Skip to main content
. 2023 Jun 27;15(13):3369. doi: 10.3390/cancers15133369

Table 7.

Performance evaluation of the model trained on 20 consecutive slices using tumor ROI with data augmentation.

Mean 3-Fold CV Ensemble 3-Fold CV
Train Validation Test Test (95% CI)
LGG vs. HGG
 Loss 0.354 0.336 0.371
 Accuracy 0.894 0.883 0.882 0.883 (0.845–0.920)
 AUC-ROC 0.923 0.922 0.921 0.927 (0.896–0.957)
 Precision
  LGG 0.772 0.767 0.752 0.747 (0.697–0.798)
  HGG 0.952 0.935 0.945 0.952 (0.927–0.977)
 Recall
  LGG 0.888 0.843 0.871 0.887 (0.851–0.924)
  HGG 0.896 0.898 0.886 0.881 (0.843–0.919)
 F1
  LGG 0.825 0.804 0.807 0.811 (0.766–0.857)
  HGG 0.923 0.916 0.915 0.915 (0.883–0.948)
Grade (2/3/4)
  Loss 0.696 0.590 0.603
  Accuracy 0.839 0.818 0.810 0.835 (0.791–0.878)
    G.2 0.895 0.870 0.863 0.878 (0.839–0.916)
    G.3 0.896 0.877 0.872 0.896 (0.860–0.932)
    G.4 0.889 0.888 0.884 0.896 (0.860–0.932)
  AUC-ROC 0.860 0.846 0.862 0.873 (0.834–0.912)
    G.2 0.918 0.904 0.914 0.920 (0.889–0.952)
    G.3 0.758 0.720 0.752 0.772 (0.722–0.821)
    G.4 0.908 0.915 0.921 0.927 (0.896–0.957)
  Precision
    G.2 0.617 0.576 0.560 0.583 (0.525–0.641)
    G.3 0.684 0.258 0.287 0.600 (0.542–0.658)
    G.4 0.914 0.911 0.928 0.930 (0.900–0.960)
  Recall
    G.2 0.916 0.791 0.812 0.913 (0.880–0.946)
    G.3 0.106 0.05 0.122 0.100 (0.065–0.135)
    G.4 0.936 0.938 0.911 0.926 (0.895–0.957)
  Specificity
    G.2 0.890 0.885 0.874 0.871 (0.831–0.910)
    G.3 0.995 0.978 0.963 0.992 (0.981–1.000)
    G.4 0.766 0.755 0.812 0.816 (0.770–0.861)
  F1
    G.2 0.737 0.667 0.663 0.712 (0.659–0.765)
    G.3 0.179 0.078 0.171 0.171 (0.127–0.216)
    G.4 0.925 0.924 0.919 0.928 (0.898–0.958)