sklearn
package in Python (RF, LR, and SVC) were trained and tested to determine the best per-
forming model with which to pursue analysis.

RF performed with an accuracy of 0.823 ± 0.060, an F1 score (harmonic mean of precision
and recall) of 0.806 ± 0.076, recall of 0.790 ± 0.077, and a precision of 0.865 ± 0.072 (Table 1).
The RF classifier performed the best across all metrics when compared to LR and SVC.
Thus, the RF model was used for further analysis.

Table 1. Comparison of the random forest classifier (RF), logistic regression (LR), and support vector
classification (SVC) models for the 9 output classifications using k-fold (n = 5).

RF LR SVC

Accuracy 0.823 ± 0.060 0.732 ± 0.046 0.677 ± 0.049
F1 score 0.806 ± 0.076 0.654 ± 0.044 0.568 ± 0.086
Recall 0.790 ± 0.077 0.660 ± 0.031 0.562 ± 0.072
Precision 0.865 ± 0.072 0.692 ± 0.050 0.629 ± 0.109

3.3. Nine Maxillofacial Classifications

The RF classifier was evaluated for precision, recall, and F1 score for each com-
bined facial classification, as shown in Table 2. The highest precision was seen with the
Class I and Long-frame and Class III and Long-frame outputs, and the lowest was seen
with the Class I and Medium-frame output. The highest recall scores were seen with the
Class II and Medium-frame classification, and the lowest was with the Class I and Long-
frame classification. The highest F1 score was seen with the Class II and Medium-frame
classification, and the lowest was with Class II and Short-frame classification.

There were 39 patients who were misclassified (Figure 3). Of these, 2 were misclas-
sified in both the anteroposterior and vertical classifications, 5 were misclassified in the
anteroposterior classification, and 32 were misclassified in the vertical classification. The
model’s main errors came from believing that true Class I and Short-frame and Class II and
Short-frame classifications were, instead, Class I and Medium-frame (20.5%) and Class II
and Medium-frame, respectively (15.4%).

3.4. Separate Anteroposterior- and Vertical-Only Classifications

The separate anteroposterior and vertical classifications showed greater accuracy,
more notably with the anteroposterior-only classification. The RF classifier was evaluated
for precision, recall, F1 score, and PPV for each anteroposterior classification and vertical
classification, as shown in Table 3.
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Table 2. Metrics for each combined facial classification, compared to the accurate classification RF
model by classification over 5 runs.

Classification Precision Recall F1 Score

Class I and Short 0.84 0.76 0.80
Class I and Medium 0.76 0.90 0.82
Class I and Long 1.00 0.67 0.80
Class II and Short 0.87 0.68 0.76
Class II and Medium 0.81 0.92 0.86
Class II and Long 0.80 0.86 0.83
Class III and Short 0.90 0.78 0.84
Class III and Medium 0.82 0.82 0.82
Class III and Long 1.00 0.71 0.83

accuracy 0.82
macro avg. 0.87 0.79 0.82
weighted avg. 0.83 0.82 0.82
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Figure 3. Confusion matrix for 5 runs of the combined facial classification RF. The horizontal
axis represents the AI classification result (Predicted label), and the vertical axis represents the
accurate classification (True label). The numbers I, II, and III represent Class I, Class II, and
Class III, respectively, and S, M, and L represent Short, Medium, and Long, respectively. Blue
represents patients who were classified correctly, and gray represents the misclassified patients.

Table 3. Metrics for anteroposterior classification and vertical classification RF models.

Anteroposterior Model Vertical Model

Accuracy 0.986 ± 0.011 0.850 ± 0.037
F1 score 0.987 ± 0.011 0.844 ± 0.035
Recall 0.985 ± 0.012 0.828 ± 0.040
Precision 0.989 ± 0.009 0.885 ± 0.044

3.4.1. Anteroposterior-Only Classification

For the anteroposterior-only classification (Classes I, II, and III), the accuracy score
was 0.986 ± 0.011 for the testing data. As visualized in the confusion matrix in Figure 4,
only three anteroposterior cases were misclassified, and no specific trend was observed.
Further analysis of output-specific metrics for horizontal classifications can be found
in Table 4.
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Figure 4. RF confusion matrix anteroposterior classifications using k-fold (n = 5). The horizontal axis
represents the AI classification results (predicted label), and the vertical axis represents the accurate
classifications (true label). Blue represents patients who were classified correctly, and gray represents
the misclassified patients.

Table 4. Metrics for the anteroposterior RF model by output.

Classification Precision Recall F1 Score

Class I 0.98 0.99 0.98
Class II 0.99 0.99 0.99
Class III 1.00 0.98 0.99

Accuracy 0.99
Macro avg. 0.99 0.99 0.99
Weighted avg. 0.99 0.99 0.99

3.4.2. Vertical-Only Classification

For the vertical-only classification (Short-, Medium-, and Long-frame), the accuracy
score of the model was 0.850 ± 0.037. A total of 33 of the 220 subjects in the test group were
misclassified. For the vertical classification model, the most common classification was
Short misclassified as Medium, followed by Medium as Short. (Figure 5).
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classification (True label). Blue represents patients who were correctly classified, and gray represents
the misclassified patients.

Further analysis of output-specific metrics for vertical classifications can be found
in Table 5.
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Table 5. Metrics for the vertical RF model by output.

Classification Precision Recall F1 Score

Long 0.89 0.80 0.84
Medium 0.82 0.91 0.86
Short 0.89 0.78 0.83

Accuracy 0.85
Macro avg. 0.87 0.83 0.85
Weighted avg. 0.85 0.85 0.85

3.5. Feature Selection

To find which input features had the largest influence within the model, we then
conducted an analysis of importance to determine which inputs had the largest importance
in the nine-output combined facial classification model (Figure 6). The ANB angle had
the largest influence on the model’s prediction, with a feature importance of 0.3519. The
mandibular pl to FH angle followed behind, with a feature importance of 0.1691. Gender
had the least feature importance at 0.0092.
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4. Discussion

This study developed ML algorithms for classifying maxillofacial morphology using
three distinct models: RF, LR, and SVC. The accuracies of the three approaches were
compared, and it was found that the RF-based model was the most successful of the
three. Each model uses a different algorithm of prediction: RF combines distinct, individual
decision trees that each look at randomly selected feature data. The RF model was proposed
by Leo Breiman in 2001 and has been commonly implemented in recent years, due to
its high prediction performance [35,36]. RF is widely recognized as the most versatile
model, capable of handling large amounts of data while requiring minimal pre-processing.
LR computes the sum of the input features and calculates the probability of a binary
occurring. Logistic regression is a popular technique used in machine learning to solve
binary classification problems [37]. SVC places data on a feature space and from there,
finds decision boundaries that physically separate this data. SVC has been widely applied
in the field of medical image processing [38].

The anteroposterior classification was highly accurate, with only three misclassified.
For the anteroposterior classification, the ANB angle played an important role; therefore,
these three misclassified cases could likely have an ANB angle at the borderline of different
classifications. In general, there are also variations in how orthodontists classify cases
by ANB angle. In anteroposterior classification, cases with ANB angles > 4.0 or >5.0
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are classified as Class II, and cases with ANB angles < 2.0, <1.0, or <0.0 are classified as
Class III [39–43]. Because the AI determined ANB norms from the training data of only
220 participants in this study, the SDs determined by the AI might have been larger than the
actual norm. Therefore, it is likely that there was an excess of borderline cases. Thus, the
accuracy of the classifications of patients on the borderline could be improved, suggesting
that more training data might be needed to create a more accurate AI model.

The accuracy of the vertical classification was relatively lower than the anteroposterior
classification, as 33 cases were misclassified. Similar to the anteroposterior classification,
where the training data resulted in a high SD, in the vertical classification, the low and
high boundaries for the Medium classification were, respectively, lower and higher than
those of the orthodontists’ evaluations. This led to a large number of cases being classified
as Medium instead of Long or Short. Because the majority of the misclassified patients
were classified into Medium, a possible explanation is that the Medium borderline values
were lower and higher than that of the orthodontists’ range. The orthodontists’ range
might not have translated into the AI model, due to not having enough training data. In
addition, while the anteroposterior dimension was determined by the single measurement
of ANB, the vertical dimension was classified using seven cephalometric measurements.
The use of several measurements was necessary because it was impossible to classify
patients with only one cephalometric measurement [44,45]. As seen in Figure 6, the feature
importance was different for each measurement, which was determined by the training
data. Thus, these weighted measurements might have influenced misclassification into the
Medium group and thus also played a role in the accuracy of the combined maxillofacial
classification with nine categories.

For the combined maxillofacial classifications, 39 patients were misclassified. Of these
patients, 32 were misclassified in the vertical classification, 5 were misclassified in the
anteroposterior classification, and only 2 were misclassified in both the anteroposterior and
vertical classifications. In total, 34 cases were misclassified in both combined maxillofacial
and vertical only classifications: 8 Mediums classified as Shorts, 6 Longs classified as Medi-
ums, 2 Mediums classified as Longs, and 18 Shorts classified as Mediums. Thus, the vertical
component played an influential role in determining the nine-category combined classifica-
tions. These 34 misclassified cases were divided into 2 groups: the cases with mandibular
rotation and the cases with the borderline angle measurement of the mandibular pl to
FH. Mandibular rotation included both forward and backward rotation. In the cases with
mandibular rotation, the value of the ramus pl clearly deviated from the standard value;
thus, the classification result might have been strongly influenced by this value. However,
in cases that should be clearly classified as Long, the mandibular pl measurement, which
had higher feature importance than ramus pl, also deviated from the standard value.

Therefore, the AI model was less accurate for cases involving the rotation of the
mandible. The morphology of the mandibular bone is highly important in the classification
of facial morphology in adults, and the mandibular plane is also said to be more susceptible
to the inclination, opening, and rotation of the skull base (SN plane) [46]. Despite consid-
ering ramus pl to SN and Ramus pl to FH measurements in the AI model, the accuracy
was diminished when mandibular rotation was involved. Thus, if one cephalometric
measurement carried greater weight in the classification, correct classification might be
more difficult for the model to achieve. For these reasons, the accuracy of the vertical
classification was inferior to that of the anteroposterior classification. It may be necessary
to consider additional cephalometric measurements to evaluate the degree of mandibular
rotation for the AI model.

In this study, feature importance for the combined nine-category facial classification
was determined, and inputs with higher feature importance included the ANB angle,
the mandibular pl, and ramus pl to FH and SN; these features represent mandibular
rotation and the relative anteroposterior position between the maxilla and the mandible.
Interestingly, gender was found to be the least impactful feature. This indicates that the AI
model created was affected by gender less than the cephalometric measurements. It was
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reported that there was a significant difference in the Cd-Go dimension (mandibular ramus
height) between genders [47]. Therefore, we created the N-Me/Cd-Go index, which could
eliminate gender differences in the mandibular ramus length. In this study, one length
ratio (N-Me/Cd-Go) and seven angle measurements were used in consideration of the
differences in size between individuals. This particular feature selection could lead to the
creation of an AI model that is not greatly affected by gender.

The main limitation of this study is the numbers of cases used for machine learning
data. This is because what we used was past data from actual practice. In addition, the use
of strict exclusion criteria reduced the number of cases considerably. However, with the use
of AI, we now have the potential to classify maxillofacial morphology with greater accuracy,
which, until now, has been performed manually. To the best of our knowledge, this is
the first report of its kind. Further analysis will be conducted with more data to improve
the accuracy. Although the AI model developed in this study requires further refinement,
its machine learning ability allows for the development of an accurate classification if
given a substantial amount of training data. Thus, the program’s potential for accuracy
and possible integration into 3D cephalometric measurements underscores its relevance in
modern digital dentistry and orthodontics.

5. Conclusions

The AI model created in this study accurately classified patients into one of the
nine combined facial classifications, based on anteroposterior maxillofacial morphology
and vertical dimension. This can ensure accuracy regardless of a practitioner’s years of
clinical experience and thus lead to a better standardization of maxillofacial morphology
classification. This novel machine learning approach can be further enhanced with the
incorporation of additional learning data. This pioneering study introduces a new potential
tool to be used in future maxillofacial morphology classifications.
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