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Simple Summary: The current study investigated the potential use of fluorometric cfDNA quantifi-
cation as a prognostic biomarker in advanced non-small cell lung cancer (NSCLC) patients treated
with an Immune Checkpoint Blockade (ICB). Results showed that a cfDNA cut-off of 0.55 ng/µL
before the ICB determines the overall survival of patients with a log rank p-value of 3.3 × 10−4. High
cfDNA concentrations identify patients with advanced NSCLC who do not benefit from ICB. The
determination of cfDNA is a simple test that could select a group of patients in whom new therapeutic
strategies are needed.

Abstract: The present study aimed to investigate the potential of basal cell-free fluorometric DNA
(cfDNA) quantification as a prognostic biomarker in advanced non-small cell lung cancer (NSCLC)
patients treated with an Immune Checkpoint Blockade (ICB). A discovery and validation cohort of 61
and 31 advanced lung cancer patients treated with ICB were included in this study. Quantification of
cfDNA concentration was performed before the start of the treatment and patients were followed up
for a median of 34 (30–40) months. The prognostic predicted value of cfDNA was evaluated based on
ROC, and Cox regression was conducted via univariate and multivariate analyses to estimate the
hazard ratio. We observed that a cfDNA cut-off of 0.55 ng/µL before the ICB determines the overall
survival of patients with a log rank p-value of 3.3 × 10−4. That represents median survivals of 3.8
vs. 17.5 months. Similar results were obtained in the validation cohort being the log rank p-value
3.8 × 10−2 with median survivals of 5.9 vs. 24.3. The univariate and multivariate analysis revealed
that the cut-off of 0.55 ng/µL before ICB treatment was an independent predictive factor and was
significantly associated with a better survival outcome. High cfDNA concentrations identify patients
with advanced NSCLC who do not benefit from the ICB. The determination of cfDNA is a simple test
that could select a group of patients in whom new therapeutic strategies are needed.
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1. Introduction

Lung cancer is one of the deadliest solid cancers worldwide [1,2]. Metastatic disease
is present in about 60% of lung cancer cases, and the 5-year survival rate is still under
10% [3]. The irruption of immunotherapy based on the Immune Checkpoint Blockade (ICB)
with anti-PD-(L)1 monoclonal antibodies was considered a revolution in the treatment
of advanced lung cancer, particularly Non-Small Cell Lung Cancer (NSCLC). Currently,
the ICB is used in combination with platinum doublet chemotherapy or in monotherapy,
mainly depending on the PD-L1 levels [4].

Despite the potential of ICB approaches to treat malignancies of bad prognoses, its
efficient use is limited because the mechanisms leading to resistance are not defined, hence
the lack of definitive predictive biomarkers. Approximately 20% of unselected patients have
long-term benefits from the ICB [5]. Indeed, a relevant number of patients that do respond
end up developing secondary resistances over time, requiring a new line of systemic
therapy which is usually less effective and has a worse toxicity profile [6]. In addition
to the subsequent impact on patient survival, the identification of resistance biomarkers
for patient selection is critical given the escalating costs of this type of treatment, which
currently ranges from 50,000 to 100,000$/quality-adjusted life year [7].

The only FDA-approved biomarker specific of the ICB specific for NSCLC, PD-L1,
is based on immunohistochemistry [8]. Its utility for selecting patients for therapy is
hampered by the unclear definition of PD-L1 positivity and at least some potential for
therapeutic response regardless of tumor PD-L1 status [9,10]. Indeed, even though there
are four IHC assays approved by the FDA, protein PD-L1 expression fails to accurately
predict the response to the ICB in some cases [11].

Other approved biomarkers useful for ICB-related therapeutic decisions are the tumor
mutational burden (TMB) [5], detected by Next Generation Sequencing (NGS) panels
such as mSK-ImPACT® and FoundationOne CDx®, and the agnostic biomarker based on
deficiencies of the Mismatch Repair system detected with PCR or Immunohistochemistry
panels such as VENTANA MMR RxDx® [12]. However, the methods that depend on
invasive solid biopsies and rely on complex technologies are far from providing accurate
and precise biomarkers that can be implemented in the Health Systems to identify patients
with a durable clinical response before or early during treatment. Therefore, developing
efficient and simpler treatment prognosis indicators is an urgent need [13].

The cell-free DNA (cfDNA) pool is fed mainly by the normal blood cells, primary
tumor, metastases, and circulating tumor cells. The release of cfDNA varies among cancer
types and its association with a high number of metastases, tumor burden, and advanced
stage is well established [14]. However, its relation to clinical benefits of therapy is not
fully explored. Among the scarce reports, a ≥20% decrease after 6 weeks of chemotherapy
relates to better outcomes in NSCLC patients (16.5 months of follow up) [15].

Compared with common methods used for profiling prognostic biomarkers in liquid
biopsy, such as droplet digital PCR (ddPCR) or NGS, the fluorometric determination of
the cfDNA concentration is a simple, easy, and scalable method to implement. Since the
ICB mechanism of action stands on the interaction between immune and tumor cells, we
hypothesized that the overall amount of cfDNA in cancer patients would exhibit a stronger
correlation with ICB effect. Therefore, in this prospective study, our aim was to evaluate the
utility of pre-treatment cfDNA concentration to predict the prognosis of NSCLC patients
that are to receive anti-PD-(L)1 antibodies.

2. Materials and Methods
2.1. Sample Processing and DNA Isolation and Quantification

The discovery (n = 61) and validation (n = 31) cohorts included advanced NSCLC pa-
tients that started treatment with the ICB at Hospitals Regional Universitario and Virgen de
la Victoria of Málaga from 2019 to 2022. They were clinically and analytically homogeneous,
showing no statistical differences for the clinical variables included in the study (Table 1).
Both cohorts were collected independently and included the basal pre-treatment liquid
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biopsy sample. During the study, a clinical and imaging evaluation were performed every
3 months and patients were followed for a median of 34 months (range 30–40). Written
informed consent was obtained from all individuals, and the study was approved by the
local ethics committee of Malaga (26 October 2017). The study was conducted following
REMARK guidelines [16] and the requirements proposed by Simon et al. [17].

Table 1. Patient characteristics and homogeneity: discovery, validation, and combined cohorts.

Variable Group Discovery
Cohort

Validation
Cohort

Combined
Cohort

p-Value
Discovery vs.
Validation

Pct NA—
Complete

Pct NA—
Discovery

Pct NA—
Validation

Sex 0.45 0 (0%) 0 (0%) 0 (0%)

Female 12 (19.67%) 9 (29.03%) 21 (22.83%)

Male 49 (80.33%) 22 (70.97%) 71 (77.17%)

Age IT Start 64.56
[43.38–84.9]

66.38
[53.29–79.12]

65.97
[43.38–84.9] 0.75 0 (0%) 0 (0%) 0 (0%)

Histology 0.79 1 (1.09%) 1 (1.64%) 0 (0%)

LUAD 39 (65.00%) 20 (64.52%) 59 (64.83%)

Others 2 (3.33%) 0 (0%) 2 (2.20%)

SCC 19 (31.67%) 11 (35.48%) 30 (32.97%)

Immunotherapy
type 0.30 0 (0%) 0 (0%) 0 (0%)

ICB-mono 23 (37.7%) 11 (35.48%) 34 (36.96%)

ICB + chemo 8 (13.11%) 8 (25.81%) 16 (17.39%)

ICB + chemo
+ Others 30 (49.18%) 12 (38.71%) 42 (45.65%)

Brain
metastasis 0.32 5 (5.43%) 3 (4.92%) 2 (6.45%)

No 48 (78.69%) 27 (87.1%) 75 (81.52%)

Yes 10 (16.39%) 2 (6.45%) 12 (13.04%)

Lymph node
metastasis 1.00 5 (5.43%) 3 (4.92%) 2 (6.45%)

No 25 (40.98%) 13 (41.94%) 38 (41.3%)

Yes 33 (54.1%) 16 (51.61%) 49 (53.26%)

Liver
metastasis 1.00 5 (5.43%) 3 (4.92%) 2 (6.45%)

No 51 (83.61%) 25 (80.65%) 76 (82.61%)

Yes 7 (11.48%) 4 (12.9%) 11 (11.96%)

Lung
metastasis 0.82 5 (5.43%) 3 (4.92%) 2 (6.45%)

No 33 (54.1%) 18 (58.06%) 51 (55.43%)

Yes 25 (40.98%) 11 (35.48%) 36 (39.13%)

Toxicity to IT
(all grades) 0.97 7 (7.61%) 6 (9.84%) 1 (3.23%)

No 24 (39.34%) 14 (45.16%) 38 (41.3%)

Yes 31 (50.82%) 16 (51.61%) 47 (51.09%)
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Table 1. Cont.

Variable Group Discovery
Cohort

Validation
Cohort

Combined
Cohort

p-Value
Discovery vs.
Validation

Pct NA—
Complete

Pct NA—
Discovery

Pct NA—
Validation

Maximum
toxicity grade 0.18 14 (15.22%) 10 (16.39%) 4 (12.9%)

0 17 (27.87%) 10 (32.26%) 27 (29.35%)

1 23 (37.7%) 6 (19.35%) 29 (31.52%)

2 4 (6.56%) 6 (19.35%) 10 (10.87%)

3 5 (8.2%) 4 (12.91%) 9 (9.80%)

4 1 (1.64%) 1 (3.23%) 2 (2.17%)

5 1 (1.64%) 0 (0%) 1 (1.09%)

PDL1 7 (7.61%) 4 (6.56%) 3 (9.68%)

<50% 44 (72.13%) 23 (74.19%) 67 (72.83%)

>50% 13 (21.31%) 5 (16.13%) 18 (19.57%)

Previous
treatment 0.73 0 (0%) 0 (0%) 0 (0%)

No 43 (70.49%) 20 (64.52%) 63 (68.48%)

Yes 18 (29.51%) 11 (35.48%) 29 (31.52%)

Progression 1.00 0 (0%) 0 (0%) 0 (0%)

No 18 (29.51%) 9 (29.03%) 27 (29.35%)

Yes 43 (70.49%) 22 (70.97%) 65 (70.65%)

State last
evaluation 1.00 0 (0%) 0 (0%) 0 (0%)

Dead 44 (72.13%) 22 (70.97%) 66 (71.74%)

Alive 17 (27.87%) 9 (29.03%) 26 (28.26%)

T1 ECOG 0.79 4 (4.35%) 1 (1.64%) 3 (9.68%)

0 15 (24.59%) 6 (19.35%) 21 (22.83%)

1 43 (70.49%) 22 (70.97%) 65 (70.65%)

2 2 (3.28%) 0 (0%) 2 (2.17%)

T1 LDH 0.89 22 (23.91%) 13 (21.31%) 9 (29.03%)

<=2x 8 (13.11%) 5 (16.13%) 13 (14.13%)

>2x 3 (4.92%) 1 (3.23%) 4 (4.35%)

Normal 37 (60.66%) 16 (51.61%) 53 (57.61%)

Just before the start of the treatment with the ICB, blood samples were collected in
CellSave tubes (Menarini Silicon Biosystem Inc., Castel Maggiore, Italy). Then, samples
were centrifuged at 1600 rpm for 10 min. The remaining plasma was centrifuged at
4750 rpm for 10 min. Plasma samples were stored at −80 ◦C in 3 mL cryovials. cfDNA was
isolated from plasma with the QIAamp Circulating Nucleic Acid kit (Qiagen, Germantown,
MD, USA, 55114) according to the manufacturer’s protocol. The quantity of cfDNA was
measured by 1X Qubit High Sensitivity (Thermo Fisher Scientific, Waltham, MA, USA).
Fragment size, quality, and quantity of random samples were evaluated by the Bioanalyzer
2100 (Agilent Technologies, Santa Clara, CA, USA).

2.2. Statistical Methods

To assess the study variables, a descriptive analysis was conducted to calculate the
median values and range (maximum and minimum values). For categorical variables,
the results are reported in terms of absolute and relative frequencies. To ensure similar
cohort distributions, the clinical variables were compared between the discovery and vali-
dation cohorts using the Fisher’s exact or Chi-squared tests for qualitative variables or the
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Wilcoxon Test for continuous variables. Sample size estimation for the discovery cohort
was of 66 patients with a confidence level of 90% and confidence interval of 10%. For the
survival analysis, we used a maximally selected log-rank statistic [18] to dichotomize con-
tinuous variables. This allows us to assess a threshold value that categorizes observations
into two groups based on an ordinal predictor variable. In this case, we dichotomized
cfDNA concentration in a 0.55 ng/µL cut-off. Survival probabilities were estimated with
the Kaplan–Meier method and survival curves were compared using the log-rank test. Uni-
variate and multivariate Cox regression models were executed to estimate the hazard ratios.
We used the Area Under the Curve (AUC) for a right-censored time-to-event estimator to
evaluate the performance of the different Cox regression models. Statistical analyses were
performed using the R software version 4.0.2.

3. Results
3.1. Cohorts Characteristics and Sample Collection

The most frequent histology was lung adenocarcinoma (LUAD) (64%), with one third
of patients affected by squamous carcinoma (SCC). Male patients were the majority in
both cohorts, and ages ranged from 43 to 85 years old. Most of the patients also presented
an acceptable performance (ECOG score < 2). Lymph node metastases were the most
frequent, followed closely by lung metastases. The treatment schema of approximately 60%
of the patients included a combination with chemotherapy, while monotherapy ICB was
administered to around one third of the patients (Table 1).

3.2. CfDNA Correlates with Response to ICB in NSCLC Patients

The high innate resistance rates associated with the ICB in NSCLC makes it urgent
to anticipate the response using a biomarker that can be assessed at the moment of the
therapeutic decision. Pursuing this goal, we evaluated the basal concentration of cfDNA
as a predictor of response to the ICB. The patients of the combined cohort were catego-
rized according to the Durable Clinical Benefit (DCB). This was defined as achieving a
partial/complete response or stable disease for more than 6 months. Interestingly, non-DCB
(NDCB) patients yielded a 38.9% higher level of basal cfDNA concentration compared with
those patients that ultimately achieved the DCB (median cfDNA concentration of 0.559 vs.
0.3415, Wilcoxon Test p-value 0.00081) (Figure 1).

3.3. Prognostic Analysis and Models

We also explored the prognosis potential of the cfDNA concentration on the therapeutic
response to anti-PD-(L)1. With the intention of establishing a quantitative cut-off value
useful to stratify the patients according to the survival risk, we conducted survival studies
in the discovery cohort and tested the obtained cut-off values in the validation cohort.
Patients with cfDNA concentrations over 0.55 ng/µL showed worse OS in both cohorts
(log-rank p-value: 3.35 × 10−3 and log-rank p-value: 3.87 × 10−2) compared with the
patients with a cfDNA concentration lower than 0.55 ng/µL (Figure 2). The median
survival for the discovery and validation cohorts for patients with a cfDNA concentration
lower than 0.55 ng/µL was of 17.5 and 24.23 months, respectively, compared to 3.8 and
5.9 months for the patients with a higher cfDNA concentration.

In order to build the prediction models, cfDNA concentration, age at treatment, Eastern
Cooperative Oncology Group score (ECOG score), Lactate dehydrogenase (LDH), and PDL1
status were selected for univariate and multivariate Cox regression analyses (Figure 3a).
cfDNA concentrations over 0.55 ng/µL were also associated with worse outcomes and were
independent predictors for OS with a hazard ratio of 3.09 CI (1.6–5.9) and p value < 0.001.
Finally, the potential prognosis value of cfDNA concentration was compared with the
established model based on the mentioned variables using the AUC estimator proposed by
Uno et al. [19]. The summary AUC output of our cfDNA model is 0.71, whereas the clinical
model has an AUC of 0.55. Moreover, the combination of the cfDNA concentration and
age at treatment, and ECOG, LDH, and PDL1 status outperforms the individual model by
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reaching a summary AUC of 0.74 (Figure 3b). At months 2 and 14, the multivariable model
reaches the maximum AUCs of 0.94 and 0.83, respectively.
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4. Discussion

The present study evidences a significant association between total plasma cfDNA
and ICB response and prognosis in NSCLC patients. The basal concentration of cfDNA is
not only disbalanced between DCB and NDCB patients but can be converted into an easily
implementable test where cfDNA values below 0.55 ng/µL predict a high probability of
long-term survival. The large follow up of this study is particularly important considering
that we are assessing the clinical benefit of immunotherapy in patients with an expected
bad prognosis as advanced NSCLC patients. Indeed, median survival in patients stratified
according to the 0.55 ng/µL threshold is of 17.5 and 24.23 months, depending on the cohort
in patients with levels lower than the cut-off value, but is strikingly shorter in those patients
with more than 0.55 ng/µL of basal cfDNA: 3.8 and 5.9 months for the discovery and
validation cohorts, respectively.

The association of circulating tumor DNA (ctDNA) with prognosis has been deeply
studied. Indeed, certain somatic tumor mutations such as T790M in EGFR detected in
blood have clinical validity for the EGFR tyrosine kinase inhibitor selection in NSCLC [20].
Moreover, in cancer patients of several types treated with the ICB, both pre-treatment
ctDNA and dynamic changes in response to treatment are prognostic biomarkers [21].
However, the utility of global cfDNA concentration in cancer therapy response is far less
explored because tumor specificity is presumed to be low.

Of the few available studies, the potential of cfDNA quantification as a prognostic
biomarker has been highlighted in metastatic melanoma, where it surrogated the tumor
burden [22], or in prostate cancer, indicating a particular capacity for identifying metastatic
castration-resistant prostate cancer. However, differences in cfDNA amounts failed to
distinguish between healthy individuals and patients with localized prostate cancer [23]. In
the specific context of ICB treatment, one study in 85 patients with hepatocellular carcinoma
(HCC) treated with the combination of PD-L1 and anti-vascular endothelial growth factor
(VEGF) inhibitors established a correlation of plasma cfDNA levels with response and
progression-free and overall survival [24]. The reports related to tumors treated with ICB
and in particular, the ones addressed in our study, NSCLC, use the quantification of hTERT
in cfDNA [25,26].

The cfDNA pool is mainly contributed by white blood cells, and to a minor extent
by solid tissues, through diverse cell death mechanisms including necrosis, secretion,
and apoptosis [27] and more recently, via NETosis [28]. In cancer patients, the cfDNA
composition is skewed towards DNA from tumor cells, from the tumor microenvironment
cells, and from cells acting in the antitumor response [27]. Interestingly, cfDNA can also
be associated to exosomes and the fraction of both external and internal exosome DNA is
enriched in tumor cells [29]. This is coherent with the fact that the range of plasma cfDNA
in cancer patients tends to be considerably higher, up to 1 ng/µL, than in healthy subjects,
where it varies between 0 to 0.01 ng/µL [30,31]. Regarding this tumor contribution to the
cfDNA pool, we can speculate that, similarly to the associations observed for ctDNA, basal
cfDNA is not only informative of the tumor burden but reflects complex processes of the
biology of the tumor such as active metabolism or aggressiveness that can influence the
therapeutic response in the metastatic NSCLC scenario [32].

Apart from the contribution of the cfDNA of tumor origin to the association of global
cfDNA with response and prognosis, immune cells’ cfDNA may be relevant for obtain-
ing such particularly high correlations to clinical outcome in the context of response to
immunotherapy. High cfDNA is an established marker of inflammation and tissue damage,
and proxy of sepsis, autoimmune diseases, and cancer [33]. Neutrophils are the most abun-
dant cell type in human peripheral blood and are crucial for triggering acute inflammatory
responses and regulating the innate and adaptive immunity of chronic inflammation [34].
Indeed, a significant fraction of the cfDNA pool includes the neutrophils’ extruded nuclear
DNA that conforms the Neutrophil Extracellular Traps (NETs), useful to entrap and kill
prokaryotic microorganisms [35]. Interestingly, the presence of NETs is negatively corre-
lated to the abundance of CD8+ T lymphocytes, which is indicative of a tolerogenic immune
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phenotype [36]. Indeed, intratumor NETs have been reported to protect malignant cells via
the adhesive mechanism that is designed to fight microbial pathogens. This mechanism
is also associated with tumor metastasis. In this context, the NETosis blockade sensitizes
tumors to the ICB combination of PD-1 and CTLA-4 inhibitors and increases the cytotoxic
immunity against subcutaneous tumors and metastases [37].

Interestingly, this immunological contribution in the predictive potential of cfDNA
in the ICB regimens is coherent with the higher informativity of cfDNA versus ctDNA
detection in the study that evaluated the ability of these molecules to predict response
and prognosis in HCC patients treated with PD-L1 + VEGF inhibitors. Only specific TERT
mutations were associated with OS, and not ctDNA presence/absence [24].

In addition to the identification and validation of a non-arbitrary threshold that pre-
dicts long-term clinical benefits to the ICB in NSCLC, we established prognosis prediction
models based on the univariate and multivariate analyses estimating the quality of the
prediction with the AUC estimator. Remarkably, the cfDNA cut-off categorization reaches
a clinically useful prediction potential, exceeding in great extent the AUC provided by a
multivariant model with age, ECOG, LDH, and PD-L1 expression. Moreover, the AUC of
this model based on clinic-pathological variables improves importantly (from 0.55 to 0.74)
if cfDNA is included in the algorithm. This is particularly relevant given that a simple and
replicable fluorometric quantification would constitute an agnostic biomarker with which
we could dispense with personalized tracked tumor markers and increase the negative
predictive value [38]. In addition, such a cost-effective and affordable approach confronts
disparity and is feasible to validate retrospectively and prospectively in clinical trials.

5. Conclusions

In summary, we are the first to report a specific basal cfDNA concentration cut-off to
stratify the patients that are to receive the ICB according to long term outcomes. Therefore,
it constitutes a non-invasive and reliable tool useful for therapy decision making and for
limiting toxicity. The addition of the basal cfDNA concentration increases the sensitivity
and specificity of the best clinical prognosis prediction model (age, ECOG, LDH, and PD-L1
expression). We anticipate a high utility potential of this novel prognosis biomarker in the
clinical management of NSCLC with ICB.
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