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Abstract

Pan-genomics is an emerging approach for studying the genetic diversity within plant populations. In contrast to common 
resequencing studies that compare whole genome sequencing data with a single reference genome, the construction of 
a pan-genome (PG) involves the direct comparison of multiple genomes to one another, thereby enabling the detection 
of genomic sequences and genes not present in the reference, as well as the analysis of gene content diversity. Although 
multiple studies describing PGs of various plant species have been published in recent years, a better understanding regarding 
the effect of the computational procedures used for PG construction could guide researchers in making more informed meth-
odological decisions. Here, we examine the effect of several key methodological factors on the obtained gene pool and on 
gene presence–absence detections by constructing and comparing multiple PGs of Arabidopsis thaliana and cultivated soy-
bean, as well as conducting a meta-analysis on published PGs. These factors include the construction method, the sequencing 
depth, and the extent of input data used for gene annotation. We observe substantial differences between PGs constructed 
using three common procedures (de novo assembly and annotation, map-to-pan, and iterative assembly) and that results are 
dependent on the extent of the input data. Specifically, we report low agreement between the gene content inferred using 
different procedures and input data. Our results should increase the awareness of the community to the consequences of 
methodological decisions made during the process of PG construction and emphasize the need for further investigation 
of commonly applied methodologies.
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Significance
Pan-genomics is an emerging approach for studying plant intraspecific genomic diversity by comparing multiple gen-
omes rather than relying on a single reference. Despite the common use of pan-genomics, the methodology involved 
in their construction is underexplored and still poorly understood. In this study, we assess the effect of several key meth-
odological factors on pan-genome (PG) construction and report substantial impact of the applied procedure and input 
data. We observe considerable differences in gene content inferences between PGs constructed from the same data 
using different methods and vice-versa. These findings highlight the importance of making informed decisions during 
the PG construction process and demonstrate the need for extensive investigation of widely used computational 
methodologies.

Introduction
The continuous improvement and cost reduction of whole 
genome sequencing (WGS) leads to a rapid increase in the 
number of available plant genomes. These data provide 

new opportunities to study genetic diversity within and 
across plant species. It is now possible to examine the gen-
etic variation present in populations consisting of hundreds 
or even thousands of accessions (i.e., varieties, individuals, 
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ecotypes, or breeding lines) of the same plant species. Such 
comprehensive data sets may be utilized to assist crop 
breeding and improvement efforts (Govindaraj et al. 
2015; Thudi et al. 2021) and for studying evolutionary 
processes at a finer scale than ever before (Wang et al. 
2020; Xia et al. 2020). Traditionally, diversity analyses 
were conducted by means of “genome resequencing”—a 
procedure in which sequencing data from multiple plant 
accessions are compared with a single reference genome, 
thus allowing the detection of genetic variation at genomic 
regions present in the reference genome. In recent years, 
a new approach inspired by comparative studies of micro-
organisms has emerged, which applies the concept of a 
species’ pan-genome (PG) (Gordon et al. 2017; Gao et al. 
2019; Hübner et al. 2019).

The PG is defined as the nonredundant pool of genetic 
material present in the population of a given species (or a 
broader taxonomic group) (Lei et al. 2021). In practice, 
PG studies typically examine a sample comprising dozens, 
hundreds, or even thousands of accessions, taken to re-
present the majority of the intraspecific diversity. Rather 
than comparing short sequence segments with the refer-
ence genome, genomes of multiple accessions are as-
sembled and directly compared with one another. This 
has several advantages over the single-reference approach, 
with the most prominent one being the ability to detect and 
analyze novel genomic sequences that are not present in 
the reference genome. These nonreference sequences 
may potentially contain functional elements, with protein- 
coding genes being of particular interest and thus the focus 
of most PG studies conducted to date (Bayer et al. 2020). 
The overall pool of genes found within the examined acces-
sions is therefore divided into the reference and the nonre-
ference (or novel) gene sets. Additionally, PGs provide 
information regarding gene presence–absence variation 
(PAV) across accessions, which helps to correlate the pres-
ence and absence of specific genes or groups of genes 
with genetic, morphological, or physiological attributes 
(Ou et al. 2018).

When focusing on protein-coding sequences (“gene- 
based” PGs), PGs are composed of a set of pan-genes, 
each representing an orthologous set of genes present 
in one or more of the studied accessions. Pan-genes 
vary in terms of the number of accessions in which they 
are present. Pan-genes found in all examined accessions 
are termed core genes, whereas those present in some 
accessions only are referred to as shell or dispensable 
genes. Genes that are found in a single accession are 
called singletons. The relative ratios of core, shell, and 
singleton pan-genes, sometimes referred to as the PG 
composition, were previously hypothesized to be charac-
teristic of particular plant species, potentially reflecting 
their evolution, ecology, and life history (Bayer et al. 
2020).

In recent years, a different approach for pan-genomics 
has been developed, in which the term PG is used to re-
present a graph data structure, constructed based on in-
ferred structural variants (SVs). These SVs are inferred 
from comparisons of whole genome sequences or long- 
read sequencing (Hübner 2022). Multiple tools have 
been devised to facilitate the construction of graph-based 
PGs (Garrison et al. 2018; Li et al. 2020; Guarracino 
et al. 2022; Hickey et al. 2022). Utilizing such graphs, in-
stead of a single-reference genome, for mapping short 
reads enhances genotyping capabilities. Although graph- 
based PGs have been effective in analyzing large SVs 
(Hickey et al. 2020; Ebler et al. 2022), there is currently 
a lack of standardized protocols for utilizing them in the 
inference of gene content variation. Thus, many studies 
construct both graph-based and gene-based PGs and 
analyze them independently (Hufford et al. 2021; Tao 
et al. 2021; Li et al. 2022). Furthermore, graph-based ana-
lyses heavily depend on the availability of high-quality 
(HQ) genome assemblies (Jayakodi et al. 2020; Liu et al. 
2020), which can be challenging to obtain for PGs con-
taining a large number of accessions. As a result, such ef-
forts are not commonly pursued. In this study, we focus 
on methodological considerations for the construction 
of gene-based PGs.

Notably, the construction of a plant gene-based PG is a 
laborious, time-consuming, and often an expensive task, 
requiring considerable amounts of sequencing data as 
well as computational resources. Several gene-based PG 
construction methods have been devised, most of which 
can be classified as variants of three general methodolo-
gies: the de novo (DN) assembly and annotation approach, 
the map-to-pan (MTP) approach, and the iterative assembly 
(IA) approach. The general workflows of these approaches 
are depicted in figure 1 (also see Golicz et al. (2016) and Hu 
et al. (2020) for a comprehensive review). Briefly, in the DN 
approach, the genome of each accession is first assembled, 
and then, the entire genome sequence is automatically an-
notated to predict gene models (i.e., predicting protein- 
coding gene loci and exon–intron structures). The obtained 
gene sequences are then subject to homology clustering, 
allowing the definition of pan-genes as well as the identifi-
cation of nonreference genes and PAVs. The MTP approach 
also begins with whole genome assembly but avoids the in-
tense computations required for whole genome annotation 
by applying the annotation procedure only to novel (i.e., 
nonreference) genomic sequences. These nonreference se-
quences are detected using an iterative mapping procedure 
in which assembled contigs showing low homology to the 
reference are added to the PG and annotated (i.e., scanned 
for the presence of nonreference genes). Gene presence– 
absence is determined by mapping the sequencing reads 
of each accession to the set of genomic sequences con-
tained in the PG: a gene is determined as present in a given 
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accession if it is sufficiently covered by reads from that ac-
cession. The IA procedure is essentially similar to MTP, but 
here, computational requirements are further reduced by 
avoiding both whole genome assembly and whole genome 
annotation. Accordingly, reads of each accession are first 
mapped to the reference genome and only unmapped 

reads are assembled. Nonredundant assembled contigs 
from multiple accessions are added to the PG and anno-
tated. Similar to MTP, gene presence–absence is deter-
mined based on mapping the raw sequencing reads to 
the PG. A few studies have applied a variant of the IA ap-
proach, inspired by metagenomic methodologies (Yao 

FIG. 1.—The general workflows of the DN, MTP, and IA approaches for PG construction. All approaches start from raw sequencing reads as input. The DN 
approach (left) begins with a whole genome assembly procedure applied to the sequencing reads of each accession, resulting in longer genomic sequences 
(contigs). Next, whole genome annotations of each assembled genome are performed. Gene models are detected and then clustered based on sequence 
similarity, with each cluster representing a pan-gene. Gene presence–absence per accession is determined based on the existence of representative genes 
within clusters. The MTP approach (middle) also begins with whole genome assembly but proceeds with an iterative mapping procedure to detect novel 
(nonreference) genomic sequences. Gene annotation is only performed on these regions, and nonreference gene models are predicted. Next, gene 
presence–absence is determined based on mapping of sequencing reads and analysis of gene sequence coverage in each accession. In the IA approach (right), 
reads are first mapped to the reference genome, and only unmapped reads are assembled into contigs which are then subject to the same steps as described 
for the MTP approach. All approaches result in a matrix indicating the presence or absence of each pan-gene across the accessions included in the PG.
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et al. 2015; Zhao et al. 2020). The unmapped reads from all 
accessions are pooled together and assembled into contigs, 
which are then annotated. This strategy is useful in cases 
where the sequencing depth of individual accessions is par-
ticularly low, such that the assembly of each individual ac-
cession is challenging. However, it may result in chimeric 
contigs that are not present in any of the accessions (re-
viewed in Lei et al. 2021) and is thus less commonly applied.

In all construction approaches, gene annotation may be 
based on RNA-seq data produced for a subset of the ana-
lyzed accessions (Gao et al. 2019), protein homology to 
other plant species (Hübner et al. 2019), ab initio prediction 
(Wang et al. 2018), or a combination of these. This proced-
ure allows the identification of gene models that do not ex-
ist in the reference genome (i.e., nonreference genes). 
Another possible annotation approach, sometimes termed 
“gene projection", has been applied for very large and 
complex genomes such as those of cereals (Haberer et al. 
2020; Jayakodi et al. 2020; Walkowiak et al. 2020). In 
this approach, HQ gene models are produced for a small 
number of accessions and mapped to the rest of the ana-
lyzed collection, thus avoiding the need to fully annotate 
multiple genomes. However, the discovery of novel nonre-
ference genes is limited to the small number of accessions 
for which full genome annotation is applied, thus potential-
ly overlooking many novel genes.

Several past publications have discussed the expected 
differences between the various PG construction ap-
proaches and the effects of other relevant methodological 
factors. Golicz et al. (2016) discussed several methodologic-
al and technical factors that may affect the construction of 
a PG. These include the quality of genome assemblies and 
annotations, the gene orthology detection method applied, 
and of course the set of selected accessions. Other reviews 
have discussed the expected differences between the vari-
ous construction approaches, potential advantages and 
shortcomings of the methods, and scenarios in which 
they should be applied (Bayer et al. 2020; Golicz et al. 
2020; Hu et al. 2020). For instance, it was hypothesized 
that PGs constructed using the MTP or IA approach could 
overlook variation within genomic regions that display 
high homology to the reference sequence. Thus, for ex-
ample, a frameshift in the coding sequence caused by a 
single-nucleotide insertion could severely disrupt the gene 
product, leading to a pseudogenization event. In such 
cases, the gene will likely be inferred as absent by the DN 
approach but present by the MTP or IA approaches because 
the genomic region would still be well covered by mapped 
reads. It was also suggested that arbitrary choices of param-
eter values used within each construction approach may af-
fect the analysis and lead to different inferences regarding 
the composition and content of a PG (Lei et al. 2021). For 
example, gene orthology clusters produced by the DN ap-
proach may be influenced by methodological factors 

(Natsidis et al. 2021). These past studies provide indications 
that the construction approach, as well as many other 
methodological factors, could affect the resulting PG. 
Nevertheless, there is no study, to date, that directly evalu-
ated, based on the same data, the effect and extent of such 
factors. The consequences of various decisions made 
throughout a PG analysis therefore remain unclear.

PG projects also differ considerably in the input data 
used for their construction, from the amount (depth) and 
type of sequencing data used for genome assembly to 
the quality and richness of the data used in genome anno-
tation. The amount and quality of input data often reflects 
the purpose and the budget of a project, specifically the 
number of analyzed accessions. Still, better understanding 
of the effects of such factors may assist researchers in mak-
ing more informed decisions and better use of their 
budgets.

In this study, we explore the effect of different methodo-
logical considerations on the resulting PG. Specifically, we 
examine the effects of the construction approach (DN, 
MTP, or IA), the depth of sequencing, the quality of assem-
bly, and the quality of annotation evidence on the two main 
aspects of the resulting PG: nonreference gene detection 
and gene presence–absence inference. This was achieved 
by constructing multiple PGs using different procedures 
and empirical data sets and comparing them with one an-
other. In addition, we explore the effects of several tech-
nical parameters specific to each approach. Our analysis 
reveals that certain factors affect the constructed PG to dif-
ferent extents and sometimes in ways that would be diffi-
cult to predict.

Results
In the following sections, we investigate the impact of dif-
ferent methodological factors on the construction of gene- 
based PGs. We employed a range of procedures and data 
sets to construct 20 Arabidopsis thaliana and 7 cultivated 
soybean (Glycine max) PGs, as detailed in supplementary 
table S1, Supplementary Material online. By comparing 
these PGs with one another, we were able to evaluate 
the effect of the analyzed methodological factors on vari-
ous aspects of the resulting PGs.

The Effect of the PG Construction Approach

We first examined the effect of the construction approach 
on the resulting PG. To this end, we constructed three PGs 
from the same input data using the DN, MTP, and IA proce-
dures (fig. 1). All three PGs encompassed the same eight A. 
thaliana ecotypes (supplementary table S2, Supplementary 
Material online), including the reference accession Col-0 
and seven additional ecotypes, for which sufficient raw 
Illumina sequencing data are available. In this first 
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comparison, the sequencing reads were subsampled to a 
depth of 50×.

Considerable differences were observed between the 
constructed PGs (fig. 2A and table 1). The total number 
of pan-genes in the DN PG was 14% and 13% larger 
than those obtained using the MTP and IA approaches, re-
spectively. Because the number of reference genes in all 
three PGs is identical, this difference stems solely from a 
substantial increase in the number of nonreference pan- 
genes in the DN PG (DN, 4,565; MTP, 663; and IA, 959). 
Moreover, the composition of the PGs differed markedly, 
with the proportion of shell genes approximately three 
times higher in the DN PG compared with that of the 
MTP and IA approaches. In contrast, the fraction of core 
genes was considerably higher in the MTP PG (91.8%) 
and the IA PG (90.7%) compared with the DN PG 
(73.5%). Notably, although the total number of genes 
identified as present in each ecotype was consistently lower 
in the MTP and IA PGs compared with the DN PG (average 
difference of 606 ± 111 and 469 ± 110 genes for MTP and 
IA, respectively), the number of present reference genes 
was consistently higher (average difference of 1,253 ± 43 
and 1,261 ± 32 genes for MTP and IA, respectively; fig. 
2B and supplementary table S3, Supplementary Material
online). Together, these results indicate that (1) the DN ap-
proach detects more novel, nonreference genes and (2) the 
MTP and IA approaches tend to identify more genes as pre-
sent in all accessions, that is, belonging to the core genome. 
These findings are in line with previous literature and may 
be expected because the DN approach captures variation 
in whole genome sequences, whereas the MTP and IA ap-
proaches only examine sequences with low homology to 
the reference. Importantly, this does not imply that one ap-
proach performs better than others but rather that each 

construction procedure leads to a considerably different 
PG.

One of the central aims of constructing PGs is the discov-
ery of nonreference genes, because these genes cannot be 
detected using a single reference genome. We thus fo-
cused the next comparison on the sets of nonreference 
genes. Due to the general similarity between the MTP 
and IA procedures, we focused on the MTP and DN 
nonreference gene pools (see supplementary note 1, 
Supplementary Material online, for a comparison between 
the MTP and IA approaches). We assessed the reliability of 
nonreference gene predictions by applying a series of ana-
lyses to each nonreference gene (table 2). First, protein se-
quences were searched against the reference A. thaliana 
proteome. This search revealed that 2.3% (104) of the 
DN nonreference proteins and 5.7% (38) of the MTP non-
reference proteins were highly similar to reference proteins 
(sequence identity ≥ 95% and 0.8 < length ratio < 1.2). An 
additional 7.5% (341) and 3.5% (23) of the DN and MTP 
nonreference proteins, respectively, were found to be trun-
cated versions of reference proteins (sequence identity ≥  
95% and length ratio ≤ 0.8). In both cases, the identifica-
tion of these genes as nonreference is likely due to the ex-
istence of a very close paralog or an artifact of the PG 
construction and annotation procedure. Next, we searched 
for additional functional support for the existence of nonre-
ference genes. Potential homologs of the nonreference 
proteins were identified by searching through a database 
of plant proteins (Ensembl Plants (Cunningham et al. 
2022), excluding A. thaliana). Homologs were found (se-
quence identity > 50%) for 14% (639) and 32.9% (218) 
of the DN and MTP proteins, respectively. Additionally, 
using an extensive RNA-seq data set, evidence of nonrefer-
ence gene expression was found (reads per kilobase of 
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transcript, per million mapped reads [RPKM] > 1) for 12.9% 
(588) of the DN nonreference genes and 27.3% (181) of 
the MTP nonreference genes. We defined HQ candidates 
as nonreference genes that do not highly resemble refer-
ence proteins but do show homology to other known plant 
proteins or evidence of being transcribed. We found that 
18.7% (856) and 39.4% (261) of the DN and MTP nonre-
ference genes are HQ candidates. These results suggest 
that the higher number of gene models predicted by the 
DN approach allows it to detect more genuine novel genes, 
compared with the MTP approach. Note, however, that 
other definitions for HQ candidates are possible and that re-
sults may be dependent on the quality of the sequence data 
available in the target databases.

Out of the 4,565 and 663 nonreference pan-genes 
found in the DN and MTP PGs, respectively, 89 could be 
reliably matched between approaches based on protein se-
quence similarity. Thus, the great majority of nonreference 
genes were only detected by one of the pipelines but not 
the other. Hereafter, pan-genes that are only present in 
the nonreference pool of the DN pipeline are termed DN 
+|MTP−, whereas pan-genes only detected by the MTP 
pipeline are termed DN−|MTP+. By applying a series of tran-
script and protein sequence mapping analyses, we identi-
fied multiple methodological causes for the existence of 
DN+|MTP− and DN−|MTP+ pan-genes. For instance, using 
the MTP approach, it is more challenging to detect nonre-
ference genes in regions that are highly similar to reference 
regions annotated as noncoding, which leads to DN+|MTP 
− nonreference genes (supplementary note 2, 
Supplementary Material online and supplementary fig. 
S1, Supplementary Material online). On the other hand, 
methodological factors related to the orthology clustering 
step of the DN approach may lead to DN−|MTP+ genes 
(supplementary note 3, Supplementary Material online 
and supplementary fig. S1, Supplementary Material online).

The analyses described above concentrated on the over-
all gene content of the compared PGs. Next, we examined 
discrepancies in gene presence–absence within each eco-
type by comparing the gene PAV matrices of the two 
PGs. In this analysis, we omitted genes that could not be 
matched across the two PGs (i.e., DN+|MTP− and DN−| 

MTP+), leaving 89 matched nonreference genes as well 
as 27,295 reference genes. Out of these, 23,106 (84.4%) 
were detected as core genes in both PGs. However, be-
cause these, by definition, display no variation and are pre-
sent in all ecotypes, they are of lesser interest in the context 
of a PG analysis. We therefore proceeded only with the 
4,278 pan-genes detected as noncore by either of the PG 
construction approaches. A total of 29,946 gene pres-
ence–absence calls were performed across these pan-genes 
(4,278 pan-genes times the 7 nonreference ecotypes). 
Notably, we observed complete agreement in gene pres-
ence–absence assignments between the two approaches 
in only 13% of these pan-genes. Moreover, 39% of the 
presence–absence calls performed for these noncore genes 
were different in the two PGs. Most of these differences 
(88%) were classified as present in the MTP PG and absent 
in the DN PG, with various methodological causes identified 
(supplementary note 4, Supplementary Material online). 
These results indicate that the MTP approach tends to 
more readily identify annotated genes as present (but see 
supplementary note 5, Supplementary Material online, for 
the dependency of the MTP approach on the chosen para-
meters used for gene presence–absence detection) and fur-
ther emphasize the observation that different PG 
construction strategies result in substantially different PGs 
with regard to shell and singleton genes.

The Effect of Sequencing Depth and Assembly Quality

Regardless of the construction approach applied, it is ex-
pected that the depth of the input sequencing data will af-
fect the quality of the obtained PG. We assessed this effect 
by subsampling the raw reads of each accession to produce 
data sets with sequencing depths 10×, 20×, 30×, and 50× 
as well as an additional data set that consists of the full se-
quence data, with average depth of 78×. Each data set was 
used as the input for the DN and MTP construction pipe-
lines. Two additional PGs, termed “HQ-assembly” PGs, 
were constructed by applying the DN and MTP pipelines 
to a previously published data set of HQ, chromosome-level 
genome assemblies of the seven ecotypes (Jiao and 
Schneeberger 2020). These HQ-assembly PGs serve two 

Table 1 
Statistics for A. thaliana and Soybean PGs Constructed Using the DN, MTP, and IA Approaches

A. thaliana Soybean

De Novo Map-to-Pan Iterative Assembly De Novo Map-to-pan Iterative Assembly

Total pan-genes 31,860 27,958 28,254 70,898 52,058 52,287
Reference pan-genes 27,295 (85.7%) 27,295 (97.6%) 27,295 (96.6%) 51,769 (73.02%) 51,769 (99.44%) 51,769 (99%)
Nonreference pan-genes 4,565 (14.3%) 663 (2.4%) 959 (3.4%) 19,129 (26.98%) 289 (0.56%) 518 (1%)
Core pan-genes 23,426 (73.5%) 25,657 (91.8%) 25,622 (90.7%) 38,618 (54.47%) 51,027 (98.02%) 51,086 (97.7%)
Shell pan-genes 6,651 (20.9%) 2,041 (7.3%) 2,283 (8.1%) 24,197 (34.13%) 953 (1.83%) 1,106 (2.1%)
Singletons 1,783 (5.6%) 260 (0.9%) 345 (1.2%) 8,083 (11.4%) 77 (0.15%) 95 (0.18%)
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purposes: first, they represent cases in which PGs are con-
structed from HQ genome assemblies, and second, they 
are used as a baseline for assessing the quality of PGs pro-
duced from the various data sets. We further note that con-
structing PGs based on short-read 10× data, especially 
using the DN approach, is usually not a realistic scenario, 
and it is used here merely to demonstrate the effects of 
low sequencing depth.

Both the DN and MTP pipelines begin the construction 
process by creating whole genome assemblies of all input 
accessions. As expected, assembly contiguity (contig N50) 
and completeness (assembly size and % complete 
BUSCOs (Waterhouse et al. 2018)) improved as sequencing 
depth increased (fig. 3A, supplementary table S4, 
Supplementary Material online, and supplementary note 
6, Supplementary Material online). The high BUSCO scores 
(% complete BUSCOs higher than 96% for all ecotypes) ob-
tained with sequencing depth as low as 20× suggests that 
assemblies of the gene space with satisfying quality could 
be produced from WGS data commonly used for variant 
detection in genome resequencing studies (although this 
will probably not be the case for larger and more complex 
genomes).

The total number of detected pan-genes was mainly af-
fected by the construction approach, rather than the se-
quencing depth, ranging from 31,811 to 32,494 for DN 
PGs and from 27,757 to 28,047 for MTP PGs (fig. 3B and 
supplementary table S5, Supplementary Material online). 
The exception to this was the DN 10× PG, which contained 
a considerably larger number of pan-genes (35,010), sug-
gesting a high frequency of erroneously annotated genes, 
possibly due to gene model fragmentation over multiple 
contigs. Similarly, we found that PG composition was af-
fected by assembly quality only at very low sequencing 
depths, and the proportions of core pan-genes reached a 
plateau at high sequencing depths. For instance, only 
36.2% of the genes were classified as core genes in the 
DN 10× PG, compared with 73.5% and 73.2% in the DN 
50× and HQ-assembly data sets, respectively (fig. 3B). 
This effect is also observed, although to a lesser degree, 
when comparing MTP results, with 81.9% and 91.7% 
core genes in the MTP 10× and HQ-assembly PGs, 

respectively. The number of genes detected as present in 
each ecotype increased with the sequencing depth (fig. 
3C and supplementary table S6, Supplementary Material
online). Particularly low numbers of genes were observed 
for the DN 10× PG (median number of present genes across 
ecotypes 24,419). This is despite the overall high number of 
pan-genes included in the gene pool of the 10× PG and in 
line with the lower quality of results produced with such 
low sequencing depth. Taken together, these results sug-
gest that improving assemblies beyond a certain quality 
has a relatively modest effect on the resulting PG. Thus, 
even if genome assemblies of the highest quality are ob-
tained using multiple sequencing technologies, other 
methodological factors still affect the results, causing con-
siderable differences between PGs constructed using the 
DN and MTP approaches. It should be noted, however, 
that this conclusion may not hold for plant species with lar-
ger and more complex genomes (e.g., cereals), for which 
obtaining HQ assemblies may have a considerable advan-
tage. Furthermore, obtaining HQ genomes may serve other 
purposes besides gene-based pan-genomics, such as the 
detection of SVs.

We next focused on the effect of assembly quality on the 
ability to detect nonreference pan-genes (fig. 3B and 
supplementary table S7, Supplementary Material online). 
Using the MTP approach, the number of predicted nonre-
ference genes was not considerably affected by assembly 
quality. In contrast, in the DN PGs, the number of nonrefer-
ence pan-genes slightly decreased as assembly quality im-
proved. This could be explained by a high frequency of 
erroneously detected genes resulting from fragmented or 
misassembled genomes in low-quality assemblies. To fur-
ther evaluate the effect of assembly quality on nonrefer-
ence gene detection, we compared the nonreference 
gene pool of each PG with the PG constructed with the 
same approach using the HQ assemblies. These HQ PGs 
serve as a proxy for the set of nonreference genes detected 
when assembly quality is not a limiting factor. Each pan- 
gene was therefore classified as “matched” (found in 
both the tested and the HQ-assembly PGs), “PG−|HQ+” 
(found only in the HQ-assembly PG), or “PG+|HQ-” (found 
only in the tested PG). As shown in figure 3D, the propor-
tion of matched nonreference pan-genes gradually in-
creased as assembly quality improved in both the DN and 
MTP data sets, whereas the proportions of PG+|HQ− and 
PG−|HQ+ generally decreased. However, in all compari-
sons, there were relatively small overlaps in the nonrefer-
ence gene content produced by PGs of different qualities, 
even when using the full sequencing data set (ca. 78×).

We proceeded by investigating the effect of sequencing 
depth on the accuracy of gene presence–absence detection 
per ecotype. We compared the gene PAV matrix of each PG 
with that of the corresponding HQ-assembly PG while ig-
noring unmatched nonreference pan-genes, as well as pan- 

Table 2 
Statistics on the Reliability of Nonreference pan-genes in A. thaliana PGs 
Constructed Using the DN and MTP Approaches

De Novo Map-to-Pan

Total nonreference pan-genes 4,565 663
High similarity to reference 104 38
Truncated reference 341 23
Has plant homolog 639 218
Expressed 588 181
High-quality candidates 856 261
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genes classified as core in both PGs. In each comparison, we 
determined the percentage of agreement in gene pres-
ence–absence calls as well as the proportions of the two 
types of discrepancies: PG−|HQ+ and PG+|HQ−. 
Although the percentage of agreement in presence– 
absence calls increased in accordance with sequencing 
depth for both construction methods, it was consistently 
higher in MTP PGs compared with DN PGs constructed 
with the same data (fig. 3E and supplementary table S8, 

Supplementary Material online). For example, 20.2% of 
all gene presence–absence calls were in disagreement be-
tween the DN 50× and the DN HQ assemblies PGs, com-
pared with only 2.4% between the corresponding MTP 
PGs. For both DN and MTP data sets, the increased agree-
ment of presence–absence calls in data sets with higher se-
quencing depth is mainly explained by a decrease in the 
number of PG−|HQ+ discrepancies, whereas the number 
of PG+|HQ− discrepancies remained similar across data 
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FIG. 3.—The effect of assembly quality on A. thaliana PG construction. PGs were constructed using the DN and MTP approaches on data sets of increasing 
sequencing depth. All PGs were compared with a PG constructed using HQ assemblies. (A) The effect of sequencing depth on three assembly quality mea-
sures: contig N50 (top), assembly size (middle), and % complete BUSCOs (bottom) across ecotypes. (B) The effect of assembly quality on DN (top) and MTP 
(bottom) PG sizes and compositions. (C) The effect of assembly quality on the number of genes detected in each ecotype when using the DN (squares) and 
MTP (crosses) approaches. Note that the y axis starts at 22,000 genes. (D) Comparisons of nonreference gene pools of each PG to the HQ PG constructed using 
the same approach (top, DN; bottom, MTP). Rectangular Venn diagrams show the proportions of PG+|HQ− (light blue), PG−|HQ+ (light purple), and matched 
(overlapping area) pan-genes in each comparison. (E) Comparisons of gene presence–absence calls of each PG to the HQ PG constructed using the same 
approach (top, DN; bottom, MTP). The numbers and types of presence–absence discrepancies were calculated while only considering reference and matched 
nonreference genes which are not core in both PGs.
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sets. These results indicate that the accuracy of gene pres-
ence–absence calling can be enhanced by deeper sequen-
cing in both construction pipelines, although for the MTP 
approach, increasing the depth beyond 50× has a negligible 
effect.

Finally, we determined the effect of using long-read se-
quencing data as input for the DN and MTP procedures. 
When using long-read data, a common practice is to use 
a combination of short and long reads to produce a “hy-
brid” assembly. We thus produced a sequencing data set 
with a total depth of 50×, comprising 25× short reads 
and 25× long reads. On average, hybrid assemblies were 
more contiguous than those obtained using 50× short 
reads (supplementary table S4, Supplementary Material on-
line). However, PGs constructed using both approaches 
were comparable with those obtained using the 50× short- 
read data set (supplementary tables S5–S8, Supplementary 
Material online). For example, the total number of pan- 
genes was 2% larger in the hybrid PG using the DN ap-
proach (32,527 vs. 31,860) and 0.2% smaller when using 
the MTP approach (27,891 vs. 27,958). Likewise, the pro-
portions of core, shell, and singleton pan-genes differed 
by no more than 2.4% between the hybrid and the short- 
read 50× PGs, using either construction approach.

The Effect of Annotation Evidence

Genome annotation is a crucial step in the process of PG 
construction because it facilitates the detection of novel 
genes and highly affects the composition of the constructed 
PG. However, automatic genome annotation is often a non-
trivial task requiring various inputs and involving multiple 
computational steps. The quality of the result is determined 
by many factors, including the specific tools used and the 
parameters set for each of them. In the context of PG con-
struction, automatic genome annotations usually comprise 
three procedures: (1) reference genes lift-over (projection), 
in which the annotation of the reference genome is mapped 
to other genomes from the same species (Shumate and 
Salzberg 2021); (2) ab initio gene prediction, in which 
gene models are detected based solely on their genomic 
sequences using pretrained models (Scalzitti et al. 2020); 
and (3) evidence-based predictions, in which homologies 
detected between input proteomic or transcriptomic 
sequences and the target genome sequence are used for 
the establishment of high-confidence gene models. 
Evidence-based predictions are highly dependent on the 
amount and quality of the provided evidence. We thus ex-
plored the effect of the quality of the provided evidence 
on the genome annotations of specific ecotypes and on 
the overall PG content. To this end, we used 3 sets of anno-
tation evidence as inputs for PG construction with either the 
DN or the MTP approach: No evidence (i.e., based only on ab 
initio predictions and reference gene lift-over), General 

evidence (based on The Arabidopsis Information Resource 
[TAIR] reference proteome and a general collection of tran-
scriptome data from 18 A. thaliana accessions), and HQ evi-
dence (transcriptome and proteomes produced from all 8 
ecotypes present in the PG). In all cases, the same genome 
assemblies (based on 50× sequencing data) and annotation 
procedures were used.

We examined the number of reference and nonrefer-
ence genes detected in each PG. Although the number of 
reference genes was highly similar across data sets, the 
number of nonreference genes appeared to be strongly af-
fected by the annotation evidence (supplementary table S9, 
Supplementary Material online). For both the MTP and DN 
approaches, the number of nonreference genes was con-
siderably higher in the No evidence PGs compared with 
the General evidence PGs (MTP: 6,813 and 669 for No evi-
dence and General evidence, respectively; DN: 11,457 and 
4,565 for No evidence and General evidence, respectively). 
This indicates that although reference genes can be suc-
cessfully detected using a lift-over procedure, the main 
benefit of using annotation evidence is the reduction in 
the number of nonreference genes that are predicted ab in-
itio but lack protein/transcript support. A different trend 
was observed when comparing the PGs constructed using 
the General and HQ evidence PGs. Using the MTP ap-
proach, the number of nonreference genes was higher in 
the HQ evidence PG (1,777) than in the General evidence 
PG (669), but an opposite trend was observed when com-
paring the DN PGs (3,546 and 4,565 nonreference genes 
in HQ evidence and General evidence, respectively). We hy-
pothesize that in both DN and MTP approaches, providing 
HQ evidence leads to an increase in the number of detected 
genes within novel (nonreference) genomic sequences. 
However, in the DN approach, this effect is masked by 
high rates of false gene detections in genomic regions 
with high homology to the reference when providing low- 
quality evidence. This results in an overall higher number of 
nonreference genes when using low-quality evidence. 
Because the MTP approach only annotates novel genomic 
regions, it is more robust to these false detections and 
hence the higher number of nonreference genes in the 
HQ evidence PG. This hypothesis is supported by the obser-
vation that the ratio of nonreference transcripts which 
could be reliably mapped to the reference genome (query 
coverage > 95%) was higher for the DN General evidence 
PG (39%) compared with the DN HQ evidence PG (27%), 
indicating that more of these genes reside in reference-like 
sequences and may result from false predictions.

The Effect of Parameter Values and Choice of Software 
Tools

PG construction is a multistep procedure involving the ap-
plication of various computational tools, each with its 
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specific parameters and thresholds which need to be set by 
the user. However, it is often difficult to determine the op-
timal values for these parameters or even predict their ef-
fect on the constructed PG. We examined the effects of 
several such parameters which we expected to be particu-
larly influential. First, we evaluated the effect of two para-
meters related to gene presence–absence detection in the 
MTP and IA approaches, termed the depth threshold (i.e., 
the minimal number of mapped reads required to label a gi-
ven position as covered) and the coverage threshold (i.e., 
the percentage of the gene sequence labeled as covered re-
quired to assign the gene as present in a given accession). 
We found that within the commonly used range of values, 
gene presence–absence inference as well as the PG com-
position is not highly affected. Choosing parameter values 
outside of this range, however, could highly impact the in-
ferences (supplementary note 5, Supplementary Material
online and supplementary fig. S3, Supplementary 
Material online). Moreover, the exact sequencing depth 
and parameter values required for reliable gene pres-
ence–absence inference may depend on the quality of the 
sequencing data and the available assemblies and thus 
may differ between studies. It is therefore recommended 
that researchers first optimize their pipelines for the specific 
data sets at hand.

Another factor that may affect novel gene detection, as 
well as gene presence–absence calling in the IA and MTP pi-
pelines, is the alignment software used for short-read map-
ping. Read mapping is applied at two different steps: (1) in 
the IA procedure, reads of each accession are iteratively 
mapped to the reference genome to detect nonreference 
(unmapped) reads, which are subsequently assembled 
into nonreference contigs; and (2) in both IA and MTP, 
once a nonreference sequence is detected and annotated, 
reads from each accession are mapped to the PG to deter-
mine the presence and absence of pan-genes in the input 
accessions, thus constructing the final gene PAV matrix.

We examined the effect of the read mapping algorithm 
at these two steps by constructing A. thaliana PGs from the 
same 50× sequencing data, using either of two commonly 
used tools: BWA (Li and Durbin 2009) and Bowtie2 
(Langmead and Salzberg 2012). Using Bowtie2, 30% 
more reads were considered unmapped and thus detected 
as nonreference, leading to a 26% increase in the size of 
the nonreference PG and a 5-fold increase in the number 
of detected nonreference genes compared with BWA. 
These results are expected because Bowtie2 is known to 
map reads more restrictively compared with BWA. On the 
other hand, the choice of the read mapping algorithm 
was found to have a relatively modest effect on gene pres-
ence–absence detection, with only 0.3% of the genes af-
fected by this factor. We therefore conclude that the 
choice of read mapping algorithm has a considerable effect 
on the results of the IA approach, mainly due to differences 

in detecting nonreference sequences. Gene presence– 
absence detection, performed in both the IA and MTP 
approaches, is affected to a much lesser degree (further de-
tails on these analyses are provided in supplementary note 
7, Supplementary Material online and supplementary table 
S10, Supplementary Material online).

Finally, we examined the effect of the clustering “infla-
tion” parameter used for detection of gene orthology with-
in the DN approach. This parameter controls the level of 
cluster granularity in the underlying Markov clustering 
(MCL) algorithm (Li et al. 2003) and therefore may affect 
the size and composition of constructed PGs, as well as 
gene presence–absence inference for specific accessions. 
We repeated the orthology clustering and gene pres-
ence–absence inference steps using a range of values 
for this parameter and found that around the MCL de-
fault value, the effect of this parameter is modest 
(supplementary fig. S5, Supplementary Material online 
and supplementary note 8, Supplementary Material on-
line). Here again, the use of extreme values resulted in a 
considerable effect on the number of nonreference pan- 
genes and PG composition.

The Effect of Methodological Factors on PG 
Construction in Soybean

We tested the generality of the observations described 
above by comparing PGs containing eight cultivated 
soybean (G. max) accessions (supplementary table S2, 
Supplementary Material online), using different construc-
tion approaches and different genome assemblies (as de-
tailed in supplementary table S1, Supplementary Material
online). The soybean genome is approximately ten times 
larger and is considerably more repetitive and complex 
compared with the A. thaliana genome. Our results in soy-
bean are in line with those observed in A. thaliana, but 
here, the differences between the various construction ap-
proaches were even more extreme (all results are detailed 
in table 1, supplementary tables S11–S14, Supplementary 
Material online, and supplementary fig. S2, Supplementary 
Material online).

First, we compared PGs constructed using the DN, MTP, 
and IA approaches from 50× short-read sequencing 
data and observed considerable differences in size, com-
position, and content (table 1 and supplementary fig. S2, 
Supplementary Material online). Specifically, the DN, 
MTP, and IA PGs contained a total of 70,898, 52,058, 
and 52,287 pan-genes, respectively. Of these, the number 
of nonreference pan-genes is 66 times and 37 times higher 
in the DN PG compared with the MTP and IA PGs, respect-
ively (DN, 19,129; MTP, 289; and IA, 518). As observed in 
A. thaliana, the nonreference gene pools were highly dis-
similar, with only 74 matched nonreference pan-genes, 
shared by the DN and MTP PGs. The PG compositions 
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also differed substantially: although the MTP and IA PGs re-
sulted in 98% core genes, only 54% core genes were ob-
tained in the DN PG. We further compared the DN and 
MTP soybean PGs by considering the degree of disagree-
ment in gene presence–absence calls. A total of 38,574 
genes were found to be core genes by both the DN and 
the MTP procedures. However, when examining only the 
13,269 pan-genes that are noncore in either of the PGs, 
we found that 49% of all presence–absence calls differed 
between the two PGs, with 98% of the genes displaying 
at least one discrepancy. Discrepancies were almost exclu-
sively (>99%) of the DN−|MTP+ type.

We examined the effect of assembly quality on soybean 
PGs by constructing additional PGs from sequencing data 
subsampled to 20× depth as well as from previously pub-
lished HQ genome assemblies. As expected, assemblies 
produced using 50× sequencing depth were superior to 
20× assemblies in terms of contiguity (average N50 9,133 
and 5,858, respectively) and completeness (average assem-
bly size 811 Mb and 756 Mb, respectively). These assem-
blies are of lower quality compared with those obtained 
for A. thaliana, which can be explained by the higher com-
plexity and repetitiveness of the soybean genome. Still, the 
high percentage of complete BUSCOs (>97% for all assem-
blies) suggests that gene prediction may be successfully 
performed on assemblies produced from as low as 20× se-
quencing data. For DN PGs, the total number of pan-genes 
increased as assembly quality improved, which can be ex-
plained by the large difference in assembly sizes between 
20×, 50×, and HQ-assembly data sets. In addition, the per-
centage of core genes was affected by assembly quality 
(51%, 54%, and 40% for 20×, 50× and HQ assemblies, re-
spectively). In contrast, and in line with the results observed 
for A. thaliana, the MTP PGs were highly similar across dif-
ferent assembly qualities (all with nearly the same number 
of pan-genes with 97–98% of core genes).

Meta-analysis of Previously Published PGs

To further assess the generality of our results across add-
itional plant PGs, we conducted a meta-analysis of previ-
ously published data sets. To this end, we performed a 
literature search and obtained a total of 15 plant PG data 
sets for which a gene PAV matrix was available (table 3
and supplementary table S15, Supplementary Material on-
line). Out of these, five studies applied variants of the MTP 
approach, four applied the IA approach, and six used the 
DN approach. For simplicity, in this section, we treat IA as 
a variant of the MTP approach and collectively refer to 
PGs constructed using either MTP or IA as MTP/IA. The 
number of accessions included in a PG varied considerably, 
ranging between 9 (Brassica napus) and 586 (tomato). 
Notably, the DN approach was never chosen for PGs includ-
ing more than 70 accessions, whereas the MTP/IA approach 

was chosen for PGs of varying size (MTP/IA mean, 199 ac-
cessions; DN mean, 31 accessions; fig. 4A). This tendency 
of choosing different approaches for constructing PGs 
with respect to the number of sequenced accessions re-
flects the technical and computational challenges of assem-
bling and annotating hundreds of plant genomes, as 
required by the DN approach.

We compared the PG compositions across data sets by 
computing two metrics for each PAV matrix: (1) the per-
centage of core pan-genes, defined as those present in at 
least 95% of the accessions, and (2) overall occupancy, de-
fined as the total percentage of gene presence across all 
pan-genes and accessions. Although the percentage of 
core pan-genes is a common and biologically meaningful 
metric for assessing PG composition, it requires the arbi-
trary choice of a presence cutoff (in this case 95%), where-
as the occupancy measure is a more global metric. 
Nevertheless, the two metrics show high linear correlation 
(R2 = 0.88, supplementary fig. S4A, Supplementary 
Material online). We observed a substantial difference in 
PG composition between PGs constructed using the MTP/ 
IA approach compared with those constructed using the 
DN approach, with MTP/IA PGs showing significantly higher 
percentages of core genes (MTP/IA mean, 77.98%; DN 
mean, 47.33%; two-sided t P = 0.002; fig. 4B), as well as 
higher overall occupancy (MTP/IA mean, 88.1%; DN 
mean, 68.22%; two-sided t P = 0.009; fig. 4C). We note 
that the association between the number of accessions 
and the two PG composition metrics was very low (R2 =  
0.1 and R2 = 0.05 for the percentage of core genes and 
overall occupancy, respectively; supplementary fig. S4B– 
C, Supplementary Material online). This indicates that the 
observed differences are likely the result of the construction 
approach rather than the number of accessions and is con-
sistent with the observed differences in A. thaliana and soy-
bean PG compositions reported above. We further found 
that MTP/IA PGs have significantly lower percentage of 
nonreference pan-genes (MTP/IA mean, 14.68%; DN 
mean, 36.99%; two-sided t P = 0.01; fig. 4D). Together, 
the findings of the meta-analysis suggest that the higher 
numbers of nonreference genes detected by the DN ap-
proach is a general phenomenon, not restricted to the 
PGs of A. thaliana and soybean examined above. It should 
be noted, however, that some of the observed differences 
may derive from biological phenomena related to the 
choice of the accessions, life history traits, and genomic fea-
tures of the various species such as recent polyploidy 
events.

Discussion
A central aim for constructing plant PGs is to explore the 
genomic diversity underlying phenotypic variation existing 
within a plant lineage. Establishing extensive PG data sets 
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is expected to enable applications such as the detection of 
novel resistance genes and association of gene presence– 
absence distribution with desired traits. As the usage of 
pan-genomics for the study of plant diversity becomes 
more feasible and common, better understanding of the in-
volved procedures is crucial. The results of our study sug-
gest that a plethora of methodological and technical 
factors affect the construction of a gene-based PG and 
these should be determined and accounted for throughout 
the analysis. Despite the increasing number of publications 
focused on the construction and exploration of plant PGs, 
different PG projects have applied considerably different 
methods and computational pipelines, with no well- 
established standards for the construction procedure. This 
emphasizes the importance of better understanding the 
consequences of the applied methodological choices that 
need to be made throughout the construction process.

The direct comparison between different PG construc-
tion procedures required the development of novel meth-
ods allowing for pairwise comparisons of PGs. We have 
suggested several global measures for summarizing PG 
compositions and structure (e.g., the total number of pan- 
genes, the ratio of nonreference pan-genes, the propor-
tions of core pan-genes, and the overall gene occupancy), 
as well as methods for direct comparison of the gene con-
tent of two PGs. Such measures can be applied in future 
studies for the evaluation of PG quality, as they provide 
means for examining the two main benefits of a PG ana-
lysis: detection of nonreference genes and insight on intra-
specific gene content diversity.

Several past publications predicted that various meth-
odological factors may affect the results of PG construction 

procedures (Golicz et al. 2020; Hu et al. 2020; Lei et al. 
2021). Specifically, it is probably not surprising that differ-
ent construction approaches lead to considerably different 
PGs. It was previously suggested that the DN and MTP (or 
IA) approaches are complementary (Golicz et al. 2020) 
and that a hybrid approach may be applied. In practice, 
however, researchers often choose one approach over 
the others, taking into consideration features such as the 
available resources and the size of the diversity panel. 
Notably, all gene-based PG construction approaches result 
in a set of pan-genes and their inferred presence–absence 
matrix. As demonstrated here, the choice of the construc-
tion approach affects both these central outputs and 
should thus be chosen in an informed manner.

Our comparisons of the most common PG construction 
approaches revealed considerable differences in the result-
ing PGs. We found that the sets of nonreference genes 
show very partial overlaps between PGs constructed from 
the same data but using different procedures, with the 
great majority of genes detected by one of the approaches 
only. Moreover, even for pan-genes included in both PGs, 
numerous discrepancies exist regarding presence–absence 
inferences in specific accessions. We generally observed 
that the DN approach leads to larger pools of nonreference 
genes, whereas the MTP and IA approaches more readily 
determine genes to be present in specific accessions. This 
leads to marked differences in the reported PG compos-
ition. For example, PGs constructed using the DN approach 
typically display lower ratios of core genes compared with 
MTP PGs.

We also assessed the effect of sequencing depth and the 
quality of the genome assembly on the constructed PG. As 

Table 3 
Statistics for Previously Published Plant PGs

Organism Citation Number of 
Accessions

Construction 
Approach

Total 
Pan-genes

Nonreference 
Pan-genes (%)

Overall 
Occupancy 

(%)

Core 
Pan-genes 

(%)

B. napus Song et al. (2020) 9 DN 105,672 28.74 68.94 31.5
Hurgobin et al. (2018) 53 IA 94,013 12.34 89.47 77.11

Rice Zhao et al. (2018) 69 DN 42,580 23.71 72.82 57.84
Wang et al. (2018) 453 MTP 48,099 25.92 81.92 64.56

Brachypodium distachyon Gordon et al. (2017) 56 DN 61,158 52.93 45.7 28.12
Cucumber Li et al. (2022) 12 DN 26,822 14.66 85.34 69.43
Medicago truncatula Zhou et al. (2017) 16 DN 129,650 48.24 88.08 67.17
Maize Hufford et al. (2021) 26 DN 103,032 53.65 48.44 29.9
Apple Sun et al. (2020) 83 MTP 69,411 10.49 89.77 78.96
Brassica oleracea Golicz et al. (2016a, 2016b) 10 IA 61,379 11.08 91.66 81.29
Eggplant Barchi et al. (2021) 26 MTP 35,148 2.32 94.47 92.03
Pigeon pea Zhao et al. (2020) 89 IA 55,512 3.42 76.39 55.38
Soybean Torkamaneh et al. (2021) 205 MTP 54,533 3.04 97.23 93.22
Sunflower Hübner et al. (2019) 287 IA 45,302 37.66 83.06 73.02
Tomato Gao et al. (2019) 586 MTP 40,369 25.84 88.95 86.33
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expected, lower sequencing depth resulted in less complete 
and contiguous assemblies, whereas the availability of long 
reads improved assembly quality. However, in the case of 
gene-based PGs, the effect on the resulting PAV matrix 
and set of pan-genes is rather modest (e.g., fig. 3B). This 
could be explained by the relative ease by which coding re-
gions can be assembled compared with repetitive and 
otherwise low-complexity intergenic regions. Moreover, 
in case the MTP construction approach is used, it is suffi-
cient that a genomic region containing a gene is adequately 
covered to call that gene present, without the need that the 
relevant genomic region is assembled into contigs. Thus, al-
though the exact sequencing depth required for PG con-
struction may be species specific and depend on multiple 
genomic characteristics, our observations suggest that 
data sets with low sequencing depth produce gene-based 
PGs with very similar compositions compared with those 
with higher depths, at least if only short-read data are 
used. This observation is especially important due to the 
abundance of sequencing data from past genome rese-
quencing projects which might be “recycled” for the pur-
pose of PG construction. Another methodological factor 
that was shown to impact PG construction is the quality 
of sequences used as annotation evidence. Our results indi-
cate that obtaining a HQ set of transcript and protein evi-
dence is highly beneficial, especially for reducing the 
amount of false gene detection. More generally, we find 

that the annotation step presents one of the main chal-
lenges in PG construction procedures, regardless of the ap-
plied approach. One possible way to overcome this 
challenge is to obtain several HQ annotations based on 
chromosome-level genome assemblies and then project 
and consolidate gene models onto the PG assemblies 
(Walkowiak et al. 2020). Another useful practice is to rean-
notate the reference sequence using the same annotation 
procedure applied when constructing the PG. Comparing 
the annotation result with the published reference annota-
tions can aid in the evaluation of the accuracy and com-
pleteness of the PG annotation.

Recent improvements in third-generation sequencing 
technologies are revolutionizing the field of genomics by 
providing long-range information. This, together with ad-
vancements in assembly algorithms, rapidly increases the 
availability of reference-quality genome assemblies for 
many plant species. Moreover, long-read RNA-seq allows 
for full transcript sequencing, which can be used as valu-
able annotation evidence. However, our results indicate 
that even if such HQ genome assemblies and transcriptomic 
data are available, other methodological factors such as the 
construction approach are expected to strongly affect the 
resulting PG composition.

It is very likely that many other methodological factors, 
not explored in this study, affect PG construction to some 
extent. Furthermore, interactions between methodological 
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factors may be hard to predict, adding another layer of 
complexity. Implementations of any construction approach 
usually consist of multiple decisions related to the choice of 
software tools (e.g., for genome assembly and scaffolding, 
gene prediction, and read mapping) and specific parameter 
values, which may introduce discrepancies. Rigorous re-
search of these factors may not always be feasible. One ex-
ample is the choice of the genome assembler, which is 
known to have a major effect on the completeness, con-
tiguity, and accuracy of assemblies (Dmitriev et al. 2022). 
Because the differences between genome assemblers 
have been extensively studied before, and due to the large 
parameter-space specific to each assembler, we did not 
analyze this factor here and refer the readers to previous 
studies (Cherukuri and Janga 2016; Jayakumar and 
Sakakibara 2019). Nevertheless, we observe some general 
trends when comparing DN with MTP and IA PGs produced 
using different implementations of the pipelines, which 
suggests that implementation details may have a subtler ef-
fect than the construction approach itself.

A major challenge encountered when evaluating the 
performance of different PG construction procedures is 
the lack of “ground-truth” data to which results can be 
compared. This limits our ability to assess performance 
using measures such as specificity, sensitivity, and accuracy. 
Various indirect measures based on comparisons to known 
sequences in public databases could provide general per-
formance estimates. However, a more meticulous analysis 
will require the development of benchmarking data sets 
of carefully curated PGs or devising dedicated PG simula-
tion software tools, which could reliably emulate the under-
lying processes that generate intraspecific diversity 
(Stephens et al. 2016; Ferrés et al. 2020). Likewise, high 
throughput methods for biological validation of sequence 
presence–absence calls in multiple genomes can signifi-
cantly increase our ability to assess the reliability of PG con-
struction procedures.

Despite being unable to directly assess the quality of the 
results obtained using different PG construction proce-
dures, the observations of this study allowed us to formu-
late several general guidelines that could aid future 
researchers in making methodological decisions. First, 
with regard to the choice of the construction approach, 
the DN approach should be favored in case the main goal 
of the study is to obtain a large pool of candidate nonrefer-
ence genes. This could be useful when phenotypes of inter-
est are known to occur in the population of a species but 
not in the reference accession. The DN approach is also re-
commended when several HQ genome assemblies and an-
notations are available or when the study also includes 
analyses based on a PG graph. Unfortunately, due to the 
high sequencing and computational demands imposed by 
the DN approach, it might not always be feasible. In such 
cases, or in studies where the main focus is on the variation 

of gene presence–absence within large populations (e.g., in 
the context of association studies), the MTP and IA ap-
proaches may be advised. We suggest that the MTP ap-
proach should be favored over the IA approach because it 
allows the analysis of nonreference sequences in their gen-
omic context. However, this choice would depend on the 
genome size of the studied organism and the number of se-
quenced accessions. When the computational resources 
available for the study are limited, the IA approach could 
prove to be a valuable alternative.

A common decision that researchers have to make when 
planning a PG project is whether to generate deep sequen-
cing data for a small number of accessions or to sequence 
many accessions to lower depths, thereby balancing be-
tween the quality of specific genomes and the degree of 
genetic diversity covered in the data set. Based on our re-
sults, it appears that when constructing a gene-based PG, 
especially with the MTP and IA approaches, sequencing 
depth may be kept to the minimum required for successful-
ly assembling the gene space. A simple rule of thumb may 
be that one should use the sequencing depth required to 
achieve an assembly with at least 95% complete 
BUSCOs. Even when genome assemblies of satisfying qual-
ity are available, the process of gene annotation still poses a 
considerable challenge. Our results emphasize the need for 
obtaining HQ annotation evidence, and thus, we recom-
mend that substantial resources are allocated to producing 
relevant data sets, preferably based on transcriptomic se-
quences obtained from the same accessions included in 
the PG.

Finally, a general recommendation for researchers con-
structing gene-based PG is to test the robustness of their re-
sults to methodological factors, for example, by applying 
multiple construction approaches. In addition, the develop-
ment of hybrid approaches which could incorporate advan-
tages from the DN. MTP, and IA procedures may be highly 
beneficial, although it requires further research.

Pan-genomics is gradually becoming a standard ap-
proach for studying genomic diversity within species. For 
plant genomes, such analyses are still in their infancy and 
new methods are actively being developed and applied. 
In general, we expect that the increasing availability of se-
quencing data, especially long reads, will allow researchers 
to abandon older techniques in favor of those that depend 
on multiple HQ genome assemblies. One such approach is 
based on the concept of PG graphs (Marschall et al. 2018; 
Rakocevic et al. 2019; Tao et al. 2020). To date, however, 
gene-based and graph-based PGs are constructed separ-
ately, using completely different procedures and are aimed 
for different analyses (Liu et al. 2020; Qin et al. 2021; Li 
et al. 2022): PG graphs are mainly used to identify and 
genotype structural sequence variation, whereas gene- 
based procedures such as the DN, MTP, and IA approaches 
studied here are used to identify the set of genes found 
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within a species and their variation among accessions. A re-
cent study reports the construction of a graph-based hu-
man PG from 47 diverse assemblies (Liao et al. 2023). The 
constructed graph was utilized to aid in gene annotation 
but was not directly used for gene-related analyses. 
Although this is an important step toward the use of graph- 
based techniques for gene presence–absence detection, 
considerable research is still required to overcome some 
challenges and limitations related to variation graph algo-
rithms (Sherman and Salzberg 2020). Therefore, we expect 
that better understanding of gene-focused methods will 
be of great importance when more sophisticated techni-
ques combining them with graph-based algorithms are 
developed.

Regardless of the specific methodology, obtaining solid 
understanding of the various factors affecting the con-
structed PGs is of high importance. The consistency of 
our observations across data sets, species, and studies indi-
cates that methodological effects are not limited to specific 
input data or implementations of the construction proce-
dures. Rather, they represent a general phenomenon that 
needs to be addressed, and researchers drawing biological 
conclusions from PG studies should be made aware of 
these effects.

Materials and Methods

Data for PG Construction

Short Illumina and long PacBio reads in FastQ format were 
downloaded from the European Nucleotide Archive (ENA) 
for A. thaliana and from the Genome Sequence Archive 
(GSA) for soybean, based on accession numbers as detailed 
in supplementary table S2, Supplementary Material online. 
We then randomly subsampled the FastQ files to match the 
required sequencing depth by keeping only the desired 
number of reads from the original files.

The reference genome, gene annotation, transcript, 
coding sequence, and protein sequences for A. thaliana 
Col-0 ecotype version TAIR10.45 were downloaded from 
Ensembl Plants. Additional HQ genome assemblies and 
transcriptomes for seven A. thaliana ecotypes were ob-
tained from the “1001 genomes” website, from the 
MPIPZ project (Jiao and Schneeberger 2020). Additional 
transcript sequences were obtained from the WTCHG pro-
ject (Gan et al. 2011).

The soybean Williams82 reference sequences and anno-
tation (assembly version 4, annotation version 1), as well as 
transcriptomes of two G. max accessions (Lee and ZH13) 
and two Glycine soja accessions (W05 and PI483463), 
were downloaded from SoyBase. Genome assemblies for 
an additional seven G. max accessions were downloaded 
from GSA (see supplementary table S2, Supplementary 
Material online).

PG Construction

PGs were constructed using three computational pipelines 
(DN, MTP, and IA) implemented in the software package 
Panoramic v1.2.1 (Glick and Mayrose 2021). These pipe-
lines contain the following steps:

Reads preprocessing (DN, MTP, and IA): short se-
quencing reads were filtered and trimmed using 
Trimmomatic v0.39 (Bolger et al. 2014) with parameters 
“SLIDINGWINDOW:5:15 MINLEN:40.” Paired-end reads 
were merged using Flash v1.3.0 (Magoč and Salzberg 
2011) with parameters -m 10 -x 0.2.

Read mapping (MTP and IA): in the IA approach, short 
reads were mapped to the reference genome and to the PG 
using Bowtie2 v2.5.1 (Langmead and Salzberg 2012) . In 
the MTP approach, short reads were mapped to the PG 
for gene presence–absence detection using BWA v0.7.17 
(Li and Durbin 2009) with the mem algorithm and default 
parameters. Long reads were mapped using Minimap2 
v2.17 (Li 2018) with parameters -ax asm20.

Extraction of unmapped reads (IA): using samtools 
v1.15.1 (Li et al. 2009), unmapped reads were extracted 
using the command “samtools view -h -e ‘flag.unmap || 
mapq <= 10 || [NM] >= 8 || qlen <= 80’” and converted 
to fastq format using the command “samtools fastq”, 
When both reads of a pair were determined as unmapped, 
pairing was retained.

Genome assembly and quality assurance (DN, MTP, 
and IA): preprocessed whole genome data (DN and MTP) 
or unmapped reads (IA) were assembled into contigs using 
SPAdes v3.13.2 (Bankevich et al. 2012) (A. thaliana) or 
Minia (Chikhi and Rizk 2013) (soybean) with default para-
meters. Contigs shorter than 300 bp were discarded, and 
the remaining contigs were scaffolded into pseudomole-
cules (DN and MTP only) based on the reference sequence, 
using RagTag v1.0.1 (Alonge et al. 2019). Assembly quality 
was assessed using QUAST v5.0.2 (Gurevich et al. 2013) 
and BUSCO v5.0.0 (Waterhouse et al. 2018) with lineages 
brassicales_odb10 for A. thaliana and fabales_odb10 for 
soybean.

Detection of nonreference genomic sequences 
(MTP and IA): The procedure begins with the PG equiva-
lent to the reference sequence. At each step, the genome 
assembly from a single accession is mapped to the PG, 
using Minimap2 v2.17 (Li 2018) with parameter -ax 
asm5, and unmapped sequences (contigs or parts of con-
tigs) are extracted and added to the PG using a dedicated 
python script. This step is repeated until all genomes have 
been mapped. Unmapped sequences shorter than 300 bp 
for A. thaliana and 500 bp for soybean were discarded.

Gene annotation (DN, MTP, and IA): whole genome 
assemblies (DN) or the nonreference section of the PG 
(MTP and IA) were annotated by integrating multiple 
steps to produce candidate gene models. First, repetitive 
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sequences were masked using EDTA (Ou et al. 2019). 
Reference genes were lifted-over masked genomes using 
Liftoff v1.6.1 (Shumate and Salzberg 2021) (DN only). For 
ab initio predictions, we used Augustus v3.4.0 (Stanke 
and Waack 2003), SNAP v2013_11_29 (Korf 2004), and 
GlimmerHMM v3.0.4 (Majoros et al. 2004) (A. thaliana 
only). For A. thaliana, the relevant pretrained models pro-
vided with the software tools were used, whereas for soy-
bean, Augustus and SNAP were first trained based on 
single-copy BUSCOs detected in the reference assembly. 
We used PASA v2.4.1 (Haas et al. 2008) to create gene pre-
dictions based on transcript sequence homology. For 
“standard evidence” PGs, the input transcripts were those 
from the WTCHG set (A. thaliana) or the GSA set (soybean), 
whereas for “high-quality evidence” PGs, we used tran-
scripts from the MPIPZ set (A. thaliana). To reduce evidence 
redundancy and run times, transcripts were first clustered 
using MMseq2 v13.45111 (Steinegger and Söding 2017) 
with the command “mmseqs easy-linclust”, and a single 
representative transcript was taken from each cluster. 
Gene models were generated from reference protein se-
quences using GenomeThreader v1.7.1 (Gremme et al. 
2005). Gene predictions derived from lift-over, ab initio, 
and evidence-based analyses were combined into gene 
models using EvidenceModeler v1.1.1 (Haas et al. 2008), 
with weights set to 20 for lift-over, 10 for transcript align-
ments, 5 for protein alignments, and 1 for all ab initio out-
puts. Finally, low-confidence gene models were discarded. 
To this end, we computed the annotation edit distance 
(AED; Eilbeck et al. 2009) as a confidence score indicating 
the support of gene models by transcript and protein evi-
dence. Gene models derived solely from ab initio predic-
tions (AED = 1) and those with protein products shorter 
than 50 amino acids were then discarded.

Orthology clustering (DN): protein products derived 
from candidate gene models were clustered into orthology 
groups using OrthoFinder2 v2.5.1 (Emms and Kelly 2019). 
The resulting orthogroups frequently contain multiple 
genes from the same accession, which are possibly paralo-
gous. Thus, orthology groups were further split into 
subclusters using the Maximum Orthogonal Weight 
Partitioning algorithm (Zheng et al. 2011) to ensure they 
represent pan-genes rather than gene families. Further de-
tails are provided in Glick and Mayrose (2021) (see 
supplementary note 1, Supplementary Material online 
and supplementary fig. S2, Supplementary Material online 
therein).

Gene presence–absence detection based on reads 
coverage (MTP and IA): the coverage of exons for each 
gene model was computed based on read mapping, using 
the command “bedtools coverage -hist -sorted” from bed-
tools v2.30.0 (Quinlan and Hall 2010). A gene was consid-
ered present in an accession if at least 40% of its exonic 
sequence were covered with a depth of three or higher.

Pairwise Matching of Nonreference Protein Sets

Sets of nonreference protein sequences were compared by 
performing reciprocal protein Blast searches (Camacho 
et al. 2009), with each protein set used both as the query 
and the database. Bitscores were normalized to account 
for sequence length bias by applying the procedure de-
scribed by Emms and Kelly (2015), after which the bidirec-
tional bitscore for each protein pair was calculated as the 
average normalized bitscore from the two reciprocal Blast 
runs. In cases where no hits between proteins were found, 
a bitscore of zero was assumed. Next, a full bipartite graph 
of all Blast hits was generated and the maximum weight 
matching was detected using the Python package 
Networkx (Hagberg et al. 2008). Matches with a reciprocal 
bitscore lower than 100 were discarded, and only the re-
maining protein pairs were considered matched.

Analysis of Nonreference Gene Sequences

Transcript sequences were mapped to genomic sequences 
using Minimap2 (Li 2018) with parameters -x splice:hq -uf. 
The query coverage of matches was calculated based on 
the output PAF format file as number of residue matches/ 
query sequence length. Protein sequence mapping was 
performed using BlastP (Camacho et al. 2009) with 
E-value threshold set to 10−5 and otherwise default para-
meters. The query coverage was calculated as alignment 
length (excluding gaps) divided by the query length.

To profile the expression of nonreference genes, 
RNA-seq reads derived from multiple studies 
(supplementary table S15, Supplementary Material online) 
were downloaded from ENA. All paired-end files were con-
catenated, and then 10% of read pairs were randomly se-
lected. RNA-seq reads were mapped to transcript 
sequences of nonreference genes using BWA v0.7.17 (Li 
and Durbin 2009) using default parameters. Unmapped 
reads (SAM flag 4) and those with mapping quality lower 
than 20 were discarded using the command “samtools 
view -F 4 -q 20” (Li et al. 2009). The number of reads 
mapped to each transcript was counted and divided by 
the transcript length to compute RPKM.

Meta-Analysis of Previously Published PGs

Gene PAV data for each study were downloaded or ob-
tained through personal communication, as detailed in 
supplementary table S16, Supplementary Material online. 
All files were processed using data set–specific functions 
and simplified into a uniform format where gene presence 
and absence are coded as 1 and 0, respectively.

Supplementary Material
Supplementary data are available at Genome Biology and 
Evolution online (http://www.gbe.oxfordjournals.org/).
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