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Simple Summary: In the field of non-small cell lung cancer (NSCLC), there have been significant
advancements in genomic data and bioinformatics tools, which have improved early diagnosis,
treatment, and follow-up using biomarkers. Biomarkers provide measurable indicators of disease
characteristics and help tailor treatment strategies in precision medicine. The integration of big data
and artificial intelligence (AI) further enhances personalized medicine through advanced biomarker
analysis. However, challenges exist in terms of limited evidence on the impact of new biomarkers on
mortality and treatment efficacy, as well as data analysis and the adoption of precision medicine in
clinical practice. Despite these obstacles, the integration of biomarkers into precision medicine has
shown promise in improving patient outcomes in NSCLC. Continued research and advancements in
biomarker discovery, utilization, and evidence generation are needed to overcome these challenges
and further enhance precision medicine’s effectiveness in NSCLC.

Abstract: Non-small cell lung cancer (NSCLC) is a significant public health concern with high
mortality rates. Recent advancements in genomic data, bioinformatics tools, and the utilization of
biomarkers have improved the possibilities for early diagnosis, effective treatment, and follow-up in
NSCLC. Biomarkers play a crucial role in precision medicine by providing measurable indicators
of disease characteristics, enabling tailored treatment strategies. The integration of big data and
artificial intelligence (AI) further enhances the potential for personalized medicine through advanced
biomarker analysis. However, challenges remain in the impact of new biomarkers on mortality and
treatment efficacy due to limited evidence. Data analysis, interpretation, and the adoption of precision
medicine approaches in clinical practice pose additional challenges and emphasize the integration of
biomarkers with advanced technologies such as genomic data analysis and artificial intelligence (AI),
which enhance the potential of precision medicine in NSCLC. Despite these obstacles, the integration
of biomarkers into precision medicine has shown promising results in NSCLC, improving patient
outcomes and enabling targeted therapies. Continued research and advancements in biomarker
discovery, utilization, and evidence generation are necessary to overcome these challenges and
further enhance the efficacy of precision medicine. Addressing these obstacles will contribute to the
continued improvement of patient outcomes in non-small cell lung cancer.

Keywords: biomarkers; miRNA; bioinformatics; non-small cell lung cancer; bioprospecting; machine
learning; artificial intelligence

1. Introduction

Non-small cell lung cancer (NSCLC) is a serious public health problem, accounting
for 84% of diagnosed lung cancers. In 2020, there were 2,206,771 (11.4%) new diagnoses
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of lung cancer in both sexes and all ages, second only to breast cancer. However, it
had the highest mortality rate with 1.8 million deaths in 2020 [1], mainly due to late
diagnosis. With the increase in genomic data, the possibilities for early diagnosis, effective
and safe treatment, and follow-up are enhanced by increasing the likelihood of prediction
through biomarkers. This is achieved by using bioinformatics tools and automated machine
learning algorithms to analyze large amounts of data, including clinical data obtained from
harmonized medical records, radiological images, and pathological studies (tissue biopsies),
as well as genomic data.

The rapid growth of genomic data in cancer and the development of bioinformatics
analysis methods have led to the identification of tumor biomarkers that facilitate early
detection, treatment, and prognosis, reducing mortality rates in some types of cancer [2].
Public data sources such as the Gene Expression Omnibus (GEO) and The Cancer Genome
Atlas (TCGA) provide opportunities to explore tumor genesis and progression, as well as
the identification of new biomarkers for diagnosis, prognosis, and treatment response [3].
Biomarkers, combined with clinical data, have prognostic value and can predict outcomes,
guiding specific treatments [4]. To structure and perform classification and prediction
tasks with this big data, different machine learning methods have evolved according to the
needs and magnitude of the data [5]. In a multi-omic conceptual framework, integrating
component analysis, non-parametric combinations, and exploratory analysis contribute
to consistent information and enable the application of classification and prediction algo-
rithms such as decision trees, random forests, support vector machines, linear and logistic
regression, and deep learning models. Recently, dimensionality reduction techniques such
as t-distributed stochastic neighbor embedding (t-SNE), multidimensional scaling (MDS),
and uniform manifold approximation and projection (UMAP) have been applied based on
data structure and acquisition methods [6].

In the case of non-small cell lung cancer, the impact of a new biomarker on mortality
and the efficacy of specific treatment is a challenge due to the limited evidence available.
Therefore, the discovery and application of relevant biomarkers, both new and existing,
will lead the future of precision medicine in NSCLC [7,8].

2. Non-Small Cell Lung Cancer

NSCLC is the most common type of lung cancer, accounting for approximately 85% of
all cases [9], and it is the leading cause of cancer-related deaths worldwide, ranking first in
men and second in women, with nearly 1.8 million deaths per year [10]. It is a complex and
diverse disease that arises from the abnormal growth of cells in the lung tissue, primarily
caused by smoking. Early detection and increased utilization of diagnostic tools such as
PET scans and the discovery of biomarkers are crucial for improving patient outcomes and
reducing lung cancer mortality rates [11,12].

NSCLC encompasses various subtypes, including adenocarcinoma, squamous cell
carcinoma, and large cell carcinoma. This type of cancer is often diagnosed at advanced
stages, which poses challenges for effective treatment. Adenocarcinoma is the most com-
mon type of lung cancer, accounting for approximately 40% of cases. It develops from
small airway epithelial cells known as type II alveolar cells, which secrete mucus and other
substances. Adenocarcinoma affects both smokers and non-smokers and occurs in men
and women of all ages. It tends to occur in the outer regions of the lungs, possibly due
to cigarette filters preventing large particles from entering the lungs. Adenocarcinoma
generally grows slower and has a higher chance of being detected before it spreads beyond
the lungs compared to other types of lung cancer [10,11].

Large cell carcinoma (undifferentiated) represents 5–10% of lung cancers. This type of
carcinoma lacks evidence of squamous or glandular maturation and is often diagnosed by
excluding other possibilities. Large cell carcinoma typically originates in the central part of
the lungs and can spread to nearby lymph nodes, the chest wall, and distant organs. This
type of carcinoma is strongly associated with tobacco consumption [9,10].



Cancers 2023, 15, 3474 3 of 30

2.1. Risk Factors and Epidemiology

Some factors that indicate a negative outlook include being male, having impaired
functional abilities, and being over the age of 70. The use of radiological imaging does
not effectively reduce mortality because of the aggressive nature of the disease. The most
crucial steps to reduce mortality are quitting smoking and prevention, given that smoking
is the primary risk factor for lung cancer. Non-smokers exposed to secondhand tobacco
smoke also face an increased risk of developing lung cancer, and living with a smoker can
raise the chances by 20–30% [9,10,13].

Tobacco consumption has been identified as the cause of 90% of all lung cancer
cases. Current smokers with a history of 40 pack-years have twenty times higher chances
of developing lung cancer than a nonsmoker. This risk can increase when additional
environmental or lifestyle exposures are combined with tobacco consumption, such as
asbestos exposure. It is believed that adenocarcinoma, in particular, originated from the
invention of filtered cigarettes in the 1960s, although this has not been proven [14,15].

Another risk factor is radon, a natural carcinogen present in uranium deposits in
basements, which is associated with lung cancer and is estimated to have caused approx-
imately 21,000 deaths from this disease in the United States. Occupational exposure to
substances such as asbestos, arsenic, beryllium, and other chemicals also increases the risk
of lung cancer. Air pollution, especially in areas with heavy traffic and high concentration
of pollutants, including polycyclic aromatic hydrocarbons, is identified as a risk factor for
lung cancer, with an 8% increase in overall mortality risk from this disease. Personal or
family history of lung cancer are also risk factors, and certain genes and chromosomes
associated with a higher risk of developing the disease, such as the TP53 gene and a marker
on chromosome 15, have been identified [9,10,13].

On a global level, lung cancer is the leading cause of cancer-related death in men
and the second most common in women. There is significant variation in the incidence of
lung cancer across different populations, primarily driven by the prevalence of tobacco
consumption in various countries. The incidence of lung cancer is directly related to the
rise or decline in smoking rates among different populations. For instance, it is projected
that age-adjusted mortality rates in the United States will decrease by 79% between 2015
and 2065 due to declining tobacco use rates and anti-smoking campaigns. Incidence and
mortality rates of lung cancer are higher in developed countries. In contrast, lung cancer
rates in underdeveloped geographic areas, such as Central/South America and much of
Africa, are lower [14,15].

However, many developing countries lack a centralized reporting system, leading to
underreporting of lung cancer cases, making it challenging to determine the true incidence
of the disease. The World Health Organization (WHO) estimates that global lung cancer
mortality rates will continue to rise, primarily due to the increasing global tobacco con-
sumption, particularly in Asia. In the United States, lung cancer incidence and mortality
rates have been declining in men, while initially increasing in women until around the year
2000, and have since stabilized. Due to the shifting incidence of lung cancer in women,
mortality rates have decreased in women over a decade after declining in men [14,15].

According to data from the Global Cancer Observatory (GLOBOCAN), lung cancer
is the second most common cancer worldwide, following female breast cancer. In terms
of mortality, lung cancer is the leading cause of cancer-related death. In South America,
the incidence and mortality rates of lung cancer vary among countries. In 2020, the
incidence of lung cancer in South America was 17.8 cases per 100,000 population in men
and 10.3 in women. In Colombia, lung cancer ranked fifth in incidence in 2020, following
breast, prostate, colorectal, and stomach cancer. In terms of mortality, lung cancer is the
second leading cause of cancer-related death in Colombia, with approximately 9.2 deaths
per 100,000 population each year [16,17]. Adenocarcinoma is the most common histological
variant in lung cancer patients in Colombia, followed by squamous cell carcinoma. The
majority of patients present at advanced stages of the disease. Mutations in the Epidermal
Growth Factor Receptor (EGFR) gene are detected in a significant proportion of patients,
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mainly in non-smoking women. ALK rearrangement is also found in a small proportion of
cases. It is necessary to implement lung cancer prevention and control strategies to reduce
its incidence and mortality in Colombia [16,17].

Lung cancer has a high social and economic impact globally, causing a significant
number of disability-adjusted life years lost. In Latin America, lung cancer treatment
is costly and limited in terms of the adoption of new technologies and medications. In
Colombia, lung cancer mortality rates have shown a decreasing trend since 2005, both in
men and women, across all age groups [16,17]. The decline in mortality rates in men aged
35 to 64 was observed in 1985, while in women of the same age group, it was observed in
1991. However, in the group of individuals older than 64, the decline in mortality rates
began to be observed in the early 21st century. The study by Giraldo-Osorio et al., from
2022 is the first in over 30 years to determine the trend in lung cancer mortality at the
national level in Colombia and uses joinpoint regression analysis. It highlights the increase
in lung cancer mortality rates in women over 64 years old until the early 21st century and
in women under 65 years old until 1991 [16]. This could be related to exposure to solid
fuel smoke, especially in indigenous women over 30 years old living in rural areas. The
use of solid fuels for cooking has decreased in Colombia, which may have contributed to
the decline in lung cancer mortality rates in women. The decrease in tobacco consumption
prevalence in Colombia may explain the reduction in mortality rates, especially in men [16].
Over the decades, there has been a decrease in tobacco consumption prevalence in the
general population, although men have higher rates than women. Laws and projects for
tobacco control have been implemented, contributing to the reduction in consumption. It is
important for Colombia to continue efforts in primary prevention to prevent the initiation
of tobacco use and in secondary prevention to assist people in quitting smoking [16].

2.2. Pathophysiology, Histology, and Classification

Oncogene mutations play a significant role in NSCLC and can be effectively targeted
with specific drugs. Familial clustering of lung cancer has provided evidence for a heredi-
tary component in disease development. Carriers of TP53 germline sequence variations
have an increased risk of lung cancer, particularly if they are smokers. A genome-wide
linkage study has identified a susceptibility locus at 6q23-25p that influences lung cancer
risk [13]. The most common mutation occurs in the EGFR gene, affecting 10–30% of patients.
This mutation is associated with downstream signaling pathways, including MAPK/ERK,
PI3K/AKT, and Bax/Bcl-2. The presence of the EGFR T790M sequence variation has been
identified in families with multiple cases of NSCLC. Additionally, it is linked to acquired
resistance to EGFR tyrosine kinase inhibitors (TKIs) [18]. Osteopontin (OPN) and the
PI3K/AKT/mTOR pathway also contribute to resistance against EGFR TKIs. Gene re-
arrangements in the RET gene are detected in approximately 1% to 2% of patients with
NSCLC and affect signaling pathways such as PI3K/AKT, JAK-STAT, and RAS/MAPK.
These pathways play a role in cell proliferation, invasion, and migration. Mutations in
the MET gene lead to abnormal expression of the MET axis, promoting the migration and
invasion of tumor cells, as well as resistance to inhibitors targeting EGFR and VEGFR. Rear-
rangements in the Anaplastic Lymphoma Kinase (ALK) gene occur in 5% to 6% of NSCLC
patients, resulting in increased expression of ALK, which triggers epithelial-mesenchymal
transition (EMT) and enhances migration and invasion. Resistance to ALK inhibitors is
associated with specific mutations such as F1174L and involves the STAT3/ZEB1 signal-
ing pathway [18]. Human epidermal growth factor receptor 2 (HER2) gene mutations,
particularly in exon 20, are found in 2–4% of NSCLC patients, especially in women, and
are associated with brain metastases. Activation of HER2 triggers downstream signaling
through MEK/ERK and PI3K/AKT pathways, promoting lung cancer cell migration and
proliferation. BRAF mutations, particularly V600E, confer resistance to BRAF inhibitors
but respond better to combined BRAF and MEK inhibitors. ROS1 gene rearrangements
are present in 1–2% of NSCLC patients, with CD74-ROS1 being the most common fusion.
Activation of the ROS1 gene initiates signaling through the PI3K/AKT/mTOR, JAK/STAT,
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and MAPK/ERK pathways, facilitating the proliferation and invasion of tumor cells. In
NSCLC patients, KRAS mutations are identified in around 13% of cases, predominantly
among smokers, and are linked to drug resistance and unfavorable outcomes. Various
KRAS mutations activate specific downstream signaling pathways. Gene fusions involv-
ing the Neurotrophic tropomyosin receptor kinase (NTRK) gene occur in less than 1% of
NSCLC patients and affect the MEK/ERK and PI3K/AKT pathways, which play a role in
cell proliferation, migration, and chemotherapy-induced apoptosis. Early-stage NSCLC
patients with NTRK fusions exhibit a significant response rate to TKIs [12,18].

The genomic characteristics of lung cancer differ significantly between smokers and
never-smokers. Smokers display a higher frequency of mutations, including non-actionable
mutations in genes such as KRAS and TP53, characterized by specific nucleotide changes.
On the other hand, never-smokers more commonly exhibit specific actionable gene alter-
ations such as activating EGFR mutations and ROS1 and ALK translocations. These genetic
events that drive tumor development also impact the composition of the tumor microen-
vironment (TME). NSCLC, in particular, demonstrates a high number of somatic tumor
mutations, especially in smokers, and metastatic tumors tend to have more mutations than
primary lung lesions. Certain mutations result in the formation of neoantigens, which
can be recognized by immune cells infiltrating the tumor. An increased burden of these
neoantigens is associated with an inflamed TME, enriched with activated immune cells and
the expression of immune-related proteins. Additionally, defects in DNA mismatch repair
and microsatellite instability contribute to a high tumor mutation burden and favorable
responses to immune checkpoint inhibitors (ICBs). Furthermore, genetic alterations can
influence the cellular composition and functions of the TME. For instance, the inactivation
of the STK11 tumor suppressor gene in KRAS-mutated lung adenocarcinoma shifts the
TME towards immunosuppressive neutrophils and reduced expression of PD-L1. Further
investigations are required to fully understand the intricate relationship between genotypes
of NSCLC and the cellular makeup of the TME [12].

Histology plays a crucial role in cancer diagnosis, allowing for the distinction of differ-
ent subtypes of lung tumors. In adenocarcinoma, evidence of neoplastic gland formation,
expression of markers such as TTF-1 and napsin, or the presence of intracytoplasmic mucin
is required. Squamous cell carcinoma is diagnosed by detecting keratin production and in-
tercellular desmosomes. Immunohistochemistry (IHC) enables the identification of specific
markers such as p40, p63, CK5, or desmoglein in squamous cell carcinoma. On the other
hand, large cell carcinoma is a diagnosis of exclusion as it can exhibit features of squamous,
glandular, or neuroendocrine differentiation. In cases of poorly differentiated carcinoma, it
will be classified as large cell carcinoma only if specific markers indicating another subtype
of lung cancer are not found [15].

There are two main types of lung cancer: NSCLC, which accounts for 85% of cases,
and small cell lung cancer (SCLC), which makes up 15% of cases. NSCLC is further
classified into three main types: adenocarcinoma, squamous cell carcinoma, and large cell
carcinoma. Adenocarcinoma is the most common subtype and arises from alveolar cells in
the smaller airway epithelium. Squamous cell carcinomas arise from cells in the airway
epithelium, and large cell cancers are typically poorly differentiated and composed of large
cells. Immunohistochemical markers are used to identify these subtypes (Figure 1) [14,15].
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2.3. Resistance to Medications and Immunotherapy in NSCLC: Mechanisms and
Therapeutic Strategies

Drug resistance is one of the main causes of therapeutic failure in NSCLC, leading to
tumor recurrence and disease progression. Resistance in NSCLC is a significant clinical
problem as it diminishes treatment efficacy and may contribute to disease progression
and the development of metastasis. The clinical relevance of resistance in NSCLC lies in
the need to develop more effective therapeutic approaches to overcome it. Research is
focused on identifying the mechanisms responsible for resistance and finding strategies to
counteract them. This includes the development of therapies specifically targeting genetic
mutations present in tumor cells, as well as the use of combinations of different treatments
to address resistance more effectively [19,20].

NSCLC is a heterogeneous disease that exhibits various genetic alterations. Some of
the most relevant therapeutic targets in NSCLC include EGFR, ALK, ROS1, BRAF, MET,
RET, and KRAS. The intrinsic mechanisms of cellular resistance in this disease encompass
changes in drug transporter expression and activation of pro-survival and anti-apoptotic
pathways, along with non-intrinsic influences from the tumor microenvironment [19]. TKIs
have proven to be effective in the treatment of NSCLC in patients with activating mutations
in these genes. For instance, EGFR TKIs such as erlotinib and gefitinib have shown
promising results in patients with EGFR mutations. Similarly, ALK TKIs such as crizotinib
and alectinib have demonstrated activity in patients with ALK fusions. Additionally,
targeted drugs have been developed for ROS1, BRAF, MET, RET, and KRAS, thereby
expanding treatment options for NSCLC patients harboring these genetic alterations [20].

The genetic alterations and tumor heterogeneity in NSCLC are driven by subpop-
ulations of tumor cells called cancer stem cells (CSCs), which possess tumor-initiating
capabilities, high self-renewal capacity, and the ability to differentiate into multiple lin-
eages. CSCs have been identified in NSCLC and have been associated with resistance to
chemotherapy, radiation therapy, and immunotherapy [19,21].

Resistance to immunotherapy can manifest at different levels of dysfunction and be
related to specific tumor phenotypes. One mechanism of resistance involves the absence
of specific T lymphocytes in the tumor microenvironment or their inability to express the
necessary T cell receptor (TCR) to recognize the tumor antigen. Another mechanism is
related to the lack of infiltration of activated T lymphocytes into the tumor tissue due
to the presence of substances such as VEGF that promote the formation of barriers for
immune cells [21].
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In CPCNP, resistance to immunotherapy can also arise, such as in the case of immune
checkpoint inhibitors. The tumor microenvironment and interactions between cancer
cells and immune cells play a crucial role in determining the response to immunotherapy.
Tumors with a high population of CSCs have been found to exhibit immunosuppressive
characteristics and evade immune surveillance, leading to resistance to immunotherapy [19].
CSCs can modulate immune responses through various mechanisms, including the ex-
pression of immune inhibitory molecules, secretion of immunosuppressive factors, and
induction of dysfunction in immune cells [19]. On the other hand, resistance to EGFR
inhibitors is common in patients with lung adenocarcinoma. Various mechanisms of re-
sistance have been identified, including EGFR mutations, oncogenic changes, alterations
in apoptosis, and epithelial-mesenchymal transition. EGFR inhibition can lead to the
enrichment of the cancer stem cell subpopulation in non-small cell lung cancer, whether
mutated or non-mutated in EGFR, through a NOTCH3-dependent process. Additionally,
this inhibition can increase cell death in non-stem cells and enhance the formation of pul-
monary spheres [19]. Inhibiting NOTCH1 and HES1 can reverse resistance to gefitinib
by increasing apoptosis. Dual inhibition of EGFR and NOTCH2/3 reduces EGFR and
radiation-induced cancer stem cell subpopulations, as well as the expression of DNA repair
genes. Similarly, resistance to ALK inhibitors in NSCLC may be mediated by mechanisms
associated with NOTCH signaling. Erlotinib faces resistance due to mutations such as
T790M, D761Y, L747S, and T854A in the EGFR gene, as well as EGFR amplification, PIK3CA
gene mutations, and MET gene amplification. The MET gene encodes a receptor tyrosine
kinase (RTK) protein that is activated by binding with the HGF ligand, triggering a sig-
naling cascade that promotes cellular progression and proliferation in various malignant
tumors. This amplification can occur early in tumorigenesis or as a mechanism of acquired
resistance to tyrosine kinase inhibitors. However, specific MET inhibitors and multi-kinase
inhibitors have been developed, showing promising results in treating tumors with MET
gene amplification, thereby improving clinical outcomes [22]. Studies have shown that both
overexpression and amplification of MET are associated with poor prognosis in patients
with NSCLC, and MET amplification appears to be an independent marker of poor outcome
after surgical resection of NSCLC. In a series of 687 Asian patients with resected NSCLC,
MET alterations were unfavorable prognostic factors for overall survival [23].

Regarding ALK inhibitors, mutations such as G1269A, C1156Y, I1171T/N/S, S1206C,
E1210K, L1152P/R, V1180L, G1128A, F1174V, and L1196M in the ALK kinase domain,
along with bypass pathway activation, KIT amplification, and MAPK signaling, contribute
to resistance. ROS1 inhibitors face resistance due to point mutations in the ROS1 kinase
domain, such as D2033N, G2032, L2026M, L2155S, and S1986F/Y, as well as the involvement
of other receptors and effectors in the MAPK pathway. Lastly, BRAF inhibitors are affected
by mutations such as BRAF(V600E), BRAF(D594G), and BRAF(G469A/V), as well as bypass
pathway activation and restoration of MAPK signaling [20].

Regarding anti-angiogenic therapy targeting VEGF and DLL4-NOTCH, resistance
can arise due to the activation of alternative pro-angiogenic signals. In KRAS-driven
tumors, NOTCH inhibition can improve treatment sensitivity and suppress RAS and PI3K
signaling pathways [19]. The KRAS gene is frequently mutated in NSCLC, and although it
has long been considered elusive, specific inhibitors such as KRASG12C inhibitors have
been developed. However, resistance mechanisms have also been identified, both KRAS-
dependent and KRAS-independent, involving acquired alterations in KRAS, activation of
alternative signaling pathways, and histological transformation [24].

In the field of therapy based on immune checkpoint inhibitors (ICIs), which target
PD-1 and PD-L1, a revolution has been observed in the treatment of NSCLC. However,
not all patients respond to this therapy, and different resistance mechanisms have been
identified. Primary resistance is related to the inability of the immune system to activate an
adequate response against cancer cells, influenced by intrinsic and extrinsic factors to the
tumor. Acquired resistance occurs when tumor cells adapt to the immune system and evade
its response. Furthermore, cancer progression can also be observed after discontinuation of
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treatment, which may involve elements of both primary and acquired resistance [20,24].
Intrinsic resistance to immunotherapy can be attributed to various genetic aberrations
in oncogenes and tumor suppressor genes, which affect the immune response and alter
cytokine profiles and immune cell composition. For example, certain genetic alterations,
such as RET gene rearrangements and HER2 gene mutations, are associated with low PD-L1
expression, while activating mutations in the EGFR gene and ALK gene rearrangements are
associated with high PD-L1 expression but a limited response to ICIs. Other genetic factors,
such as KRAS and STK11/LKB1 gene mutations, have been linked to both sensitivity and
resistance to ICIs. The STK11/AMPK axis is an intracellular signaling pathway that plays a
crucial role in the regulation of metabolism and energy homeostasis in cells. STK11 (also
known as LKB1) is a protein kinase that acts as a key regulator in this pathway, while
AMPK (AMP-activated protein kinase) is its main substrate. When cellular AMP levels
increase, as occurs during situations of energy stress or intense physical exercise, AMPK is
activated through phosphorylation by STK11. Once activated, AMPK triggers a series of
adaptive responses to restore energy balance. This includes the inhibition of protein and
lipid synthesis, as well as the activation of catabolic pathways that generate ATP, such as
glycolysis and fatty acid oxidation [25]. LKB1 deficiency, observed in tumors such as lung
adenocarcinomas, is associated with lower overall survival and the formation of aggressive
tumors with metastatic characteristics. Additionally, the absence of LKB1 promotes EMT,
affects cell polarity, and creates an immunosuppressive microenvironment around tumor
cells. In the treatment of advanced NSCLC, STK11 mutations are associated with increased
resistance to radiotherapy and anti-PD-L1 therapy. Loss of LKB1 due to mutations in STK11
contributes to cancer progression and resistance to certain therapies, making it a potential
target for the development of more effective lung cancer treatments [25].

Although ICI has significantly improved overall survival in patients with certain types
of cancer, it still has limitations and challenges. One of the main obstacles is acquired
resistance to therapy, which has been associated with decreased MHC-I in the presentation
of tumor antigens to T cells. However, several therapeutic strategies are being explored
to increase MHC-I expression and improve the effectiveness of immunotherapy. These
approaches include activation of the interferon-gamma signaling pathway, stimulation of
the NF-kB signaling pathway, use of chemotherapeutic agents, and inhibition of autophagy.
Although further research is still needed, these strategies could provide new opportunities
to enhance the immunotherapeutic response in cancer patients [26].

On the other hand, mutations in the BRAF gene have been reported in approximately
4% of NSCLC cases, being more common in non-small cell lung adenocarcinoma. The
BRAF gene encodes a kinase protein that plays a crucial role in the regulation of cell growth
and proliferation. Mutations in the BRAF gene, especially the V600E mutation, have
been identified in various types of cancer, including melanoma and NSCLC. Activation
of the BRAF gene in NSCLC has been associated with uncontrolled cell proliferation and
resistance to apoptosis, contributing to tumor growth. Although BRAF mutant inhibition
has proven effective in treating melanoma, its efficacy in NSCLC is limited due to the
development of resistance. Resistance to BRAF inhibition in NSCLC can be primary or
acquired. Primary resistance is due to intrinsic mechanisms that limit the effectiveness of
BRAF inhibition. On the other hand, acquired resistance develops during treatment and can
be caused by the activation of alternative signaling pathways, such as the EGFR pathway
or the PI3K/AKT/mTOR signaling pathway. Several strategies have been proposed to
overcome resistance to BRAF inhibition in NSCLC. These include the combination of BRAF
inhibitors with MEK inhibitors to block multiple signaling pathways, the use of EGFR
inhibitors in combination with BRAF inhibitors, and the combination of targeted therapies
with immunotherapy to enhance the immune response against tumor cells. Although
significant progress has been made in the treatment of resistance to BRAF inhibition in
NSCLC, further research is still needed to fully understand the resistance mechanisms and
develop more effective therapeutic strategies [27,28].
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Another resistance found in NSCLC is EMT. EMT is a biological process that can
drive metastasis in various types of cancer, including NSCLC. EMT has been associated
with immune exclusion and resistance to immunotherapy in melanoma and other types of
cancer. EMT has been found to be associated with the exclusion of critical immune cells in
the immune response against cancer, such as CD4 and CD8 T cells. Additionally, certain
immunosuppressive cytokines and immune checkpoint molecules have been identified
to be associated with EMT in NSCLC, suggesting potential mechanisms of resistance
to immunotherapy. It is also important to note that EMT is considered a key factor in
the metastasis of lung cancer. EMT involves the transformation of epithelial cells into
mesenchymal cells, promoting cancer progression and transforming cells into cancer stem
cells (CSCs). Various signaling pathways and transcription factors, such as Snail, TWIST,
ZEB, and FOXC2, play a significant role in regulating EMT in lung cancer. These factors
contribute to the loss of cell adhesion, activation of proteolysis, and increased cell motility,
leading to tumor metastasis. EMT is induced by signaling pathways such as TGF-β, which
activates the SMAD, PI3K-AKT, and MAPK pathways. Overall, these findings highlight the
importance of understanding how EMT affects the tumor microenvironment and immune
response in NSCLC to develop more effective therapeutic strategies [29,30].

In conclusion, it is crucial to continue research in NSCLC to identify new markers of
resistance and develop effective therapeutic strategies. The identification of these markers
and the development of appropriate treatment approaches are essential for improving
patient outcomes and overcoming the challenges posed by this disease.

2.4. Diagnosis and Treatment

Early detection of lung cancer through screening is of utmost importance as it can
significantly improve clinical outcomes. During the initial stages, most patients with lung
cancer do not exhibit noticeable symptoms, apart from coughing. This lack of symptoms
can lead to missed opportunities for early diagnosis and treatment. Diagnostic approaches
encompass imaging tests, biopsies, and biomarker tests. Imaging tests, including computed
tomography (CT), positron emission tomography (PET), and magnetic resonance imaging
(MRI), are vital in diagnosing lung cancer. CT screening, in particular, has shown a
20% reduction in lung cancer mortality and a decrease in overall mortality rates [14,18].
Advancements in diagnostic technologies play a critical role in saving lives and extending
the lifespan of patients. Among these technologies, computed tomography (CT) is widely
used as a diagnostic method, enabling the determination of tumor size and the identification
of nodules in individuals with lung cancer. In order to detect lung cancer at an early stage,
the US Preventive Services Task Force recommends annual low-dose CT screening for
individuals at high risk. Furthermore, the NELSON trial demonstrated a noteworthy 26%
decrease in lung cancer mortality among high-risk individuals who underwent low-dose
CT screening [11,13,14]. It can also detect metastases, especially in mediastinal lymph nodes.
However, biopsy is still necessary to determine if the nodules are benign or malignant.
which can be tissue- or liquid-based. Tissue biopsy is invasive and considered the gold
standard in clinical practice. It can determine the different histological types of lung cancer
and detect mutations. However, it can have complications. Liquid biopsy is less invasive
and utilizes peripheral blood samples. It can detect circulating tumor DNA, circulating
tumor cells, exosomes, and other molecules such as miRNA and circRNA. Although it is
more sensitive and practical than tissue biopsy, its application is limited [14,18].

PET, unlike CT, exhibits greater sensitivity and specificity due to its utilization of
abnormal glucose markers. This imaging technique is capable of identifying malignant
lesions characterized by abnormal glucose metabolism, determining their benign or malig-
nant nature, and distinguishing between various types and stages of lung cancer. On the
other hand, MRI is employed to detect metastases in the brain and bones of individuals
with NSCLC. Through advancements in high-performance gradient systems, phased-array
receiver coils, and optimized imaging sequences, MRI can now detect even small nodules
in lung tissues, reaching a size as minute as 3 mm [31].
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When it comes to biomarker tests, it is advisable to perform molecular tests on
patients diagnosed with NSCLC to assess potential mutations. Several techniques are
employed for this purpose, including polymerase chain reaction (PCR), fluorescence in
situ hybridization (FISH), immunohistochemistry (IHC), and next-generation sequencing
(NGS). These tests play a significant role in identifying various mutations associated with
lung cancer and are instrumental in the development of targeted therapies. Precise deter-
mination of the TNM stage of lung cancer is essential for selecting the most appropriate
treatment approach [14,18,32].

In the age of precision medicine, immunohistochemistry (IHC) plays a vital role in
categorizing tumors into distinct subtypes and evaluating biomarkers to guide effective
therapeutic decision-making. IHC offers several advantages over other techniques, such as
its widespread availability, technical simplicity, cost-effectiveness, and rapid turnaround
time. It has the potential to serve as a practical screening tool for identifying targetable
genetic alterations and assessing biomarkers for molecular-targeted therapies. Furthermore,
IHC provides valuable information about the cellular distribution of proteins within tumor
tissues, enabling a more comprehensive understanding of the disease (see Table 1) [32].
Despite the benefits, challenges to lung cancer screening adoption include insurance cov-
erage, false-positive results, radiation exposure concerns, patient distress, and the risk
of overdiagnosis [14,18].

Table 1. Advantages and disadvantages of different diagnostic methods for NSCLC
(MRI—Magnetic Resonance Imaging, PET—Positron Emission Tomography, CT—Computed
Tomography, FISH—Fluorescence In Situ Hybridization, PCR—Polymerase Chain Reaction,
IHC—Immunohistochemistry, FDG—Fludeoxyglucose F18).

Diagnostic Method Advantages Disadvantages

MRI
No ionizing radiation exposure Limited availability and restricted access

Detailed imaging of soft tissues Lower sensitivity for detecting small lesions

PET
Detects metabolic and molecular changes Higher cost and limited availability

High sensitivity for detecting metastasis Potential for false positives due to FDG accumulation

CT
Widely available and rapid access Exposes the patient to ionizing radiation

High spatial resolution and early tumor detection Potential for false positives due to benign lesions

FISH Biomarkers Provides genetic information about specific
cancer subtypes Requires specialized laboratory analysis

PCR Biomarkers Provides genetic information about specific
cancer subtypes, Requires specialized laboratory analysis

IHC Biomarkers Provides protein expression information, Helps
differentiate cancer subtypes

Requires specialized personnel and equipment, results
may vary depending on the method used

Next Generation
Sequencing Biomarkers Provides comprehensive genetic information Requires specialized laboratory analysis

Liquid Biopsy
Non-invasive and lower risk for the patient Lower sensitivity compared to tissue biopsy

Enables monitoring of genetic changes over time Potential for false negatives due to low concentration

Tissue Biopsy
Provides tissue samples for histopathological analysis Invasive procedure with associated risks

High precision and detection of genetic mutations Potential complications such as bleeding or infection

3. Precision Medicine and Biomarkers
3.1. The Impact of Precision Medicine

Precision medicine is a groundbreaking discipline that is transforming the way
medicine is practiced. It emerges as a response to the growing understanding that each
patient is unique, with genetic and molecular characteristics that can influence their suscep-
tibility to diseases, response to treatments, and prognosis. Precision medicine is important
today because it allows for a more individualized and personalized approach to the diag-
nosis, treatment, and prevention of diseases. Unlike traditional approaches that rely on
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general protocols, precision medicine takes into account the unique characteristics of each
individual, such as their genetics, lifestyle, environment, and other factors, to make more
informed medical decisions. Precision medicine relies on the gathering and examination of
diverse data sets, such as genetic, molecular, clinical, and lifestyle information, to gain a
deeper understanding of the fundamental biology of a disease and to make well-informed
choices regarding diagnosis and treatment options [33,34].

Precision medicine has also driven significant advances in the field of oncology.
Through genomic and molecular analysis of tumors, specific alterations in a patient’s
DNA can be identified, allowing for the selection of therapies targeted at these alterations.
This has revolutionized cancer treatment as we can now use specific drugs that act on the
altered molecular signaling pathways in cancer cells, improving treatment efficacy and
reducing side effects. Additionally, precision medicine also plays a crucial role in disease
prevention. By better understanding the genetic and environmental risk factors of each
individual, proactive measures can be taken to prevent the onset of diseases or detect
them at early stages when they are more treatable. This enables personalized preventive
interventions such as lifestyle changes, more frequent medical screenings, or even the use
of preventive medications in selected cases [35,36].

A fundamental component of precision medicine is the utilization of biomarkers,
which play a crucial role in identifying and understanding specific characteristics in a
patient. Biomarkers are measurable and objective indicators that can encompass a wide
range of aspects, from genetic mutations and gene expression profiles to protein levels and
distinctive clinical features. These biomarkers offer valuable insights into the underlying
biological aspects of a disease and enable healthcare professionals to obtain a more compre-
hensive and detailed understanding of a patient’s medical condition. For example, specific
genetic mutations may indicate the presence of an inherited disease or susceptibility to
certain types of cancer. Gene expression profiles can reveal molecular patterns associated
with a positive or negative response to a particular treatment. Protein levels in the body
can indicate the presence or progression of a disease. By analyzing these biomarkers,
physicians can tailor treatment more precisely to each patient. This means that therapeutic
approaches can be customized based on the specific molecular and genetic characteristics
of each individual, increasing the likelihood of a successful outcome [37–39].

Big data and artificial intelligence (AI) are becoming increasingly crucial in the anal-
ysis and interpretation of biomarkers within the realm of precision medicine. With the
advancement of technology, there has been an explosion in the generation and collection
of large-scale health data, leading to the formation of large datasets, known as big data.
These datasets include genetic information, clinical records, medical images, laboratory
test results, and much more. AI, in combination with big data analytics, has the potential
to extract valuable information and hidden patterns from these large datasets [34]. Ma-
chine learning algorithms and artificial intelligence (AI) have the capability to process
and analyze vast amounts of data in an efficient and accurate manner. They can uncover
hidden correlations and patterns that may not be readily apparent to humans. This allows
for the discovery of new relationships between biomarkers and diseases, as well as the
identification of patterns in response to specific treatments. In the context of biomarkers,
the application of big data and AI can significantly enhance predictive and diagnostic
capabilities. Machine learning models can analyze multiple biomarkers simultaneously
and generate predictive profiles that help identify diseases at early stages or predict the
likelihood of a positive or negative response to a specific treatment. For example, in the
field of cancer, AI algorithms can analyze genomic and molecular data from patients to
identify patterns that indicate tumor aggressiveness or the probability of recurrence [40].

Furthermore, AI can also help improve the accuracy and efficiency in the interpretation
of biomarkers. AI algorithms have the ability to analyze medical images, including CT
scans and MRI, to identify distinctive characteristics that could be linked to particular
diseases or prognoses. This can assist doctors in making more informed and precise
decisions regarding diagnosis and treatment [34,35,41].
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3.2. Types of Biomarkers

Biomarkers are any measurable characteristic that indicates the presence or absence
of a disease or the biological response to a stimulus, and they are used to assess health
status, diagnose diseases, track disease progression, and evaluate treatment response and
other aspects related to health [42,43]. The FDA-NIH Biomarker Working Group has
established seven categories to classify biomarkers according to their clinical application:
susceptibility and risk, diagnosis, monitoring, prognosis, predictability, pharmacodynamics,
and treatment response and safety. In addition to this clinical classification, biomarkers can
also be classified based on their bodily source and type of measurement [44,45]. Here are
some common types of classification for biomarkers [44–47]:

According to their biochemical nature:

• Genetic biomarkers: include variations in DNA, such as genetic mutations or single
nucleotide polymorphisms (SNPs).

• Protein biomarkers: refer to specific proteins or protein profiles that can be measured
in biological samples, such as blood or urine.

• Lipid biomarkers: are related to the lipids or fats present in the body and may be
associated with cardiovascular or metabolic diseases.

• Metabolic biomarkers: refer to products or intermediates of metabolism that can be
measured in biological samples.

According to their clinical application:

• Diagnostic biomarkers: used to confirm or rule out the presence of a specific disease
or medical condition.

• Prognostic biomarkers: used to predict the progression of a disease or response
to treatment.

• Treatment response biomarkers: used to evaluate the effectiveness of a specific treat-
ment and adjust its dosage or duration.

• Disease progression biomarkers: used to monitor the advancement of a disease and
evaluate its severity.

• Predictive biomarkers: used to predict the likelihood of a patient’s response to a
specific treatment before it is administered. These biomarkers are based on biological
characteristics or signals that indicate the probability of a patient responding favorably
to a particular treatment.

According to their location:

• Blood biomarkers: found in the blood and easily accessible through blood analysis.
• Urinary biomarkers: found in urine and used to assess renal function and detect

urinary tract diseases.
• Tissue biomarkers: found in specific tissues and may require biopsies or imaging

studies for their retrieval.

3.3. NSCLC Cancer Biomarkers

Biomarkers are of utmost importance in lung cancer, serving critical roles in the
diagnosis, prognosis stratification, and selection of treatment options. Given the varied
nature and complexity of this disease, biomarkers are instrumental in identifying distinct
subtypes of lung cancer, guiding the selection of targeted therapies, and assessing the
effectiveness of treatments [48,49].

One of the extensively studied and utilized biomarkers in lung cancer is EGFR. Mu-
tations in the EGFR gene are prevalent in specific subtypes of NSCLC and can serve as
predictors for the response to EGFR tyrosine kinase inhibitors such as erlotinib or gefi-
tinib. Molecular tests, such as polymerase chain reaction (PCR) or genetic sequencing,
are commonly employed to detect these mutations. Another significant biomarker is the
ALK gene (anaplastic lymphoma kinase). ALK gene fusions are observed in a subset
of non-small cell lung cancers and are associated with a heightened response to ALK
inhibitors such as crizotinib, ceritinib, and alectinib. Molecular testing is also used to
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detect ALK gene fusions, similar to EGFR [9,14]. Moreover, to these biomarkers, other
biomarkers are being investigated in NSCLC, such as mutations in the KRAS gene, fusion
of the RET gene, and expression of ROS1 and BRAF, among others. These biomarkers can
provide additional information about the molecular characteristics and treatment response
in NSCLC [27,50,51].

Besides genetic biomarkers, protein biomarkers also hold substantial importance in
lung cancer. One such example is the assessment of programmed death-ligand 1 (PD-L1)
expression in tumor cells, which serves as a biomarker to identify patients who might
respond favorably to PD-1/PD-L1 inhibitor immunotherapy. In addition to biomarkers
employed for treatment guidance, ongoing research focuses on identifying biomarkers for
early diagnosis and detecting cancer recurrence in lung cancer patients. For instance, analy-
sis of microRNAs (small non-coding ribonucleic acids) in tissue or bodily fluid samples can
provide information about the presence and stage of lung cancer [32,52].

Diagnostic biomarkers by immunohistochemistry. These protein biomarkers, such as
TTF-1 (Thyroid Transcription Factor-1) and p40, are directly analyzed in tissue biopsies and
exhibit high specificity. TTF-1, encoded by the NKX2-1 gene, is involved in regulating the
transcription of specific genes in the thyroid, lung, and diencephalon. Its presence provides
valuable information about the origin of the tumor. On the other hand, p40 is a protein
predominantly expressed in squamous cell carcinoma of the lung. When co-expressed, it
allows for the differentiation between squamous cell carcinoma and adenocarcinoma, par-
ticularly in cases where there is poor differentiation in the initial pathological diagnosis [53].
A slightly less specific marker is Napsin A, which is a protein encoded by the NAPSA gene
and is useful for distinguishing adenocarcinoma from other lung cancers. For example, a
tumor that is negative for TTF-1/p40 is unlikely to be a NSCLC [42].

Circulating Biomarkers. They are easy to measure, but studies have not shown
high specificity, but rather sensitivity, and this has increased with the discovery of new
protein and miRNA-type biomarkers (non-coding RNA, single-stranded molecules of 20
to 25 nucleotides in length, which can alter gene expression after transcription and play
an important role in various biological functions and are highly stable). The latter have
high potential as new specific and easily measurable biomarkers in liquid biopsy [54].
Among these, miR-205 and miR-375 have been identified as specific for squamous cell
carcinoma and adenocarcinoma, respectively, and miR-93, miR-221, and miR-100 have
been identified as potential biomarkers in adenocarcinoma [55]. A review has shown that
miR-106a, miR-125a-5p, miR-129-3p, miR-205, miR-21, miR-29b, miR-375, and miR-7 may
contribute to the differentiation between small cell carcinoma and non-small cell carcinoma.
There is also clear and specific evidence for miRNAs in NSCLC, such as miR-19b-3p, which
is related to the regulation of the HOXA9 gene (down-regulation), implicated in a negative
prognosis [55], and miR-199a-5p, which is related to the regulation of the SLC2A1 gene
(down-regulation) [56].

Predictive Biomarkers. These biomarkers are primarily associated with treatment
considerations. Prominent organizations such as the College of American Pathologists
(CAP), the International Association for the Study of Lung Cancer (IASLC), the Associa-
tion for Molecular Pathology (AMP), the American Society of Clinical Oncology (ASCO),
the European Society for Medical Oncology (ESMO), and the National Comprehensive
Cancer Network (NCCN) have issued recommendations regarding the predictive value
of biomarkers for patient monitoring. According to their guidelines, a minimum panel of
biomarkers should be included, comprising EGFR, ROS1, ALK, BRAF, NTRK, MET, and
RET, to assess the suitability of targeted therapies [55,57,58].

Predictive Biomarkers for Immunotherapy. Due to the evasion of the immune system
by cancer cells, one of the primary mechanisms involves immune inhibitory pathways,
particularly immune checkpoint proteins present on immune cells’ surface. An example of
such a protein is PD-L1 (Programmed Death Ligand 1) [52], which acts as a receptor on
macrophages, antigen-presenting cells, B cells, T lymphocytes, and tumor cells, particularly
in lung cancer. The upregulation of PD-L1 receptor expression deceives the immune system,
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leading to the inhibition of the inflammatory response. Consequently, PD-L1 serves as a
preferred biomarker for immunotherapy treatment [50].

Biomarkers for Targeted Therapy. Mutations affecting the KRAS gene, particularly
G12C, are implicated in the proliferation of cells and the inhibition of apoptosis in NSCLC,
primarily in adenocarcinoma [59]. Another biomarker of interest is Fibroblast Growth
Factor Receptor 1 (FGFR1), a tyrosine kinase that regulates various cellular processes such
as proliferation, differentiation, migration, and survival. Mutation in FGFR1 contributes to
the promotion of mesenchymal-predominant NSCLC [60]. Additionally, Discoidin domain
Receptor 2 (DDR2), a tyrosine kinase, is considered as a biomarker, as its mutation promotes
tumor growth, particularly in 30% of squamous NSCLC [61]. Furthermore, the human
epidermal growth factor receptor 2 (HER2), involved in activating cell proliferation path-
ways such as PI3K-AKT and MEK-ERK, is found in 10 to 30% of NSCLC cases, especially
in adenocarcinoma [62].

Exosomal PD-L1 has emerged as a significant biomarker in the field of NSCLC im-
munotherapy monitoring. It has proven to be instrumental in advancing the effectiveness
of immunotherapy by serving as an indicator of the tumor cells’ adaptive response to
T cells. By analyzing exosomal PD-L1, clinicians can stratify patients into responders
and non-responders, aiding in treatment decision-making and prognosis assessment [63].
N6-methyladenine (m6A) is the main epigenetic RNA modification in eukaryotes, and
there is significant evidence that m6A-associated proteins act as oncogenes and tumor sup-
pressors, being abnormally expressed in NSCLC cell lines and tissues [64]. SFTA2, whose
down-regulation indicates a poor prognosis in NSCLC patients, is related to increased
inflammatory cells in some parts of the EMT, tumor heterogeneity, treatment efficiency, and
the immune microenvironment of NSCLC [65]. Table 2 provides information on various
biomarkers analyzed in NSCLC.

Table 2. Biomarkers in NSCLC.

Biomarkers in Nsclc

Diagnostic Biomarkers in NSCLC

Immunohistochemistry Circulating tumor proteins
TTF-1 (Thyroid Transcription Factor-1) Cytokeratin 19 fragment (CYFRA 21-1)

p40 Carcinoembryonic Antigen (CEA)
Napsin A Squamous cell carcinoma antigen (SCCA)

Carbohydrate antigen 125 (CA125)

microRNA (miRNA)

miR-205 miR-106a miR-29b
miR-375 miR-125a-5p miR-375
miR-93 miR-129-3p miR-7

miR-221 miR-205 miR-19b-3p
miR-100 miR-21 miR-199a-5p

Predictive Biomarkers in NSCLC

Targeted Therapy For Inmunotherapy Novel predictive biomarkers

Biomarker Therapy Biomarker Antibody Targered therapy Inmunotherapy

EGFR Afatinib PD-1 Atezolizumab KRAS Exosome PD-L1

Erlotinib Pembrolizumab FGFR1 m6A
methylation

Gefitinib Durvalumab DDR2 SFTA2
Osimertinib Nivolumab HER2 TIL’s

TIM-3
ROS1 Entrectinib TMB

Ceritinib
Crizotinib

ALK Alectinib
Crizotinib
Lorlatinib

MET Tepotinib
Capmatinib

RET Selpercatinib
Praseltinib

BRAF Trametinib
Dabrafenib+

NTRK (1,2,3) Larotrectinib
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3.4. Novel NSCLC Cancer Biomarkers

The identification of new biomarkers in the field of NSCLC has revolutionized the
classification of the disease, leading to more accurate and personalized treatment strategies.
In the past, NSCLC classification relied primarily on histological subtypes such as adenocar-
cinoma, squamous cell carcinoma, and large cell carcinoma. However, this approach failed
to capture the extensive heterogeneity and molecular diversity observed in NSCLC [66,67].

The advent of genomic technologies and high-throughput screening techniques has
enabled the identification of specific genetic mutations, gene expression patterns, and
protein markers that are associated with NSCLC. These biomarkers provide insights into
the underlying molecular mechanisms driving tumor growth, metastasis, and treatment
resistance. They also hold promise for predicting patient outcomes, guiding treatment
decisions, and developing novel therapies. Furthermore, biomarkers associated with drug
resistance, tumor recurrence, and metastasis are being actively investigated. Understanding
the mechanisms underlying treatment resistance and disease progression is crucial for
developing effective therapies and improving patient outcomes. Biomarkers such as
TP53 mutations, VEGF expression, and TUBB3 levels, as mentioned earlier, have been
linked to increased resistance to therapy, poor prognosis, and aggressive tumor behavior
in NSCLC [66–70].

The incorporation of these biomarkers into clinical practice has the potential to revolu-
tionize the management of NSCLC. They offer valuable insights into early detection, risk
assessment, treatment selection, and treatment monitoring. By identifying patients who
are likely to benefit from specific therapies or require alternative approaches, biomarkers
enable a personalized and targeted approach to NSCLC management. It is important
to acknowledge that the discovery and validation of biomarkers is an ongoing process.
Rigorous research studies and clinical trials are necessary to establish their clinical useful-
ness, reliability, and reproducibility. Furthermore, the development of standardized testing
methods and guidelines for biomarker evaluation is vital to ensure accurate and consistent
outcomes across different healthcare settings and laboratories [67,71].

According to the analysis of Šutić et al. (2021), a group of predictive biomarkers is
being studied, regarding the alteration of the KRAS gene, specifically the G12C mutation.
Different drugs such as AMG510 (Sotorasib) and MRTX849 (Adagrasib) are being evaluated
in patients with previously treated or metastatic NSCLC. These clinical trials, known as
CodeBreak200 and KRYSTAL-12, aim to compare the effectiveness of these drugs with
standard chemotherapy, such as Docetaxel, in patients with NSCLC. Another promising
approach is the combination of selumetinib with docetaxel for patients with specific KRAS
mutations in codons 12 or 13. The SELECT-1 trial is investigating the efficacy of this
combination compared to placebo plus docetaxel in patients with locally advanced or
metastatic NSCLC. Abemaciclib (LY2835219) is another drug currently being evaluated
in the JUNIPER clinical trial. This study focuses on stage IV NSCLC patients who have
experienced disease progression after receiving platinum-based chemotherapy and aims
to compare the effectiveness of abemaciclib with erlotinib. Moreover, combinations of
drugs are being explored in patients with specific genetic alterations. For instance, the
NCT02743923 trial is comparing the efficacy of carboplatin, paclitaxel, and bevacizumab
with cisplatin and pemetrexed in stage IIIB or IV NSCLC patients who are eligible for
platinum-based chemotherapy and have not undergone prior chemotherapy. The amplifica-
tion of the FGFR1 gene is also being investigated, and the use of dovitinib is being studied
in previously treated advanced squamous cell NSCLC patients in the NCT01861197 trial,
specifically targeting this subgroup of patients. Additionally, several ongoing clinical trials
are evaluating the use of different drugs in patients with mutations or overexpression of
the HER2 gene. For example, the NICHE trial is investigating the effectiveness of afatinib
in previously treated advanced NSCLC patients. Another trial, DESTINYLung01, is assess-
ing the use of trastuzumab deruxtecan (DS-8201a) in patients with unresectable and/or
metastatic NSCLC with HER2 mutations or overexpression [71].
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Prognostic biomarkers play a crucial role in predicting the outcome of patients with
various diseases, including NSCLC. Table 3 provides a summary of some novel prognostic
biomarkers and their associated outcomes [71].

Table 3. Novel prognostic biomarkers for NSCLC.

Biomarker Outcome

TP53 Resistance to Therapy increased.
VEGF Poor prognosis, metastasis, tumor recurrence.
TUBB3 Poor prognosis

KIAA1522 Poor prognosis and lower response rate
nm23-H1 Low levels poor prognosis

TGF-β Poor prognosis
LAG-3 Better survival

NLR&PLR Worse overall survival
Ki-67 Poor prognosis

TP53: The TP53 gene, which acts as a critical tumor suppressor gene, has been the
subject of extensive research in different types of cancers, including NSCLC. Mutations
in the TP53 gene have been found to be associated with heightened resistance to therapy
in patients with NSCLC. Additionally, this gene plays a crucial role in regulating cellular
growth, DNA repair processes, and programmed cell death (apoptosis). Mutations in
this gene can disrupt these functions, leading to uncontrolled cell growth and impaired
response to standard therapies. NSCLC patients with TP53 mutations may have a higher
likelihood of treatment resistance and poorer treatment outcomes [68].

VEGF is a protein that plays a role in the process of angiogenesis, which is the formation
of new blood vessels. In the context of NSCLC, elevated levels of VEGF have been linked
to a less favorable prognosis. Elevated VEGF expression promotes the growth of blood
vessels that supply tumors with essential nutrients and oxygen. This process facilitates
tumor growth, metastasis, and recurrence. Measurement of this protein levels can provide
insights into the aggressiveness of the disease and help guide treatment decisions [72].

TUBB3 (Class III Beta-Tubulin): TUBB3 is a protein involved in the organization and
function of microtubules, which are essential components of the cell’s structural framework
and which are crucial for cell division and intracellular transport. Increased expression of
this protein in NSCLC tumors has been linked to a poor prognosis. Elevated levels of TUBB3
have been correlated with a more aggressive tumor phenotype and resistance to specific
chemotherapy drugs. As a result, TUBB3 holds promise as a potential biomarker for identi-
fying patients who may require alternative treatment approaches or targeted therapies [69].

KIAA1522: Elevated expression of the KIAA1522 gene has been correlated with a
poorer prognosis and lower response rates in NSCLC. KIAA1522, a gene involved in
multiple cellular processes such as cell growth and proliferation, has been associated with
a more aggressive tumor behavior and diminished responsiveness to therapy. Higher
expression levels of KIAA1522 may serve as an indicator of a tumor’s aggressive nature
and decreased sensitivity to treatment options. Monitoring this gene levels can aid in
predicting treatment response and guiding personalized treatment approaches [73].

nm23-H1: The presence of nm23-H1 has prognostic significance in NSCLC. The ex-
pression of this gene is responsible for regulating cell motility and the ability of cancer
cells to spread and form metastases. When this biomarker is expressed at low levels in
NSCLC patients, it has been associated with a less favorable prognosis. This suggests
a higher risk of disease progression and the potential for metastasis to occur. Assess-
ing nm23-H1 expression can help in determining the aggressiveness of the disease and
informing treatment decisions [74].



Cancers 2023, 15, 3474 17 of 30

4. Methodology for Discovering Novel Biomarkers
4.1. Artificial Intelligence Algorithms

Artificial intelligence algorithms have emerged as promising tools in the prediction
of biomarkers in NSCLC. These algorithms rely on the ability to process large amounts
of clinical, genetic, and molecular data to identify hidden patterns and relationships that
may be relevant for biomarker prediction [75–77]. For example, the description of disease
subgroups based on genomic and clinical data allows for accurate stratification through
the application of machine learning tools and algorithms to the datasets, representing a
revolution in disease stratification [78]. The identification of overall survival or relapse
will require a robust and accurate predictive model, which in turn requires a large volume
of complex data that need to be analyzed through machine learning algorithms to detect
patterns and relationships among variables and generate predictive models that contribute
to the outcome, such as susceptibility to a disease such NSCLC, its recurrence, and/or
morbidity-mortality [76,79,80].

Machine learning models have been used for just over 30 years in cancer detection
and diagnosis, primarily artificial neural networks and decision trees. In the past decade,
they have also been employed in cancer prediction and prognosis (cancer susceptibility,
recurrence, and survival). Some of the frequently employed supervised algorithms include
logistic regression, decision trees, support vector machines, random forest, naive Bayes, k-
nearest neighbors, and neural networks. On the other hand, unsupervised algorithms such
as K-means, Principal Component Analysis (PCA), and nonlinear dimensionality reduc-
tion algorithms such as t-SNE (t-distributed stochastic neighbor embedding) and UMAP
(Uniform Manifold approximation and projection) have been widely utilized [78,80–82]
(see Table 4).

The application of artificial intelligence algorithms in NSCLC involves several stages.
Firstly, clinical and molecular data from patients are collected, such as demographic in-
formation, medical histories, laboratory test results, and genetic profiles. These data are
used to construct datasets that contain relevant features for biomarker prediction. Next, a
suitable artificial intelligence algorithm is selected for the data analysis. This may include
supervised machine learning algorithms such as logistic regression, support vector ma-
chines (SVM), or neural networks, which can learn from labeled data and make predictions
based on those labels. Unsupervised learning algorithms such as clustering or dimension-
ality reduction can also be employed to discover patterns and clusters in the data without
the need for prior labels. Once the algorithm is selected, it is trained using the collected
dataset. During training, the algorithm analyzes the data and adjusts its parameters to
find patterns and relationships that enable the prediction of the target biomarkers. This
process may involve optimizing the algorithm’s hyperparameters and cross-validation
to evaluate its performance on independent datasets. Once the algorithm is trained, it is
used to make predictions on new data. This may involve evaluating new patients’ genetic
profiles to predict the presence or absence of specific biomarkers, estimating the risk of
disease progression or treatment response, or classifying patients into subgroups based on
gene expression [76,79,80].

Table 4. Supervised and unsupervised machine learning algorithms used in biological and life
sciences.

Algorithm Advantages Limitations References

Supervised Algorithms

Logistic Regression High power for supervised classification with
a dichotomous variable Not useful for continuous variables Yang, 2022 [83]

Support Vector
Machine

Applied in non-linear models and survival
prediction in cancer and demographic studies,
among others. Good control of overfitting and
good classifier

Complex algorithm structure. Training
is slower. Huang, 2022 [84]
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Table 4. Cont.

Algorithm Advantages Limitations References

Decision Trees Easy algorithm for data training. Used in
diagnostic protocols

Can have overfitting problems, especially
when there is a significant increase in
branching in internal nodes

Lai, 2020 [75];
Batra, 2022 [85],
2022 [7]

Random Forest
Good predictive algorithm used in medicine in
different imaging studies and recently in
biomarker studies

May have overfitting problems Batra, 2022 [85];
Handelman, 2018 [80]

Naïve Bayes
Still used in symptom characterization,
complication prediction, imaging data, and
demographic data.

As it is based on probabilistic statistical
models, it can assume that attributes are
independent. Redundant attributes can
induce classification errors

Yang, 2023 [86]

K-Nearest Neighbor

Used as a classification and prediction
algorithm in demographic models and
genomic data, among others. Tolerant to noisy
and missing data

Can assume that data attributes are equally
important and may have similar
classifications. Computationally complex
with increasing data and attributes

Podolsky, 2016 [82]

Artificial Neural
Networks

Algorithmic model capable of classifying and
predicting based on a combination of
parameters and applying it at the same time.

May have overfitting with too many
attributes, and the optimal network structure
is determined for experimentation

Lian, 2022 [87];
Civit-Masot, 2022 [88]

Unsupervised Algorithms

K-Means
Widely used algorithm in biological and
medical research and is easy to adapt and
understand. Performs well on large datasets

The number of K needs to be manually
assigned. Outliers can generate incorrect
clusters. Scaling issues with the number
of dimensions

Huang, 2021 [89]

Principal Component
Analysis (PCA)

Linear dimensionality reduction algorithm
that allows pattern observation and generates
independent variables called principal
components. Widely used in biological and
genomic data observation

Does not allow non-linear dimensionality
reduction. Lack of data standardization can
be detrimental to results and information loss

Shin, 2018 [90]

t-SNE

Algorithm that enables visualization of
high-dimensional datasets. Frequently used
with PCA in biological and life sciences,
primarily in omics analysis

Some issues when applied to non-linear
parameter dimensionality reduction

Islam, 2021 [91];
Wang, 2021 [92]

UMAP

Next-generation algorithm that, similar to
t-SNE, enables visualization of
high-dimensional datasets. Offers higher
accuracy when working with non-linear
structures. Widely used in omics analysis

Currently limited to dimensional reduction
due to its relative lack of familiarity

Islam, 2021 [91];
Nascimben, 2022 [93]

Machine learning algorithms have evolved according to the quantity and charac-
teristics of the data and the objective being pursued, aiming for improved classification,
prediction, and visualization. There are numerous publications in biological and life sci-
ences that include one or multiple algorithms in their methodology and results, indicating
an increasing possibility of obtaining easily interpretable predictive outcomes for individual
and population health [90].

4.2. Bioinformatics for Biomarkers Prediction

Bioinformatics plays a critical role in the identification and discovery of novel biomark-
ers by facilitating the efficient analysis and interpretation of vast amounts of biological
data. It enables researchers to navigate through various phases of biomarker development,
starting from the initial discovery phase, followed by analytical validation, evaluation of
clinical utility, and ultimately leading to the clinical application of biomarkers (as shown
in Figure 2). In the biomarker discovery phase, biomaterials obtained from cell assays,
animal models, and clinical trials are useful, and their information (genome, transcriptome,
epigenome, proteome, metabolome, and microbiome) is stored in databases such as the
Gene Expression Omnibus (GEO). Statistical and bioinformatic methods are developed
using this information to identify candidate biomarkers for further analytical validation
using samples from cancer patients. In the validation phase, in vitro or in vivo molecular
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tests such as qPCR or RT-PCR and immunoassays are performed to detect the biomarker.
Additionally, statistical significance tests are conducted to validate and ensure reproducibil-
ity in its detection. In the clinical evaluation phase, randomized clinical trials are conducted
to test whether these biomarkers have diagnostic, prognostic, or predictive utility. Once the
biomarker’s utility is demonstrated, it proceeds to the clinical use phase where it is com-
mercialized with its respective protocol and complies with the corresponding regulatory
processes [49,94–96].

Figure 2. Methodology for biomarker identification.

In the biomarker discovery phase, bioinformatics methods have gained relevance
due to their ability to identify differentially expressed genes, proteins, microRNAs, and
peptides in healthy and affected tissues, with the aim of characterizing which of these
expressed genes can potentially be a cancer biomarker. The storage of information in
databases such as GEO has facilitated computational bioprospecting for the discovery of
new biomarkers. Within the information provided by the GEO database, it includes the type
of data, number of samples, biological type, cell line type, and whether or not they received
treatment. Prior to data analysis, the data must be preprocessed by removing duplicate
data and normalizing using packages such as LIMMA in the R software [66,67,95,97]. In
the discovery of biomarkers, not only the analysis of differential gene expression has been
important but also the use of clustering algorithms such as K-means, co-expression analysis,
and investigation of central genes using tools such as Cytoscape (https://cytoscape.org/
accessed on 20 March 2023) or STRING (https://string-db.org/ accessed on 20 March 2023),
gene ontology analysis (DAVID: https://david.ncifcrf.gov accessed on 20 March 2023),
KEGG (https://www.genome.jp/kegg/pathway.html accessed on 20 March 2023), Gene
Ontology (GO: http://geneontology.org/ accessed on 20 March 2023), and detection of
associated metabolic pathways and co-expression/abundance of genes. The validation of
candidate biomarker genes is performed using databases such as Gene Expression Profiling
Interactive Analysis or GEPIA (http://gepia.cancer-pku.cn/ accessed on 20 March 2023),
The Cancer Genome Atlas or TCGA (https://www.cancer.gov/about-nci/organization/
ccg/research/structural-genomics/tcga accessed on 20 March 2023), and The Human
Protein Atlas or HPA (https://www.proteinatlas.org/ accessed on 20 March 2023) [94,98,99].
The evaluation of biomarkers for cancer diagnosis can also be achieved by creating a
prediction model based on the Support Vector Machine (SVM) classification algorithm,
which creates a hyperplane that differentiates between two classes (presence and absence
of the tumor) using two datasets, the training dataset and the test dataset. Survival analysis
using Kaplan–Meier is often performed to assess the prognostic capacity of each biomarker
gene and distinguish between low and high expression groups [99,100].

Below is a general methodology for discovering new biomarkers using bioinformatics
tools [79,101,102]:

https://cytoscape.org/
https://string-db.org/
https://david.ncifcrf.gov
https://www.genome.jp/kegg/pathway.html
http://geneontology.org/
http://gepia.cancer-pku.cn/
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.proteinatlas.org/


Cancers 2023, 15, 3474 20 of 30

1. Genomic data identification: The first step is to gather relevant genomic data for the
study. This may include publicly available datasets from genomic databases, such
as GenBank or the Human Genome Project Repository, or internally generated data
from experiments.

2. Data preprocessing: Once the genomic data are obtained, they need to undergo
preprocessing to ensure data quality and prepare the data for analysis. This may
involve data cleaning, normalization, and the removal of irrelevant or noisy data.

3. Gene expression analysis: One of the most common ways to discover biomarkers is
through gene expression analysis. This involves comparing gene expression levels
between different sample groups, such as samples from patients with and without a
particular disease. Techniques such as microarrays or RNA sequencing can be used to
measure gene expression.

4. Genetic variant analysis: Another strategy is to analyze genetic variants, such as
mutations or polymorphisms, and their association with a specific condition. This
can be achieved through the analysis of DNA sequencing data, where differences in
genetic sequences among different sample groups are sought.

5. Data mining and statistical analysis: Once the preprocessed data are available, data
mining and statistical analysis techniques can be applied to identify significant
patterns and associations. This may include correlation analysis, enrichment analysis
of biological pathways, gene interaction network analysis, and classification or
clustering analysis.

6. Experimental validation: Biomarkers identified through bioinformatic analysis need to
be experimentally validated to confirm their clinical relevance. This may involve the
use of molecular biology techniques such as real-time PCR, Western blotting, or im-
munohistochemistry to verify the expression of the biomarkers in additional samples.

7. Clinical application: Once validated, the new biomarkers can be used in clinical
studies to assess their utility in the diagnosis, prognosis, or treatment response of
a specific disease. They can also be valuable for developing personalized therapies
based on the presence or absence of certain biomarkers.

The following are the bioinformatics methodologies addressed in each research on
biomarker discovery for various types of cancer (Table 5).

Table 5. Methodologies using bioinformatics for the prediction of biomarkers for different types
of cancer. TCGA: The Cancer Genome Atlas, GEO: Gene Expression Omnibus, LIMMA: Linear
Models for Microarray Data, STRING: Search Tool for the Retrieval of Interacting Genes/Proteins,
GO: Gene Ontology, KEGG: Kyoto Encyclopedia of Genes and Genomes, FUNRICH: Functional
Enrichment Analysis Tool, DAVID: Database for Annotation, Visualization, and Integrated Dis-
covery, GEPIA: Gene Expression Profiling Interactive Analysis, Affy: Affymetrix, HMDD: Human
MicroRNA Disease Database, BLAST: Basic Local Alignment Search Tool, miRDB: MicroRNA Target
Prediction Database.

Author Type of
Cancer

Type of
Data Database

Data Preprocessing
and Differentially
Expressed Genes

(DEGs)

MicroRNA Target
Prediction

Protein–Protein
Interaction (PPI)

Functional
Enrichment Analysis Validation

Zhang et al.,
2020 [103] Bladder Gene TCGA-BLCA, GEO R software Not Realized CytoHubba,

STRING
GO, KEGG,

FUNRICH, DAVID
Oncomine database,

GEPIA

Sarafidis et al.,
2022 [95] Bladder Gene GEO (metanalysis)

Affy, LIMMA
R packages, outlier

removal quality
control

Not Realized STRING, Cytoscape
GO, KEGG, Disease

Ontology (DO),
Reactome

GEPIA2, TCGA, Human
Protein Atlas (proteomics,

RNA-Seq), survival
analysis

Pandi et al.,
2022 [96] Breast Gene GEO R LIMMA package,

GEO2R Not Realized STRING, Cytoscape Enrichr, KEGG TCGA-BRCA, GEPIA,
survival analysis

Xu et al.,
2022 [104] Breast Gene GEO R LIMMA package Not Realized STRING GO, KEGG GEPIA, survival analysis

Wu et al.,
2022 [105] Breast Gene TCGA R LIMMA package Not Realized STRING GO, clusterProfiler

R tpackage

Breast Cancer
Gene-Expression

Miner v4.8
(bc-GenExMiner v4.8),

survival analysis
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Table 5. Cont.

Author Type of
Cancer

Type of
Data Database

Data Preprocessing
and Differentially
Expressed Genes

(DEGs)

MicroRNA Target
Prediction

Protein–Protein
Interaction (PPI)

Functional
Enrichment Analysis Validation

Fadaka et al.,
2019 [106] Colon microRNA

miRBase
(https://www.mirbase.org/
accessed on 20 March 2023),

miR2Disease
(http://www.mir2disease.org/

accessed on 20 March 2023),
HMDD

(http://www.cuilab.cn/hmdd
accessed on 20 March 2023),

y miRCancer
(http://mircancer.ecu.edu/
accessed on 20 March 2023),

BLAST

R software

miRDB (http://www.
mirdb.org/index.html

accessed on
20 March 2023), TargetScan
(https://www.targetscan.
org/vert_72/ accessed on
20 March 2023) y mirDIP

(http://ophid.utoronto.ca/
mirDIP/index.jsp accessed

on 20 March 2023)

STRING, Cytoscape DAVID, GO, KEGG

Gene correlation (gbCRC)
at http://gbcrc.bioinfo-

minzhao.org/ accessed on
20 March 2023

Dai et al.,
2019 [107] Colon Gene GEO (systematic review) R software, BRB

array tools Not Realized STRING, Cytoscape

FunRich (http:
//www.funrich.org/

accessed on
20 March 2023),
KEGG, DAVID

The Human Protein Atlas
(HPA), The Cancer

Genome Atlas (TCGA),
survival analysis

Li et al.,
2021 [108] Colon Gene GEO R limma package Not Realized STRING, Cytoscape KEGG, DAVID TCGA, GEPIA, survival

analysis

Hammad et al.,
2021 [77] Colon Gene GEO R software Not Realized STRING, Cytoscape KEGG, DAVID GEPIA, survival analysis

(PROGgene)

Paksoy and
Hilal, 2022 [109] Colon Gene

https://figshare.com/articles/
dataset/The_microarray_dataset_
of_colon_cancer_in_csv_format_

/13658790/1 accessed on
20 March 2023

Synthetic Minority
Oversampling
Technique, or

SMOTE method

Not Realized Not Realized Not Realized Not Realized

Wang et al.,
2021 [110] Gastric Gene TCGA R limma package Not Realized Cytoscape GO, KEGG

GEPIA, survival analysis,
Jiangsu Province Yixing

People’s Hospital

Liu et al.,
2022 [111] Gastric Gene GEO, TCGA

R limma package,
clustering analysis

(Bioconductor)
Not Realized STRING, Cytoscape KEGG, DAVID TCGA, survival analysis

Lvu et al.,
2020 [97] Glioma mRNAsi TCGA EdgeR method Not Realized Not Realized GO, KEGG

Survival analysis, Chinese
Glioma Genome Atlas

(CGGA)
(http://www.cgga.org.cn/
accessed on 20 March 2023)

Liao et al.,
2020 [112] Lung mRNAsi TCGA R LIMMA package Not Realized STRING, Cytoscape GO, KEGG, DAVID GEPIA, survival analysis

Gong et al.,
2021 [49] NSCLC Gene GEO GEO2R Not Realized STRING, Cytoscape KEGG, DAVID GEPIA, survival analysis,

Oncomine database

Wu et al.,
2019 [100] Ovarian microRNA GEO (Systematic review and

Metanalysis) edgeR package of R Not Realized GO, KEGG, DAVID Survival analysis

Chen et al.,
2020 [99] Ovarian Gene GEO R software Not Realized

GeneMANIA (https:
//genemania.org/

accessed on
20 March 2023)

KEGG, DAVID Survival analysis, Dataset
GSE9891

Zahra et al.,
2022 [113] Ovarian Gene TCGA, UK BioBank, cBioPortal R software Not Realized Not Realized Not Realized Not Realized

Shi et al.,
2022 [114] Pancreas Gene GEO GEO2R STRING, Cytoscape GO, KEGG, DAVID GEPIA, Survival analysis

Yuan et al.,
2017 [98] Prostate Gene GEO Affy, LIMMA R

packages STRING, Cytoscape GO, DAVID Protein Atlas Database,
Oncomine database

Lombe et al.,
2022 [94] Prostate microRNA GEO

GENT2
(http://gent2.appex.
kr/gent2/ accessed
on 20 March 2023)

TargetScan Human,
miRDB, DIANA microT STRING, Cytoscape GO, KEGG, DAVID GEPIA, survival analysis

Author Prediction of drug-gene
interaction Evaluation of pronostic biomarkers Protein acquisition, 3D modeling and protein

visualizer In vitro Validation

Zhang et al.,
2020 [103] Not Realized Not Realized Not Realized Not Realized

Sarafidis et al.,
2022 [95] Not Realized Least Absolute Shrinkage and Selection Operator (LASSO) regression Not Realized Not Realized

Pandi et al.,
2022 [96] Not Realized Not Realized Not Realized Not Realized

Xu et al.,
2022 [104] Not Realized Not Realized Not Realized Not Realized

Wu et al.,
2022 [105] DrugBank, Cytoscape Not Realized Not Realized Not Realized

Fadaka et al.,
2019 [106] Not Realized PrognoScan (http://dna00.bio.kyutech.ac.jp/PrognoScan/ accessed on 20 March 2023) Not Realized Not Realized

Dai et al.,
2020 [107] Not Realized Not Realized Not Realized Not Realized

Li et al.,
2021 [108] Not Realized Not Realized Not Realized Not Realized

Hammad et al.,
2021 [77] Not Realized Prediction model with Support Vector Machine (SVM classifier) Not Realized Not Realized

Paksoy and
Hilal, 2022 [109] Not Realized Random Forest, Desicion Trees, Gaussian Bayes Not Realized Not Realized

https://www.mirbase.org/
http://www.mir2disease.org/
http://www.cuilab.cn/hmdd
http://mircancer.ecu.edu/
http://www.mirdb.org/index.html
http://www.mirdb.org/index.html
https://www.targetscan.org/vert_72/
https://www.targetscan.org/vert_72/
http://ophid.utoronto.ca/mirDIP/index.jsp
http://ophid.utoronto.ca/mirDIP/index.jsp
http://gbcrc.bioinfo-minzhao.org/
http://gbcrc.bioinfo-minzhao.org/
http://www.funrich.org/
http://www.funrich.org/
https://figshare.com/articles/dataset/The_microarray_dataset_of_colon_cancer_in_csv_format_/13658790/1
https://figshare.com/articles/dataset/The_microarray_dataset_of_colon_cancer_in_csv_format_/13658790/1
https://figshare.com/articles/dataset/The_microarray_dataset_of_colon_cancer_in_csv_format_/13658790/1
https://figshare.com/articles/dataset/The_microarray_dataset_of_colon_cancer_in_csv_format_/13658790/1
http://www.cgga.org.cn/
https://genemania.org/
https://genemania.org/
http://gent2.appex.kr/gent2/
http://gent2.appex.kr/gent2/
http://dna00.bio.kyutech.ac.jp/PrognoScan/
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Table 5. Cont.

Author Type of
Cancer

Type of
Data Database

Data Preprocessing
and Differentially
Expressed Genes

(DEGs)

MicroRNA Target
Prediction

Protein–Protein
Interaction (PPI)

Functional
Enrichment Analysis Validation

Wang et al.,
2021 [110] Not Realized Not Realized Not Realized

Gastric cell lines (AGS,
HGC27 and MKN45) and

normal gastric mucosa
cells, FISH, RNA

extraction, qRT-PCR

Liu et al.,
2022 [111]

Drug-Gene Interaction
database (DGIdb),

Cytoscape
Not Realized Not Realized Not Realized

Lvu et al.,
2020 [97] Not Realized Estimation of mRNAsi using one-class logistic regressionmachine learning (OCLR), Least

Absolute Shrinkage and Selection Operator (LASSO) regression Not Realized Not Realized

Liao et al.,
2020 [112] Not Realized Estimation of mRNAsi using one-class logistic regressionmachine learning (OCLR) Not Realized Not Realized

Gong et al.,
2021 [49] Not Realized Not Realized Not Realized A549 and HBE normall

cells, via qPCR

Wu et al.,
2019 [100] Not Realized Not Realized Not Realized Not Realized

Chen et al.,
2020 [99] Not Realized Not Realized Not Realized Not Realized

Zahra et al.,
2022 [113] Not Realized Not Realized

Uniprot, RSCB PDB (Protein Data Bank),Phyre2,
Swissmodel, Alpha fold, Missense3D tool,

YASARA, PYMOL, PROVEAN
Not Realized

Shi et al.,
2022 [114] Not Realized Not Realized Not Realized

Four PDA cell lines
(AsPC-1, SW1990, PANC-1,
and BxPC-3) and a normal
human pancreatic ductal

epithelial cell line (HPDE),
qRT-CPR

Yuan et al.,
2017 [98] Not Realized Not Realized Not Realized Not Realized

Lombe et al.,
2022 [94] Not Realized Not Realized Not Realized MicroRNAs via qPCR

The study by Wang et al. (2022), using the methodology presented above, discovered
the genes ABCA8, ADAMTS8, ASPA, CEP55, FHL1, PYCR1, RAMP3, and TPX2 as potential
diagnostic biomarkers for NSCLC. Therefore, these genes can be considered as predictive
biomarkers that may help predict the presence or risk of NSCLC. However, further studies
are needed to determine if these genes can also be useful as prognostic biomarkers to
predict the progression or treatment outcome of NSCLC [79].

On the other hand, the study of Lai et al. (2023) to identify key genes and potential
biomarkers for NSCLC used integrated microarray datasets and various bioinformatics
analyses. Four microarray datasets were combined, and differentially expressed genes
(DEGs) were identified. Functional clustering and pathway enrichment analyses were
performed, revealing enrichment in processes such as mitotic nuclear division and cell
cycle regulation. Protein–protein interaction (PPI) network analysis identified central node
genes, and their potential prognostic value was confirmed through survival analysis. The
markers predicted in this study are listed below [101]:

• ANLN: ANLN is observed to be overexpressed in multiple tumor types, including
pancreatic, brain, breast, and lung cancers. It is involved in cell proliferation, and its
inhibition can impede cancer cell division, migration, and invasion. Overexpression
of ANLN has been associated with lung adenocarcinoma metastasis, making it a
potential target for cancer therapy.

• CDKN3: CDKN3 exhibits overexpression in glioma and cervical cancer and is linked
to poorer survival outcomes. Its expression levels fluctuate during the cell cycle,
peaking during mitosis. High levels of mitotic CDKN3 expression are often observed
in various human cancers.

• CCNB1 and CCNB2: These genes play essential roles in meiotic resumption and
have been implicated in tumor cell division, proliferation, and tumor growth in
several cancer types, including colorectal, pancreatic, breast, hepatocellular carcinoma,
and NSCLC.

• KIF4A: KIF4A is involved in DNA replication and repair processes and promotes
cell proliferation. It is associated with tumor size in oral carcinoma and has potential
prognostic value in various solid tumors.
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• KIF11 and MELK: Both KIF11 and MELK have been identified as oncogenes in multiple
cancers and are being investigated as potential targets for cancer treatment in ongoing
phase I/II clinical trials.

• CEP55: CEP55 is considered a promising cancer vaccine candidate and serves as a
marker for predicting cancer invasion risk, metastasis, and therapeutic response.

• HMMR: HMMR is a microtubule-associated protein that regulates mitosis and meiosis.
Aberrant expression of HMMR disrupts the cell division process and is associated
with cancer risk and progression across various tumor types.

• ASPM: ASPM has emerged as a predictor of tumor aggressiveness and prognosis in
bladder, prostate, and endometrial cancers.

• CENPF: CENPF serves as a proliferative marker for malignant tumor cell growth.
• BUB1: BUB1 is a serine/threonine-protein kinase that plays a critical role in oncogene-

sis, chromosome arrangement, and spindle assembly.

5. Challenges and Future Perspectives

In the field of cancer biomarkers, a key challenge is the need for a predefined panel
of diagnostic markers that can be efficiently tested on small tumor biopsies with a quick
turnaround time. Additionally, the emergence of new biomarkers and limited awareness
of available testing options contribute to gaps in testing. Expanding the testing to include
a broader range of biomarkers is crucial for personalized treatment options and access to
clinical trials. Another challenge lies in the standardization of ctDNA analysis, a minimally
invasive approach for tumor profiling. While ctDNA analysis offers advantages such
as easier blood sampling and faster results, there are issues regarding standardization,
sensitivity, and technical aspects that need to be addressed, including the detection of gene
fusions in plasma and cost-effectiveness of the testing [115].

The current trend in lung cancer biomarker detection aims to achieve more accurate
results through less invasive procedures. However, this approach presents new challenges
for pathologists. In practical scenarios, it can be difficult to combine all the necessary
techniques when working with the biological samples received in the laboratory. The
analysis of phenotypic and genotypic characteristics in small tissue specimens becomes
particularly complex due to the tumor’s heterogeneity, especially when using multiplex
immunohistochemistry (IHC) or next-generation sequencing (NGS) approaches that involve
comprehensive panels. Tumor heterogeneity is a dynamic phenomenon that can complicate
the assessment of certain biomarkers during the follow-up of lung cancer patients. While
automated tests offer the advantage of delivering rapid results, the cost associated with
performing certain analyses systematically, such as NGS, is significant compared to the
level of care provided based on the obtained results [116].

Ensuring access to novel diagnostic tools for all patients is another significant chal-
lenge. Barriers such as limited testing capabilities, geographic limitations, and guidelines
hinder the availability of accurate and timely molecular diagnoses. Overcoming these
barriers requires regional coordination, collaboration among accredited laboratories, and
consideration of factors like turnaround time and cost-effectiveness. Reimbursement and
financial issues must also be resolved to support the adoption of innovative diagnostic
techniques. Lastly, the harmonization of molecular diagnostics in NSCLC involves collab-
oration and consensus among various stakeholders, including physicians, pathologists,
molecular laboratories, and healthcare institutions. Achieving consensus on standard
diagnostic tools and approaches, addressing performance variations, and involving the
pharmaceutical and diagnostics industry through education and pilot projects are crucial
for harmonization. This long-term process requires evidence-based innovation and shared
responsibility to improve the implementation of biomarker testing and enhance patient
outcomes in cancer management [115].

The adoption of AI in healthcare faces several challenges. The lack of transparency
in how deep learning systems generate predictions, especially weakly supervised models,
is a major concern. Techniques such as attention weights and knowledge distillation of-
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fer potential solutions by providing insights into the network’s decision-making process.
Ensuring the generalizability of AI systems to specific data types is another challenge, as
models may exhibit inflated performance for low-frequency events and unintended biases
can arise from data generation. Addressing these issues requires careful assessment of
predictions and consideration of potential sources of noise. The requirement for labeled
data is also a hurdle, but crowdsourcing annotations and utilizing self-supervised or unsu-
pervised learning techniques can alleviate the labeling burden. The specificity of domain
knowledge in healthcare further complicates AI adoption, necessitating the development
of networks that mimic medical practitioners’ expertise and incorporating multi-modal
data for more accurate predictions. Overcoming these challenges will contribute to the
successful integration of AI in healthcare, leading to improved clinical outcomes [117].

6. Conclusions

NSCLC is a significant public health concern with high mortality rates. Advances in
genomic data and bioinformatics tools have improved the possibilities for early diagnosis,
effective treatment, and follow-up through the use of biomarkers. Biomarkers combined
with clinical data can predict outcomes and guide specific treatments. However, the impact
of new biomarkers on mortality and treatment efficacy in NSCLC is challenging due to
limited evidence. The identification and application of relevant biomarkers, both new and
existing, will shape the future of precision medicine in NSCLC.

Precision medicine, which focuses on personalized and targeted treatments based on
individual genetic and molecular characteristics, has transformed the field of healthcare.
It has led to the development of targeted therapies and improved treatment outcomes
in oncology. Biomarkers play a crucial role in precision medicine by providing measur-
able indicators of disease characteristics and helping tailor treatment approaches. The
integration of big data and AI in biomarker analysis and interpretation further enhances
the potential for personalized medicine. However, challenges remain in terms of data
analysis, interpretation, and the adoption of precision medicine approaches in clinical
practice. Continued research and advancements in biomarker discovery and utilization are
essential for further improving patient outcomes in lung cancer and other diseases.
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NSCLC Non-Small Cell Lung Cancer
PET Positron Emission Tomography
GEO Gene Expression Omnibus
TCGA The Cancer Genome Atlas
MDS Multidimensional Scaling
UMAP Uniform Manifold Approximation and Projection
TP53 Tumor Protein 53
EGFR Epidermal Growth Factor Receptor
ALK Anaplastic Lymphoma Kinase
MRI Magnetic Resonance Imaging
CT Computed Tomography
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FISH Fluorescence In Situ Hybridization
PCR Polymerase Chain Reaction
IHC Immunohistochemistry
TKIs Tyrosine Kinase Inhibitors
OPN Osteopontin
PI3K/AKT/mTOR Phosphoinositide 3-kinase/Protein Kinase B/Mammalian Target of Rapamycin
RET Rearranged during Transfection
JAK-STAT Janus Kinase-Signal Transducer and Activator of Transcription
RAS/MAPK Rat Sarcoma/Mitogen-Activated Protein Kinase
MET Mesenchymal Epithelial Transition
EMT Epithelial-Mesenchymal Transition
HER2 Human Epidermal Growth Factor Receptor 2
MEK/ERK Mitogen-Activated Protein Kinase Kinase/Extracellular Signal-Regulated Kinase
BRAF B-Raf Proto-Oncogene, Serine/Threonine Kinase
ROS1 ROS Proto-Oncogene 1, Receptor Tyrosine Kinase
KRAS Kirsten Rat Sarcoma Viral Oncogene Homolog
NTRK Neurotrophic Tropomyosin Receptor Kinase
TME Tumor Microenvironment
ICBs Immune Checkpoint Inhibitors
STK11 Serine/Threonine Kinase 11
NGS Next-Generation Sequencing
TNM Tumor, Node, Metastasis
FDA U.S. Food and Drug Administration
NIH National Institutes of Health
DNA Deoxyribonucleic Acid
SNPs Single Nucleotide Polymorphisms
FDA-NIH FDA-NIH Biomarker Working Group
PD-L1 Programmed Death-Ligand 1
PD-1 Programmed Death-1
NKX2-1 Thyroid Transcription Factor-1
TTF-1 Thyroid Transcription Factor-1
NAPSA Napsin A
CYFRA 21-1 Cytokeratin 19 fragment
CEA Carcinoembryonic Antigen
SCCA Squamous cell carcinoma antigen
CA125 Carbohydrate antigen 125
miRNA microRNA
FGFR1 Fibroblast Growth Factor Receptor 1
DDR2 Discoidin domain Receptor 2
m6A N6-methyladenine
SFTA2 Surfactant Protein A2
ROS1 ROS Proto-Oncogene 1
ALK Anaplastic Lymphoma Kinase
BRAF B-Raf Proto-Oncogene
NTRK Neurotrophic Tyrosine Kinase Receptor
TIM-3 T-cell Immunoglobulin and Mucin Domain Containing-3
TMB Tumor Mutational Burden
AMP Association for Molecular Pathology
CAP College of American Pathologists
IASLC International Association for the Study of Lung Cancer
ASCO American Society of Clinical Oncology
ESMO European Society for Medical Oncology
NCCN National Comprehensive Cancer Network
VEGF Vascular Endothelial Growth Factor
TUBB3 Tubulin Beta-3
KIAA1522 KIAA1522 protein
TGF-β Transforming Growth Factor Beta
LAG-3 Lymphocyte Activation Gene-3
NLR Neutrophil-to-Lymphocyte Ratio
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PLR Platelet-to-Lymphocyte Ratio
PCA Principal Component Analysis
t-SNE t-Distributed Stochastic Neighbor Embedding
SVM Support Vector Machine
qPCR Quantitative Polymerase Chain Reaction
RT-PCR Reverse Transcription Polymerase Chain Reaction
R Programming language/software for statistical computing and graphics
LIMMA Linear Models for Microarray Data Analysis
STRING Search Tool for the Retrieval of Interacting Genes/Proteins
Cytoscape Software platform for visualizing molecular interaction networks
DAVID Database for Annotation, Visualization, and Integrated Discovery
KEGG Kyoto Encyclopedia of Genes and Genomes
GO Gene Ontology
GEPIA Gene Expression Profiling Interactive Analysis
HPA The Human Protein Atlas
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