Table 7.
Mean 3-Fold CV | Ensemble 3-Fold CV | |||
---|---|---|---|---|
Train | Validation | Test | Test (95% CI) | |
LGG vs. HGG | ||||
Loss | 0.354 | 0.336 | 0.371 | |
Accuracy | 0.894 | 0.883 | 0.882 | 0.883 (0.845–0.920) |
AUC-ROC | 0.923 | 0.922 | 0.921 | 0.927 (0.896–0.957) |
Precision | ||||
LGG | 0.772 | 0.767 | 0.752 | 0.747 (0.697–0.798) |
HGG | 0.952 | 0.935 | 0.945 | 0.952 (0.927–0.977) |
Recall | ||||
LGG | 0.888 | 0.843 | 0.871 | 0.887 (0.851–0.924) |
HGG | 0.896 | 0.898 | 0.886 | 0.881 (0.843–0.919) |
F1 | ||||
LGG | 0.825 | 0.804 | 0.807 | 0.811 (0.766–0.857) |
HGG | 0.923 | 0.916 | 0.915 | 0.915 (0.883–0.948) |
Grade (2/3/4) | ||||
Loss | 0.696 | 0.590 | 0.603 | |
Accuracy | 0.839 | 0.818 | 0.810 | 0.835 (0.791–0.878) |
G.2 | 0.895 | 0.870 | 0.863 | 0.878 (0.839–0.916) |
G.3 | 0.896 | 0.877 | 0.872 | 0.896 (0.860–0.932) |
G.4 | 0.889 | 0.888 | 0.884 | 0.896 (0.860–0.932) |
AUC-ROC | 0.860 | 0.846 | 0.862 | 0.873 (0.834–0.912) |
G.2 | 0.918 | 0.904 | 0.914 | 0.920 (0.889–0.952) |
G.3 | 0.758 | 0.720 | 0.752 | 0.772 (0.722–0.821) |
G.4 | 0.908 | 0.915 | 0.921 | 0.927 (0.896–0.957) |
Precision | ||||
G.2 | 0.617 | 0.576 | 0.560 | 0.583 (0.525–0.641) |
G.3 | 0.684 | 0.258 | 0.287 | 0.600 (0.542–0.658) |
G.4 | 0.914 | 0.911 | 0.928 | 0.930 (0.900–0.960) |
Recall | ||||
G.2 | 0.916 | 0.791 | 0.812 | 0.913 (0.880–0.946) |
G.3 | 0.106 | 0.05 | 0.122 | 0.100 (0.065–0.135) |
G.4 | 0.936 | 0.938 | 0.911 | 0.926 (0.895–0.957) |
Specificity | ||||
G.2 | 0.890 | 0.885 | 0.874 | 0.871 (0.831–0.910) |
G.3 | 0.995 | 0.978 | 0.963 | 0.992 (0.981–1.000) |
G.4 | 0.766 | 0.755 | 0.812 | 0.816 (0.770–0.861) |
F1 | ||||
G.2 | 0.737 | 0.667 | 0.663 | 0.712 (0.659–0.765) |
G.3 | 0.179 | 0.078 | 0.171 | 0.171 (0.127–0.216) |
G.4 | 0.925 | 0.924 | 0.919 | 0.928 (0.898–0.958) |