Skip to main content
. 2023 Jul 5;20(13):6303. doi: 10.3390/ijerph20136303

Table 2.

Results of accuracy measures with Algorithm 1 and the explanatory variables Yo(th)R(t𝓁R)T(t𝓁T)H(t𝓁H), and 1 for the intercept. We have considered ts=0ti=5tc=84 and te=108 and h=1. Refer to Table 1 for 𝓁R𝓁T and 𝓁H values. Train/test values are reported and mint{ti,,tc}μ(t). We denote by G: Gaussian, P: Poisson, id: identity, Dk: Dakar, Ft: Fatick, and Kd: Kedougou.

Model Link RMSE MASE MARE RCOR2 min RA
Dk G id 2197.29/2384.26 0.52/1.01 0.68/1.54 0.84/0.79 −517.03 28.75/20
log 2466.29/2352.81 0.6/1.38 0.85/2.66 0.79/0.78 511.81 22.5/4
P id 2245.27/2689.74 0.52/1.02 0.54/1.28 0.83/0.78 282.6 32.5/16
log 2523.01/2297.45 0.57/1.23 0.65/2.05 0.79/0.77 341.22 27.5/4
sqrt 2354.97/2303.14 0.54/1.08 0.62/1.77 0.81/0.8 279.49 30/12
NB id 2558.87/3555.94 0.58/1.28 0.5/1.24 0.82/0.76 460.63 27.5/16
log 3736.91/2424.02 0.74/1.1 0.61/1.89 0.73/0.79 471.42 28.75/8
sqrt 3409.99/3234.53 0.73/1.23 0.55/1.56 0.79/0.79 482.42 28.75/16
Ft G id 768.52/578.88 0.83/1.33 0.66/0.59 0.67/0.75 87.78 27.5/24
log 721.66/484.07 0.81/1.31 0.73/0.7 0.71/0.83 83.29 25/16
P id 772.32/543.56 0.82/1.26 0.65/0.6 0.67/0.72 99.12 31.25/24
log 741.92/491.42 0.83/1.37 0.85/0.88 0.69/0.78 215.44 25/8
sqrt 763.78/526.94 0.84/1.32 0.79/0.74 0.68/0.73 215.13 26.25/20
NB id 839.53/527.32 0.87/1.22 0.61/0.59 0.64/0.67 69.22 30/20
log 861.98/466.03 0.91/1.21 0.84/0.79 0.63/0.7 268.19 21.25/20
sqrt 942.27/504.91 0.98/1.13 0.75/0.59 0.62/0.64 180.39 22.25/28
Kd G id 1230.61/2467.27 1.01/0.92 1.19/0.63 0.62/0.62 29.85 10/16
log 1409.28/2720.94 1.27/1.01 2.18/0.73 0.51/0.56 872.92 13.75/20
P id 1241.89/2431.91 0.99/0.87 0.9/0.47 0.61/0.63 126.76 16.25/24
log 1488.67/3009.49 1.15/1.1 1.47/0.52 0.46/0.59 510.81 21.25/16
sqrt 1352.9/2523.28 1.03/0.89 1.07/0.42 0.56/0.62 324.21 18.75/12
NB id 1287.33/2346.07 1.07/0.83 0.9/0.44 0.61/0.65 −52.81 16.25/28
log 2160.53/7024.86 1.42/2.47 1.08/0.73 0.4/0.58 275.72 16.25/8
sqrt 1567.23/3037.79 1.19/1.14 0.91/0.44 0.54/0.63 132.16 20/16