Table 6.
Mean 3-Fold CV | Ensemble 3-Fold CV | |||
---|---|---|---|---|
Train | Validation | Test | Test (95% CI) | |
LGG vs. HGG | ||||
Loss | 0.375 | 0.384 | 0.335 | |
Accuracy | 0.841 | 0.844 | 0.870 | 0.883 (0.845–0.920) |
AUC-ROC | 0.913 | 0.905 | 0.928 | 0.932 (0.902–0.961) |
Precision | ||||
LGG | 0.680 | 0.685 | 0.732 | 0.758 (0.708–0.808) |
HGG | 0.927 | 0.931 | 0.940 | 0.942 (0.915–0.970) |
Recall | ||||
LGG | 0.834 | 0.842 | 0.858 | 0.863 (0.822–0.903) |
HGG | 0.844 | 0.846 | 0.874 | 0.891 (0.855–0.927) |
F1 | ||||
LGG | 0.749 | 0.755 | 0.759 | 0.807 (0.761–0.853) |
HGG | 0.883 | 0.886 | 0.890 | 0.916 (0.884–0.948) |
Grade (2/3/4) | ||||
Loss | 0.722 | 0.712 | 0.617 | |
Accuracy | 0.780 | 0.798 | 0.818 | 0.824 (0.779–0.869) |
G.2 | 0.847 | 0.854 | 0.869 | 0.874 (0.835–0.913) |
G.3 | 0.852 | 0.883 | 0.885 | 0.892 (0.856–0.929) |
G.4 | 0.847 | 0.858 | 0.881 | 0.881 (0.843–0.919) |
AUC-ROC | 0.847 | 0.837 | 0.886 | 0.893 (0.857–0.930) |
G.2 | 0.915 | 0.909 | 0.920 | 0.921 (0.889–0.952) |
G.3 | 0.724 | 0.701 | 0.809 | 0.825 (0.780–0.869) |
G.4 | 0.903 | 0.901 | 0.929 | 0.935 (0.780–0.869) |
Precision | ||||
G.2 | 0.554 | 0.534 | 0.570 | 0.580 (0.522–0.638) |
G.3 | 0.241 | 0.400 | 0.381 | 0.500 (0.441–0.559) |
G.4 | 0.911 | 0.905 | 0.920 | 0.916 (0.884–0.949) |
Recall | ||||
G.2 | 0.781 | 0.837 | 0.855 | 0.870 (0.830–0.909) |
G.3 | 0.154 | 0.076 | 0.100 | 0.100 (0.065–0.135) |
G.4 | 0.875 | 0.899 | 0.916 | 0.921 (0.889–0.953) |
Specificity | ||||
G.2 | 0.877 | 0.858 | 0.872 | 0.875 (0.836–0.914) |
G.3 | 0.939 | 0.984 | 0.980 | 0.988 (0.975–1.000) |
G.4 | 0.772 | 0.749 | 0.789 | 0.776 (0.727–0.825) |
F1 | ||||
G.2 | 0.647 | 0.651 | 0.663 | 0.696 (0.642–0.750) |
G.3 | 0.187 | 0.125 | 0.122 | 0.167 (0.123–0.210) |
G.4 | 0.893 | 0.902 | 0.907 | 0.919 (0.886–0.951) |