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Abstract: Tuberculosis (TB) presents a substantial health risk to autopsy staff, given its three to five
times higher incidence of TB compared to clinical staff. This risk is notably accentuated in South
Korea, which reported the highest TB incidence rate and the third highest TB mortality rate among
OECD member countries in 2020. The standard TB diagnostic method, histopathological examination
of sputum or tissue for acid-fast bacilli (AFB) using Ziehl–Neelsen staining, demands microscopic
examination of slides at 1000× magnification, which is labor-intensive and time-consuming. This
article proposes a computer-aided diagnosis (CAD) system designed to enhance the efficiency of
TB diagnosis at magnification less than 1000×. By training nine neural networks with images taken
from 30 training slides and 10 evaluation slides at 400× magnification, we evaluated their ability to
detect M. tuberculosis. The N model achieved the highest accuracy, with 99.77% per patch and 90%
per slide. We discovered that the model could aid pathologists in preliminary TB screening, thereby
reducing diagnostic time. We anticipate that this research will contribute to minimizing autopsy
staff’s infection risk and rapidly determining the cause of death.

Keywords: acid-fast stain; automatic bacillus identification; computer-aided diagnosis (CAD); low
resolution microscopic slide image; Mycobacterium tuberculosis; postmortem examination

1. Introduction

Tuberculosis (TB) is a chronic, highly infectious, airborne disease caused by the 1- to
4-µm-long rod-shaped bacterium Mycobacterium tuberculosis. It ranks as the 13th leading
cause of death worldwide, claiming 1.49 million lives, with 86% of all TB patients residing
in India (26%), China (8.5%), and Indonesia (8.4%). The World Health Organization
(WHO) forecasted an additional 137,000 TB fatalities globally for 2020 and 2021 due to the
detrimental effects of COVID-19 on TB control measures. Despite a continuous decline
in the incidence rate, South Korea still had the highest TB incidence rate and the third
highest TB mortality rate among the 38 member countries of the Organization for Economic
Cooperation and Development (OECD) in 2020. With new TB cases reaching 19,933 in 2020,
the situation still presents a significant challenge [1–5].

Currently, several techniques are employed to diagnose TB infection. The commonly
used methods include antibacterial plain microscopic smear (Ziehl–Neelsen (ZN) stain),
fluorescence microscopic smear (auramine O, auramine–rhodamine stain), molecular tests
(transcription-mediated amplification, strand-displacement amplification, conventional
PCR, Xpert MTB/RIF), mycobacterial culture, drug susceptibility tests, histopathologic
examination, and immunologic tests (tuberculin skin test (TST), interferon-gamma releasing
assay (IGRA)). The histopathological examination using Ziehl–Neelsen (ZN) staining,
being the standard method, is widely used for the diagnosis of pulmonary TB due to its
affordability, simplicity, and rapidity of results [6–11].
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Autopsy plays a crucial role in both clinical and medicolegal systems by systematically
examining the deceased to determine the cause of death, offering valuable medical insights,
and gathering evidence for legal investigations when needed. However, autopsy personnel
can face serious health risks due to potential exposure to various infectious agents, in-
cluding HIV, hepatitis B and C viruses, and Mycobacterium tuberculosis. The Mycobacterium
tuberculosis bacterium is known to be robust enough to survive in diverse environments for
weeks to months under favorable conditions. Viable TB bacteria have been identified in the
tissues of the deceased up to 36 days postmortem. In an autopsy study of 138 formalin-fixed
lung tissues with histologic evidence of TB, three specimens were cultured positive for
TB, suggesting the extended risk of TB infection from handling formalin-fixed tissues. TB
infection can be spread via direct contact with contaminated body fluids or tissue, but it can
also be disseminated by infectious aerosols, which are airborne particles approximately 1 to
5 µm in diameter that can stay suspended in the air for extended periods. Upon inhalation,
these particles traverse the upper respiratory tract and reach the alveoli. Moving and
manipulating a body can expel air from the lungs of an infected individual, aerosolizing
the bacilli. Aerosols can also be generated by fluid aspirator hoses discharged into sinks,
oscillating saws used on bone and soft tissue, and water sprayed by hoses onto tissue
surfaces. In 1979, eight of 35 medical students at the University of Sydney who attended the
autopsy of an immunosuppressed patient with active tuberculosis contracted the disease.
Exposure during the autopsy, even as brief as 10 min, resulted in the spread of the disease.
In Finland and Japan, studies have shown that pathologists who perform autopsies are
more likely to contract occupational tuberculosis than those who do not perform autopsies
and those who work in university departments of preventive medicine and public health.
These data emphasize the need for appropriate infection prevention measures and rapid
testing [12–16].

In the field of medical image analysis, convolutional neural networks (CNNs) have
emerged as powerful tools for disease detection. CNN models excel in analyzing medical
images, such as chest X-rays and mammograms, enabling the identification of lung diseases,
cancers, and specific abnormalities. Given the global burden of TB and the need for
rapid screening, this study focuses on leveraging deep learning networks to classify low-
resolution slide images at 400× magnification. We evaluated the performance of nine deep
learning models, including NASNet-A Large, aiming to provide a preliminary screening
tool to assist pathologists in shortening the diagnosis time. By improving the efficiency of
TB diagnosis, this research contributes to enhancing healthcare outcomes.

This study not only addresses the challenges associated with rapid TB screening at
autopsy, but it also demonstrates the potential of deep learning networks in medical image
analysis for disease detection. By harnessing the power of AI models, including CNNs, we
aim to improve the accuracy and efficiency of TB diagnosis, ultimately leading to better
healthcare practices and outcomes.

2. Related Works

Abdullahi Umar Ibrahim et al. cropped 178, 524, and 530 ZN slide sets into 227 × 227 × 3
patches with a 70% training and 30% testing split. They then performed transfer learning
using AlexNet. As a result, they achieved accuracies of 98.15%, 98.09%, and 98.73% in ex-
periments A, B, and C, respectively, demonstrating an analytical ability comparable to that
of a pathologist [17]. Jeannette Chang et al. used 390 fluorescence microscopy slide images
(92 positive, 298 negative) and achieved accuracy of 89.2% using a support vector machine
(SVM) as a classifier after Otsu binarization. They used Hu moment and a histogram of
oriented gradients (HOG) as feature vectors [18]. Yan Xiong et al. used 45 ZN slides (30 pos-
itive samples, 15 negative samples) cropped into 32 × 32 × 3 patches, and they applied
a CNN (convolutional neural network) model to achieve 97.94% accuracy [19]. Santiago
Lopez-Garnier et al. reported that they cropped 12,510 (4849 positive, 7661 negative) im-
ages of microscopic observed drug susceptibility (MODS) 2048 × 1536 into 224 × 224 × 1
patches and trained VGG16’s CNN model with them, achieving 95.76% accuracy and
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94.27% sensitivity [20]. Costa Filho et al. reported that they segmented 120 ZN microscope
images using RGB, HSI, YCbCr, and Lab color separation information and classified them
using SVM, achieving 97.77% accuracy [21]. Yoshiaki Zaizen et al. trained the DenseNet-121
model using 40 negative slides after annotating two positive slides and tested the results
with 42 patients’ slides, achieving accuracy of 86% [22]. Moumen El-Melegy et al. used the
ZNSM-iDB public database (ZN stained microscopy images) to detect regions using the
Faster R-CNN (faster region-based convolutional neural network) model after cropping
into 400 × 400 × 3 patches. They then resized the selected region to 20 × 20 and binary
classified it with five layers of CNNs, achieving accuracy of 98.4% [23,24]. Reshma SR et al.
demonstrated that contour extraction, ellipse detection, and ellipse merging techniques
could be used to count M. tuberculosis bacteria on 176 images with 91.5% accuracy [25].
Marios Zachariou et al. demonstrated that ResNet50 can detect M. tuberculosis with 99.74%
accuracy in 230 fluorescently stained microscope slides after segmentation by Cycle-Gan
and classification of the extracted regions using ResNet, DenseNet, and SqueezeNet [26].

3. Materials and Methods

To diagnose tuberculosis, sputum or tissue is stained with Ziehl–Neelsen staining
and examined under a microscope: the cells appear blue and complex in shape, while the
waxy lipids in the cell wall of the bacillus appear red. The South Korean TB diagnosis
guidelines suggest that the slides should be examined at a 1000× magnification, which is
not an easy task even for pathologists [27]. In a microscopic examination, Mycobacterium
tuberculosis is often difficult to identify due to its small size and irregular shape. The
conditions of the tissue specimen and various artifacts, such as low contrast background,
variations in the degree of staining, and tissue folding, can also make the bacillus even
more difficult to identify. In addition, a large number of slides or small number of bacilli
on a slide can require a long time to examine, which can lead to misdiagnosis due to
the fatigue of the reading pathologist. Therefore, there have been requests and efforts
to expedite reading with the help of artificial intelligence assistants. Recently, several
models of CNNs, a new and powerful form of deep learning, have been used to detect
areas of TB bacteria. Since equipment that digitizes slides at 1000× magnification is
expensive, equipment that digitizes at 200/400× magnification is commonly used in
practice. The ability to read at lower magnifications than the prescribed 1000× would
be a major advantage in terms of applicability and time. To the authors’ knowledge, no
successful studies of automated reading at lower resolutions have been published so far.
The authors investigated techniques for effective detection of Mycobacterium tuberculosis
on low-resolution digitized slide images. As described in Section 3.2, we utilized various
CNN and ViT (vision transformer) models to compare their performance and explore their
applicability.

3.1. Materials

Samples from 14 TB-infected lungs and 26 normal lungs were collected during autopsy
at the National Forensic Service of Korea. All specimens were fixed, sectioned, and stained
with Ziehl–Neelsen stain according to laboratory regulations to be reviewed by a patholo-
gist. All specimens were further analyzed for tuberculosis nucleic acid amplification testing
(TB-PCR) were and used in the experiment only if a match was found. All slides were
scanned using a digital pathology scanner (Roche Co., Basel, Switzerland, VENTANA DP
200 slide scanner).

Patch-based dataset construction was performed by creating a 224 × 224 × 3 patch
from an image scanned at 400× magnification, excluding the background area and in-
cluding the actual tissue area. Nine of 14 positive slide samples were labeled as simple
true/false by the pathologist, identifying which of the patches contained M. tuberculosis.
Of the 351,875 positive spots, only 47,017 actually contained TB bacteria. From a total
of 3.1 million negative spots, the same number of negative spots as the positive samples
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were randomly selected to form the complete dataset (98,034). Figure 1 shows a patch of a
positive slide and the location of the tubercle bacilli.
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Figure 1. Examples of annotations. (a) Whole slide image of lung tissue containing Mycobacterium
tuberculosis; Ziehl–Neelsen staining, scanning magnification view; (b) cropped patch image of (a),
400×; (c) annotated short, rod-shaped bacilli.

3.2. Neural Network Model

CNN models are popular because they automatically extract features using a convolu-
tion layer; reduce computational complexity using a pooling layer; introduce non-linearity
into the model using activation functions, such as ReLUs (rectified linear units); and im-
prove feature extraction overall, making them more effective at learning complex patterns
in large datasets than machine learning methods, such as logistic regression or decision
trees. In facial recognition, for example, the Facebook team used a CNN called DeepFace to
perform human-level face recognition. Andre Esteva et al. demonstrated dermatologist-
level classification performance in skin cancer detection using a CNN called Inception-v3
on a large dataset of skin cancer images. Gulshan et al. outperformed the average human
ophthalmologist at detecting diabetic retinopathy using Inception-v3. Pranav Rajpurkar
et al. demonstrated radiologist-level performance in detecting 14 diseases from chest X-rays
using a 121-layer CNN called CheXNet [28–31].

This section provides a brief overview of the deep learning network models used in
the comparison, as shown in Table 1.

Table 1. Overview of the deep learning network models used in the comparison.

Model Depth Input Size

ResNet50 50 layers (Convolutional +
Fully Connected) 224 × 224

Inception v3 48 layers (Inception modules +
Fully Connected) 299 × 299

Xception 71 layers (Convolutional +
Separable Convolutions) 299 × 299

DenseNet169
169 layers (Convolutional +

Pooling + Batch
Normalization)

224 × 224

EfficientNet-B0 Varied due to compound
scaling method 224 × 224

RegNetY-064 64 stages (Sequence of
Convolutional layers) 224 × 224

NASNet-A Large 280 layers (Convolutional) 332 × 332
Vit_base_patch16_224 12 Transformer layers 224 × 224

Swin Transformer Small 110 layers (due to hierarchical
structure) 224 × 224
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3.2.1. ResNet50

Kaiming He and colleagues at Microsoft encountered a problem with the gradient
disappearing as the network depth increased. To address this issue, they utilized residual
learning with skip connections, which enabled deep learning to occur effectively [32]. The
structure is depicted in Figure 2.
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3.2.2. Inception v3

Szegedy et al. created a method to learn multi-level features more effectively. This
goal was accomplished by employing modules with parallel convolutions of varying sizes,
which minimized computation while also addressing the problem of overfitting [33]. The
structure is shown in Figure 3.
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Figure 3. The architecture of the Inception V3 model.

3.2.3. Xception

The Xception architecture, an advanced form of the Inception module, effectively sep-
arates pointwise and depthwise convolutions, as illustrated in Figure 4. This arrangement
allows for independent computation of cross-channel and spatial correlations. Conse-
quently, the network can learn spatial and channel-specific features separately, boosting the
efficiency of image representation learning [34].
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3.2.4. DenseNet

DenseNet (densely connected convolutional networks), proposed by Huang et al.,
is a network structure that connects each layer’s feature map to the feature maps of all
subsequent layers, as illustrated in Figure 5. This connection pattern enhances feature
propagation and improves parameter efficiency [35].
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3.2.5. EfficientNet

Introduced by Tan and Le, EfficientNet systematically explores model scaling (in
terms of depth, width, and resolution) as a way to achieve maximal efficiency with limited
resources. The model selects efficient combinations to deliver better performance, even
with smaller models [36]. The structure is shown in Figure 6.
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3.2.6. RegNet

Radosavovic et al. proposed RegNet, a class of models that utilize a simple design
space to represent regularized network designs. The model aims to find regular (i.e., evenly
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distributed) networks that exhibit a simple and predictable structure while still delivering
high performance [37].

3.2.7. NASNet

NASNet is a model discovered through the neural architecture search (NAS), a method
proposed by Zoph et al. NAS automates the design of neural networks. In contrast to
models such as ResNet and Inception, which are manually designed by human engineers
who specify and stack blocks to build the models, NASNet’s architecture consists of
convolutional blocks that were automatically generated. The process of discovery used
reinforcement learning and RNNs to navigate the space of possible architectures, leading
to the final structure of NASNet [38].

3.2.8. Vision Transformer (ViT)

Dosovitsky et al. proposed ViT, which applies transformers from the realm of natural
language processing (NLP) to image classification. This model treats patches on an im-
age as sequence elements, demonstrating that the scalability of transformers can also be
leveraged for image classification tasks. This approach can deliver better results than CNN
architectures and requires fewer computational resources for model training [39].

3.2.9. Swin Transformer

Proposed by Liu et al., the Swin transformer is a transformer variant specifically
designed for vision tasks. Like vision transformer (ViT), it breaks an image into non-
overlapping patches, but it also incorporates a moving window mechanism to capture both
local and global information. The Swin transformer has achieved state-of-the-art results for
several vision benchmarks, including image classification, object detection, and semantic
segmentation [40].

3.3. Experiments

In this study, we employed seven CNN architectures and two vision transformer
models, as detailed in Table 1, with the aim of classifying slide images into two categories:
detection and non-detection of Mycobacterium tuberculosis. All models were set with a
mini-batch size of 24, except for NasNet, which utilized a size of 12. We adopted a learning
rate of 0.001 for all models, with the exception of the two Vit-series models, which used
a rate of 0.000001. The Adam optimization algorithm was implemented as the optimizer
across all models. Additionally, we set the epoch count at 20 and applied an L2 regularizer
with a value of 0.0001. The training process for all models was conducted utilizing the
cosine annealing scheduler.

The study used RGB color images, with their sizes adjusted based on the model in use.
For instance, the Inception v3, Xception, and NASNet models were supplied with images
sized 299 × 299, although NASNet usually recommends a larger size. All other models
were provided with images sized 224 × 224.

We applied various data augmentation techniques to the training set images, aiming to
enhance model generalization and reduce overfitting risk. These techniques encompassed
rotation within a range of −5 to 5 degrees, scaling from −10 to 10%, vertical and horizontal
flipping, and contrast adjustment up to 10%. Additional methods included brightness
adjustment, cutout augmentation, and mixup augmentation. Cutout augmentation, which
erases random square sections of the input image, encourages the network to interpret more
context for each pixel during training. Mixup augmentation creates synthetic examples in
the input space through linear interpolation between randomly paired training examples,
smoothing the model’s decision boundaries. This process reduces the overfitting likelihood
and enhances the model’s generalization capabilities. For mixup augmentation, we used a
mix ratio of 0.25 and an alpha value of 0.2 [41,42].

To preclude any overlap or bias between the training and test datasets and to effectively
evaluate model performance, we implemented K-fold cross-validation (K = 5). The entire
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dataset was partitioned into five mutually exclusive subsets of equal size. Each subset
served as a test set once, with the remaining four subsets used for training. This process
enabled us to train and test on every dataset, and the average predictive performance is
often used as an indicator of the model’s generalization ability. We designated 10% of the
training data as the validation set and assessed the test set using the model that had the
best performance during the validation phase [43].

To evaluate the performance of the proposed methodology, we employed the following
performance metrics: accuracy, precision, sensitivity, and F1-score, which are defined in
Equations (1)–(4), respectively [44].

Accuracy is the ratio of correct predictions to the total data.

Accuracy = TP + TN/(TP + TN + FP + FN) (1)

Precision is the ratio of true positive predictions to all positive predictions.

Precision = TP/(TP + FP) (2)

Sensitivity, also known as recall, is the ratio of true positives that are correctly predicted
to be positive.

Sensitivity = TP/(TP + FN) (3)

F1 score is the harmonic mean of precision and sensitivity.

F1 score =
2 × (Precision × Sensitivity)
(Precision + Sensitivity)

(4)

4. Results

The results of evaluating the performance of nine models using pathologist-labeled
patches from 30 slides are summarized in Table 2. Notably, NASNet-A Large achieved the
highest accuracy of 99.777%. We further assessed the models on a slide-by-slide basis using
five negative and five positive slides, which were labeled by pathologists at the slide level
rather than on a patch-by-patch basis. The evaluation was performed using the average
ensemble of the five-fold models of NASNet-A Large and Densenet169 each, and the results
are presented in Figure 7.

Table 2. Results of evaluation for neural networks. The best results are highlighted in bold.

Model Accuracy (%) Precision (%) Recall (%) F1 (%)

ResNet50 98.970 ± 0.033 98.973 ± 0.035 98.970 ± 0.033 98.970 ± 0.033
Inception v3 98.949 ± 0.049 98.952 ± 0.049 98.949 ± 0.049 98.949 ± 0.049

Xception 98.980 ± 0.105 98.981 ± 0.106 98.980 ± 0.105 98.980 ± 0.105
DenseNet169 98.980 ± 0.098 98.982 ± 0.098 98.980 ± 0.098 98.980 ± 0.098

EfficientNet-B0 98.928 ± 0.031 98.931 ± 0.030 98.928 ± 0.031 98.928 ± 0.031
RegNetY-064 98.932 ± 0.078 98.935 ± 0.079 98.932 ± 0.078 98.932 ± 0.078

NASNet-A Large 99.777 ± 0.0231 99.728 ± 0.0356 99.771 ± 0.0175 99.749 ± 0.0260
Vit_base_patch16_224 98.667 ± 0.055 98.668 ± 0.054 98.667 ± 0.055 98.667 ± 0.055

Swin Transformer Small 98.918 ± 0.0407 98.920 ± 0.0410 98.918 ± 0.0407 98.918 ± 0.0407
ResNet50 98.970 ± 0.033 98.973 ± 0.035 98.970 ± 0.033 98.970 ± 0.033
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When considering only informative negative slides, the patch detection accuracy
reached 99.978% and 99.820% for the NASNet-A Large and Densenet169 models, respec-
tively. Since the slides were not labeled at the patch level, we relied on the number of
positive patches for evaluation. The classification accuracy of NASNet-A Large for deter-
mining whether slides were positive or negative was 90%, while the Densenet169 model
achieved 100% accuracy.

Figure 7 shows the results for a threshold of 0.5 (left) and for a threshold of 0.7 (right).
Slides numbered 1 to 5 correspond to positive slides, while slides 6 to 10 represent negative
slides. As depicted in Figure 7, DenseNet169 produced more estimated positives on the
positive slides compared to the number of estimated positive patches on the negative slides.
Increasing the threshold led to a decrease in the number of positive patches, but the number
of estimated positives on the positive slides remained higher than that on the negative
slides.

For the thresholds used in the experiment (0.5, 0.6, 0.7, 0.8, and 0.9), the number of
false positives on the perfectly positive slide was higher than the number of false negatives.
On the other hand, NASNet-A Large demonstrated that one of the positive slides had fewer
false positives than the negative slide, and this error rate remained consistent regardless of
the threshold. Thus, the threshold did not have a significant impact on the performance.

Some of the presumed positive patches that were actually negative are shown in
Figure 8. These errors included the appearance of clusters of M. tuberculosis bacteria despite
the absence of M. tuberculosis bacteria, blurred foci of M. tuberculosis bacteria, and poor
post-stain washing of M. tuberculosis bacteria.
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We also utilized gradient-weighted class activation mapping (Grad-CAM) to pinpoint
on what exactly the network was focusing. We calculated the gradient of a class’s score with
respect to the feature map of the penultimate convolutional layer, then globally averaged
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this gradient to generate the weights, and finally created the weighted combination of the
activation map. If the training has been successful, the activation map will highlight the
presence of M. tuberculosis in the patch. The degree of activation is represented by a jet
color map, where blue signifies the lowest activation and red the highest. As depicted in
Figure 9, there was a high level of activation for M. tuberculosis.
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5. Discussion

In this study, we evaluated the performance of seven unique convolutional neural
network (CNN) architectures and two vision transformer models in classifying M. tubercu-
losis slide images into two categories: detection and non-detection. This study represents
a novel application of deep learning networks to the task of identifying M. tuberculosis
on low-resolution slide scans, an approach that shows potential for revolutionizing TB
diagnosis.

Among the models tested, NASNet-A Large exhibited exceptional performance, at-
taining accuracy of 99.777%. This superior result implies that this model could potentially
provide invaluable assistance to pathologists. Additionally, our innovative incorporation
of Grad-CAM to interpret the training process of the CNN architecture is a noteworthy
contribution to the field. The heat map visualizations generated by Grad-CAM accurately
emphasized the regions within each image patch that contained TB bacteria during training.
This process provides a compelling possibility of the enhanced detection of small area
lesions.

Regarding performance, the ensemble deep learning networks of Densen169 and
NASNET exhibited impressive potential, with Densen169 achieving 100% positive and
100% negative separation on a slide-by-slide basis. NASNET was able to assist pathologists
in making accurate judgements by requiring the examination of only a few dozen positive
patches. This model could potentially increase the efficiency of TB diagnosis significantly.
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Nevertheless, it is important to acknowledge the limitations of our current approach.
Despite the high per-slide accuracy levels of 90% (NASNet-A Large) and 100% (Densenet169),
the limited number of slides and the narrow threshold distinguishing negative and positive
cases prevent broader generalization. Moreover, upon reviewing the 40 slides represented
in Figure 10, the need for an increased number of training images for improved generaliza-
tion became evident. Some slides were excessively thin, displayed faint images, or showed
varying staining degrees, pointing to a more diverse range of real-world cases. To create a
robust model capable of effectively handling these varied cases, extensive training with a
larger and more diverse set of slide images is indispensable.
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In our future work, we aim to collect additional slide samples to improve the model’s
performance and applicability to low-resolution slides at magnification of 200×.

6. Conclusions

Tuberculosis (TB) remains a serious global health issue, claiming approximately
1.49 million lives annually. The risk is high even in countries with a high incidence of TB,
such as South Korea, particularly during autopsies. Standard TB testing involves a labor-
intensive and time-consuming examination of slides at 1000× magnification following
Ziehl–Neelsen staining.

In response to this challenge, there have been attempts to develop automated TB
sputum tests using high-resolution microscopic images. However, these techniques often
prove inadequate in settings where slides can only be digitized using low-resolution
scanners. In our study, we evaluated the performance of nine deep learning networks
in classifying low-resolution slide images at 400× magnification. The NASNet-A Large
model achieved remarkable accuracy of 99.777%, demonstrating its potential for automated
testing.

Furthermore, Densen169 showed 100% accuracy on a slide-by-slide basis, and NAS-
NET enabled pathologists to make accurate judgements swiftly, as they only needed to
inspect a few dozen positive patches. This ability demonstrates potential support for
preliminary testing by pathologists to reduce diagnostic time, which could in turn enhance
the efficiency of TB diagnosis and contribute to preventing TB.

Moving forward, we plan to improve the performance of our methodology by expand-
ing the training dataset with additional samples from various hospitals and laboratories.
This comprehensive dataset will facilitate the training of more generalized and robust deep
networks, ultimately providing a more efficient tool for the rapid and precise diagnosis of
TB. We are optimistic that our efforts will make significant strides toward faster and more
accurate TB diagnosis.
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