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Abstract: A robust cell-free platform technology, ribosome display in combination with cloning,
expression, and purification was utilized to develop single chain Fragment variable (scFv) antibody
variants as pain therapy directed at the mouse cholecystokinin B (CCK-B) receptor. Three effective
CCK-B peptide-specific scFvs were generated through ribosomal display technology. Soluble ex-
pression and ELISA analysis showed that one antibody, scFv77-2 had the highest binding and could
be purified from bacterial cells in large quantities. Octet measurements further revealed that the
CCK-B scFv77-2 antibody had binding kinetics of KD = 1.794 × 10–8 M. Molecular modeling and
docking analyses suggested that the scFv77-2 antibody shaped a proper cavity to embed the whole
CCK-B peptide molecule and that a steady-state complex was formed relying on intermolecular
forces, including hydrogen bonding, electrostatic force, and hydrophobic interactions. Thus, the scFv
antibody can be applied for mechanistic intermolecular interactions and functional in vivo studies of
CCK-BR. The high affinity scFv77-2 antibody showed good efficacy with binding to CCK-BR tested in
a chronic pain model. In vivo studies validated the efficacy of the CCK-B receptor (CCK-BR) scFv77-2
antibody as a potential therapy for chronic trigeminal nerve injury-induced pain. Mice were given
a single dose of the CCK-B receptor (CCK-BR) scFv antibody 3 weeks after induction of a chronic
trigeminal neuropathic pain model, during the transition from acute to chronic pain. The long-term
effectiveness for the reduction of mechanical hypersensitivity was evident, persisting for months.
The anxiety- and depression-related behaviors typically accompanying persisting hypersensitivity
subsequently never developed in the mice given CCK-BR scFv. The effectiveness of the antibody is
the basis for further development of the lead CCK-BR scFv as a promising non-opioid therapeutic for
chronic pain and the long-term reduction of chronic pain- and anxiety-related behaviors.

Keywords: scFv; antibody library; ribosome display; molecular docking; chronic pain; nerve
injury; neuropathy; hypersensitivity; anxiety; depression; pain therapy; cholecystokinin B; CCK;
non-addictive pain therapy

1. Introduction

Single-chain variable antibody fragment (scFv) antibodies are opening a new era of
therapeutics, pharmacology, and pathophysiology research [1]. These technologies, used
for over a decade as a cancer therapy, are overcoming previous challenges of providing ther-
apeutic applications requiring central nervous system penetrance. Several scFvs antibodies
are being investigated as therapeutics for arthritis, Creutzfeldt–Jakob, and Huntington’s
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disease due to their solubility, small size, and ability to cross the blood–brain barrier, unlike
monoclonal antibodies (MAbs) available for migraine (Galcanezumab, Erenumab) [2–4].
These small, brain-penetrant antibodies are praised as having promising biotherapeutic
applications for both the nervous and immune systems, now recognized as interactive
in chronic pain. Despite the popularity of scFvs generated by ribosome display for im-
munotherapy, obtaining high-affinity scFvs from ribosome display libraries has remained
a challenging task [5]. Here, we have developed a rapid generation of scFv antibodies
against a small peptide fragment of the mouse receptor for neuropeptide cholecystokinin
CCK-B (CCK2) by ribosome display (Figure 1).
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Figure 1. Overview of eukaryotic ribosome display selection and CCK-BR scFv antibody generation.
Arrows indicate the stepwise progression in the generation of the scFvs.

Understanding how an antibody interacts with its targets is critical for the devel-
opment of that antibody as a therapeutic drug. Molecular docking [6,7] and molecular
dynamic (MD) simulation [8] methods provide an advantageous means for studying the
interaction between antigens and antibodies. Therefore, the present work has also studied
predictions for the interaction between scFv77-2 antibody and CCK-B peptide by molecular
docking and MD simulation.

Validation of the efficacy of the lead CCK-BR scFv antibodies for the reduction of
hypersensitivity, anxiety-, and depression-like behaviors was investigated in a chronic
trigeminal neuropathic pain model in mice persisting 3–4 months. The CCK-BR scFvs
directed to a mouse CCKBR fifteen amino acid peptide sequence were engineered with
the ultimate goal of humanizing the antibodies for use in reducing dose requirement and
tolerance of opioid analgesics for the treatment of chronic pain in patients.

CCK-BR is involved in several different aspects of the human pain experience that
are particularly prominent in females [9]. CCKBR and its neuropeptide ligand, CCK,
are widely expressed in the sensory ganglia, spinal cord, and brain pain circuitry [10,11].
Axotomy results in CCK upregulation in sensory neurons (30%) after 14 days [10]. A
4.7-fold upregulation of CCK-BR mRNA (p < 0.0001) is reported in a mouse sciatic nerve
injury model [12]. Our microarray gene chip expression profile data identified > 4-fold
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upregulation (p < 0.0001) of CCK-BR mRNA post day 3 in trigeminal ganglia (TG) compared
to naïves in our chronic trigeminal neuropathic pain model [13]. CCK-BR mRNA remained
upregulated 2.72-fold (p < 0.001) on post-day 21. In fact, CCKBR contributes to chronic
pain in a variety of animal models, with gene expression changes over time [10,14,15].

Upregulation of CCK in primary sensory neurons is associated with morphine in-
sensitivity in experimental neuropathic pain after sciatic nerve axotomy in the rat [10].
Abundant literature support is also available, casting CCK-B as a major player in anxi-
ety, and panic disorder [16–18]. Block of the CCK-B receptor provides enhancement of
morphine analgesia and opioid receptor tolerance [14,19–30]. More importantly, selective
CCKBR antagonists enhance morphine analgesia and prevent/reverse tolerance without
worsening respiratory depression in non-human primates and without side effects other
than orthostatic dizziness in placebo-controlled clinical trials. Thus, CCKBR is an ideal
candidate to impact both nociceptive and limbic components of chronic pain, identifying it
as an important therapeutic target that as yet has no beneficial therapy available.

2. Results
2.1. Anti-CCK-B scFv Antibodies Generated from Cell-Free Ribosomal Display

To determine whether the ribosomal display is suitable for the generation of antibodies
against the mouse CCK-B receptor, we immunized mice with a custom 15-amino-acid
extracellular mouse sequence CCK-B receptor peptide (Supplementary Scheme S1) [31].
CCK-B contains an extra loop of amino acids in the extracellular domain; which may
serve as a target for immunotherapy. For ribosome displayed scFv antibody libraries, the
immunoglobulin VH and VL regions joined to a 20-amino-acid flexible linker [(G4S)4]
were constructed using cDNA, synthesized from RNA extracted from spleens of five mice
(Figure 1, Supplementary Table S1), as described previously [32,33]. The amplified PCR
product was the expected size of about 750 bp [31]. The final DNA template encoding the
library flanked by a T7 site was used in an in vitro ribosome display with a single selection
step with mouse CCK-B receptor peptide (Figure 1) [32].

The ribosome-displayed scFv library was panned against CCK-BR peptide with
3 rounds of selection, PCR products cloned into pGEM-T vector DNA, VH-VL trans-
formants (up to 50 unique, diverse scFv clones) randomly selected, sequenced, and aligned
using Clustal Omega. Their amino acid sequences were deduced, and three complementary
determining regions (CDRs) and four framework (FW) regions were identified in each
of the heavy (VH) and light (VL) chain fragments. A 20-amino-acid [(G4S)4] linker was
also present. Following alignment with each other, significant diversity in the VH and
VL chains was observed, especially in the CDRs. Variability was also noted in the frame-
work regions. No two clones had identical VH or VL fragments. The aligned amino acid
sequences of 7 clones using Clustal Omega from the library are shown in Figure 2. The
framework regions (FRs) and CDRs were determined by the IMGT information system
(https://www.imgt.org/IMGT_vquest/vquest?livret=0&Option=humanIg, accessed on 18
April 2023) [34]. The length of CDR1 VH, with an average length of 9 amino acid residues,
CDR2 VH with an average length of 7 residues, CDR3 VH ranged from 9 to 13 amino acid
residues, with an average length of 11 residues, CDR1 VL ranged from 5 to 12 with an
average length of 11 residues, while 3 amino acid residues were found in CDR2 VL and
9 amino acid residues were found in CDR3 VL (Supplementary Table S2). Comparison
of the heavy chain and light chain gene families of the isolated clones with VBASE2 Ig
database (http://www.dnaplot.com, accessed on 18 April 2023) showed that VH and VL
of these clones belonged to the mouse Ig heavy family VH2 and VH15 and light family
IGKV2, IGKV8 and IGKV4/5, respectively (Supplementary Table S2).

https://www.imgt.org/IMGT_vquest/vquest?livret=0&Option=humanIg
http://www.dnaplot.com
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Figure 2. Amino acid sequences of VH-Linker-VL of CCK-B-specific mouse scFvs using Clustal
Omega. FRs and CDRs are determined by the IMGT information system. Diversity was found
predominantly in the CDR regions. A typical 20-amino-acid linker [(G4S)4] joins the VH and VL
chains. Alignments were color coded according to residue property groups. AVFPMILW—red,
DE—blue, RK—magenta, STYHCNGQ—green, others—grey. “*” (asterisk) indicates positions which
have a single, fully conserved residue; “:” (colon) indicates conservation between groups of strongly
similar properties; “.” (period) indicates conservation between groups of weakly similar properties.

The resulting isolation panel of 7 anti-CCK-B receptor recombinant antibodies was
subcloned into a pET32a expression vector, expressed and purified from E. coli cytoplasm,
and fractions were analyzed by SDS-PAGE (to confirm the integrity and purity) followed
by Western blot and SEC-UPLC (to determine the aggregates), as carried out previously to
generate scFvs against Zika virus and filovirus glycoproteins [32,33].

2.1.1. Characteristics of the Lead CCKBR scFv 77-2

The scFv77-2 exhibited a single band with an apparent molecular mass 26 kDa in gel
electrophoresis and Western blot under denaturing and reducing conditions (Figure 3),
which is within the expected size for the monomeric form of this protein. This antibody
also maintains the required monomer resolution on SEC-UPLC (Figure 3). Endotoxin level
in this protein was <1.0 EU/mg as determined by the LAL method.



Int. J. Mol. Sci. 2023, 24, 11035 5 of 25

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 5 of 25 
 

 

and scFv134-1 had the highest, second, and third highest affinity, respectively, whereas 
others had a lower affinity, reflecting that the panning was efficient in selecting clones of 
high affinity [31]. All these antibodies bound to CCK-BR peptide in a concentration-de-
pendent manner and showed high apparent affinity. Octet measurements further revealed 
that the CCK-B scFv77-2 antibody had binding kinetics of KD = 1.794 × 10–8 M (Figure 4). 
Among three high-affinity CCK-B receptor scFv antibodies (14-3, 77-2 and 134-1), scFv77-
2 was selected for testing behavioral functionality in vivo 3 weeks post nerve injury. This 
lead scFv is ~1/6 of an IgG and thus can access the central nervous system.  

 
Figure 3. Mouse scFv77-2 protein, >90% as determined by SDS-PAGE, >95% as determined by SE-
UPLC. 

 

Figure 4. scFv77-2 antibody and mouse CCK-B peptide affinity determination on the Octet RED384 
instrument. Data are shown in red, the corresponding fits in orange. 

2.1.2. Protein Surface Analysis 
Patch properties were computed from molecular surfaces projected at the water-

probe distance (1.4 Å) away from the vdW surface of the protein. The protein surface patch 
calculation determines three classes of surface patches based on the respective hydropho-
bic and hydrophilic surface potential values: hydrophobic (green), positive (blue), and 
negative (red). Input structures were refined prior to protein surface patch calculation. 
The system pH was set at the appropriate value and atom charges were assigned accord-
ing to the OPLS3.0 force field. AggScore was calculated on the set of three antibody 

KD (M) = 1.794 × 10−8, Ka (1/Ms) = 2.125 × 10−4,  

kdis (1/s) = 3.812 × 10−4, Full X2 = 0.9146, Full R2 = 0.9875 

Figure 3. Mouse scFv77-2 protein, >90% as determined by SDS-PAGE, >95% as determined
by SE-UPLC.

The scFvs were screened by ELISA for their specificity, affinity, and cross-reactivity. The
seven scFvs demonstrated differential CCK-B receptor binding capability and specificity
(did not cross-react with CCK-A and P2X4 receptor proteins) by indirect ELISA as shown
in our previous study [31]. This assay was specific for CCK-B receptor peptide, as the
negative control anti-EBOV scFv4-2 antibody did not react [33]. ScFv77-2, scFv14-3, and
scFv134-1 had the highest, second, and third highest affinity, respectively, whereas others
had a lower affinity, reflecting that the panning was efficient in selecting clones of high
affinity [31]. All these antibodies bound to CCK-BR peptide in a concentration-dependent
manner and showed high apparent affinity. Octet measurements further revealed that the
CCK-B scFv77-2 antibody had binding kinetics of KD = 1.794 × 10–8 M (Figure 4). Among
three high-affinity CCK-B receptor scFv antibodies (14-3, 77-2 and 134-1), scFv77-2 was
selected for testing behavioral functionality in vivo 3 weeks post nerve injury. This lead
scFv is ~1/6 of an IgG and thus can access the central nervous system.
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2.1.2. Protein Surface Analysis

Patch properties were computed from molecular surfaces projected at the water-probe
distance (1.4 Å) away from the vdW surface of the protein. The protein surface patch
calculation determines three classes of surface patches based on the respective hydrophobic
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and hydrophilic surface potential values: hydrophobic (green), positive (blue), and negative
(red). Input structures were refined prior to protein surface patch calculation. The system
pH was set at the appropriate value and atom charges were assigned according to the
OPLS3.0 force field. AggScore was calculated on the set of three antibody structures with
known liabilities. The score was able to predict their aggregation propensities in perfect
rank order (Figure 5). A recent publication has reported the higher aggregation potential of
antibodies discovered via phage display [35–37] and the associated negative correlation
with clinical success. It is therefore important to prioritize antibodies based not only on
affinity but also on those with low aggregation potential. Using an aggregation propensity
algorithm, we calculated an aggregation score, AggScore, for scFv14-3 and scFv77-2 had
an AggScore of 87.5 and 70.4 respectively, whereas scFv134-1 had a score of 50. Figure 5
illustrates the localization of these segments (mainly referring to hydrophobic stretches) in
the scFv amino acid sequence. Most of the aggregation hotspots were predicted near the
CDRs of VH and VL domains.
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2.1.3. Prediction of scFv77-2 Interaction with CCK-BR Peptide

In silico molecular analyses provided insights into the interaction between the scFv77-
2 and its ligand, CCK-B peptide, using for that a homology model of the scFv assembly in a
monomeric closed state. Docking studies were performed with the PIPER protein-protein
docking program in the BioLuminate product.

The analysis of the scFv77-2 monomer-CCK-B peptide putative interface and the
3D cartoon representation of the docked complex is depicted in Figure 6. The molecu-
lar dynamics simulation confirmed the mouse scFv77-2-mouse CCK-B peptide docking
prediction with sufficiently large and highly stable interface with amino acid side chain
residues of scFv forming electrostatic/aromatic/hydrophobic interactions with CCK-B
counterparts (Figure 6, Supplementary Schemes S2 and S3). The scFv77-2 module was
predicted to contact the CCK-B peptide residues Glu40, Arg45, Arg50, and Glu53 (Figure 6).
The scFv77-2 residues implicated in such binding are positioned mainly at VH-CDR1,
VH-CDR3, and VL-CDR1, as indicated in Figure 6. These results are comparable with the
two-dimensional and three-dimensional structure of scFv in complex with CCK-B peptide.
The hydrogen bond interactions of the complex were elucidated to validate the binding of
the scFv to the CCK-B peptide predicted by the docking simulation studies. The number of
hydrogen bonds between the scFv and CCK-B peptide complex (acceptor/donor) was cal-
culated and matched for identity with the hydrogen bond residues predicted in the docking
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analysis (Figure 6). The residues involved in hydrogen bonding during the post-simulation
analysis of trajectories were found as the same residues contributing to hydrogen bonding
during the docking analysis. Post-simulation MMGBSA analysis showed binding energy
of −33.74 Kcal/mol.
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complements form the interface of mouse scFv77-2 with mouse CCK-B peptide. (B) 2D summary of
the interaction analysis by molecular dynamics simulation for scFv77-2 with CCK-B peptide. LIG-
PLOT+ diagram of the residues interacting across the scFv77-2-CCK-B peptide interface. scFv77-2 and
CCK-B peptide residues are labeled brown and magenta, respectively. Hydrophobic interactions are
represented by arc with spokes and hydrogen bonds are indicated by dashed green lines. Hydrogen
bonds were detected between Glu40, Arg45, and Glu53 of CCK-B peptide and Tyr32, Arg101, and
Lys171 of the scFv entity, respectively.
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2.2. In Vivo Validation

The CCK-BR scFv was efficacy tested in the mouse FRICT-ION (foramen rotundum
inflammatory compression of the trigeminal infraorbital nerve) model of craniofacial
chronic neuropathic pain. Chronic neuropathic pain was induced in BALB/c male and
female mice (8 weeks old) using the easily induced but durable FRICT-ION model [38].
The model is described in Section 4.4.

Experimental timeline (Scheme 1) indicates baseline and weekly von Frey mechanical
sensitivity behavioral testing, surgical model induction, treatment time point, and testing of
anxiety- and depression-like behaviors in weeks 8–10. The treatment with scFv antibodies
is given either as a single intraperitoneal injection or intranasal application in week 3
unless otherwise noted. The * indicates two potential experiment endpoints for tissue
harvest. The data presented below provide evidence of efficacy for the reduction of pain-
related measures.
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Scheme 1. Experimental timeline.

2.2.1. Selection of the Lead CCK-BR scFv

Three CCKBR scFv antibodies with the highest binding affinity (77-2, 134-1, 14-3)
were given as a single dose 3 weeks post-surgical model induction to determine efficacy
(intraperitoneal, i.p., 4.0 mg/kg) as shown in our previous study [31]. The CCK-BR scFv
77-2 was chosen as the lead scFv of choice moving forward due to its best binding affinity
and optimal reduction of hypersensitivity pain-related behaviors.

2.2.2. CCK-BR scFv for Evoked Hypersensitivity in Male and Female Mice

The dose study published previously included 0.04 mg/kg, 0.4 mg/kg, 4.0 mg/kg,
and 40 mg/kg treatment 3 weeks post model induction [31]. A single CCK-BR scFv given
in week 3 provided a delayed but durable alleviation tested through 10 weeks. A Zika
scFv control was used to ensure that the positive effects were specific to the CCK-BR scFv
and not an effect of the scFv alone. For both mechanical and cold hypersensitivity the
higher doses were effective (0.4–40 mg/kg). The optimal dose selected was 4 mg/kg for
subsequent studies.

Initially given as an intraperitoneal injection, the optimal dose (4 mg/kg) was given
once in week 3 to neuropathic pain model male and female mice (n = 10, more than
one group, more than one scFv batch) (Figure 7A,B). No male versus female differences
were evident.

Intranasal administration of CCK-BR scFv was also effective. Evoked reflexive me-
chanical responses were tested at baseline and weekly after model induction. Single-dose
(4 mg/kg, n = 4/dose) administration given intranasally (i.n., 6 µL) was equally effective
compared to i.p. administration for alleviation of mechanical hypersensitivity (Figure 8A).
Trigeminal nerve endings are abundant in the nasal cavity.

Cold hypersensitivity was also reversed by the CCK-BR scFv as shown (Figure 8B).
Cold hypersensitivity was not evident in mice with FRICT-ION chronic pain model treated
with 4 mg/kg doses or greater.
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Figure 7. Intraperitoneal CCK-BR scFv attenuates mechanical hypersensitivity. The von Frey me-
chanical threshold was significantly increased toward baseline in male mice with FRICT-ION 
chronic neuropathic pain indicating reduction of pain. The 0.4, 4, and 40 mg/kg doses were effective 
in reducing mechanical hypersensitivity in a previous study [31]. In a separate study here, hyper-
sensitivity was reduced with FRICT-ION trigeminal nerve irritation in both male (A) and female (B) 
mice with CCK-BR scFv given i.p. (4 mg/kg). 

 
Figure 8. Intranasal delivery of CCK-BR scFv attenuates mechanical and cold hypersensitivity. (A) 
The von Frey mechanical threshold was decreased in FRICT-ION mice with vehicle. The mechanical 
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(4 mg/kg) tested in male mice with FRICT-ION chronic neuropathic pain. (B) FRICTION mice had 
significant reduction in reflexive withdrawal times to the cold probe applied on the snout indicating 
cold hypersensitivity. Cold hypersensitivity was not evident in mice with FRICT-ION when treated 
with 4 mg/kg CCK-BR scFv given i.n. BALB/C mice, male. 

  

Figure 7. Intraperitoneal CCK-BR scFv attenuates mechanical hypersensitivity. The von Frey me-
chanical threshold was significantly increased toward baseline in male mice with FRICT-ION chronic
neuropathic pain indicating reduction of pain. The 0.4, 4, and 40 mg/kg doses were effective in reduc-
ing mechanical hypersensitivity in a previous study [31]. In a separate study here, hypersensitivity
was reduced with FRICT-ION trigeminal nerve irritation in both male (A) and female (B) mice with
CCK-BR scFv given i.p. (4 mg/kg).
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Figure 8. Intranasal delivery of CCK-BR scFv attenuates mechanical and cold hypersensitivity.
(A) The von Frey mechanical threshold was decreased in FRICT-ION mice with vehicle. The mechani-
cal threshold was significantly increased toward baseline with intranasal delivery of the CCK-BR scFv
(4 mg/kg) tested in male mice with FRICT-ION chronic neuropathic pain. (B) FRICTION mice had
significant reduction in reflexive withdrawal times to the cold probe applied on the snout indicating
cold hypersensitivity. Cold hypersensitivity was not evident in mice with FRICT-ION when treated
with 4 mg/kg CCK-BR scFv given i.n. BALB/C mice, male.
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2.2.3. Pre-Treatment Is Not Efficacious

Effective treatments were all given post-model induction. When the 4 mg/kg dose of
CCK-BR scFv was given as a pre-treatment three weeks before induction of the FRICT-ION
model, the scFv had no effect (Figure 9A). If the pre-treatment was followed by post-
treatment at 3 weeks, effectiveness was similar to a single treatment given in week 3 alone
(Figure 9A). Thus, there was no additive effect. When five daily treatments with scFv were
given in week 3 there was no additional alleviation. Weekly (Figure 9B, green arrows and
line) and biweekly (Figure 9B, black arrows and line) treatments may be more efficacious.
In another case, there was no effect when prior treatment with the scFv was given before
the acute surgical incision pain model. (Figure 9C).

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 10 of 25 
 

 

2.2.3. Pre-Treatment Is Not Efficacious 
Effective treatments were all given post-model induction. When the 4 mg/kg dose of 

CCK-BR scFv was given as a pre-treatment three weeks before induction of the FRICT-
ION model, the scFv had no effect (Figure 9A). If the pre-treatment was followed by post-
treatment at 3 weeks, effectiveness was similar to a single treatment given in week 3 alone 
(Figure 9A). Thus, there was no additive effect. When five daily treatments with scFv were 
given in week 3 there was no additional alleviation. Weekly (Figure 9B, green arrows and 
line) and biweekly (Figure 9B, black arrows and line) treatments may be more efficacious. 
In another case, there was no effect when prior treatment with the scFv was given before 
the acute surgical incision pain model. (Figure 9C). 

 
Figure 9. Pre-Treatment is Not Efficacious. (A) Ipsilateral von Frey testing was not efficacious for 
reducing facial hypersensitivity if a pre-treatment (i.p.) with CCK-BR scFv was given once 3 weeks 
prior to FRICT-ION model induction. When a second dose was given in Week 3 after model induc-
tion, the same delayed, durable effect was seen as with the single dose at 3 weeks. (B) Multiple 4.0 
mg/kg daily doses given to mice in week 3 had the same delayed but durable effect with a single 

dose (  daily dose given for 5 days,  once a week, or   every other week). (C) If scFv is given 
once, then hindpaw surgical cut performed three weeks later, the scFv had no effect compared to 
the vehicle. 
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Mice with FRICT-ION were treated daily for 8 days with the pharmacologic compar-

ator, the selective CCKB inhibitor LY225910 (10 mg/kg) or vehicle. The FRICT-ION model 
had been induced 7 weeks prior, and thus mice were fully hypersensitive. Mechanical 
threshold was tested with von Frey filaments each morning prior to the treatment (Figure 
10). Attenuation of the hypersensitivity began by the day 5 treatment and was significantly 
persistent on days 6–8. These results found the efficacy was similar to the attenuation con-
ferred by the single dose of CCKB scFv following a similar one week recovery time course. 
This suggests the mechanism of action for the scFv is also interference with the CCKB in 
the nociceptive system. The study provides support for potential use of the scFv for dura-
ble relief of orofacial hypersensitivity. Other future studies are required to confirm this 
indication. 

Figure 9. Pre-Treatment is Not Efficacious. (A) Ipsilateral von Frey testing was not efficacious for
reducing facial hypersensitivity if a pre-treatment (i.p.) with CCK-BR scFv was given once 3 weeks
prior to FRICT-ION model induction. When a second dose was given in Week 3 after model induction,
the same delayed, durable effect was seen as with the single dose at 3 weeks. (B) Multiple 4.0 mg/kg
daily doses given to mice in week 3 had the same delayed but durable effect with a single dose (
daily dose given for 5 days, once a week, or every other week). (C) If scFv is given once, then
hindpaw surgical cut performed three weeks later, the scFv had no effect compared to the vehicle.

2.2.4. CCKB Pharmacologic Comparator LY225910

Mice with FRICT-ION were treated daily for 8 days with the pharmacologic com-
parator, the selective CCKB inhibitor LY225910 (10 mg/kg) or vehicle. The FRICT-ION
model had been induced 7 weeks prior, and thus mice were fully hypersensitive. Mechan-
ical threshold was tested with von Frey filaments each morning prior to the treatment
(Figure 10). Attenuation of the hypersensitivity began by the day 5 treatment and was
significantly persistent on days 6–8. These results found the efficacy was similar to the at-
tenuation conferred by the single dose of CCKB scFv following a similar one week recovery
time course. This suggests the mechanism of action for the scFv is also interference with
the CCKB in the nociceptive system. The study provides support for potential use of the
scFv for durable relief of orofacial hypersensitivity. Other future studies are required to
confirm this indication.
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Figure 10. Treatment of FRICT-ION mice with CCKB inhibitor LY225910. The FRICT-ION model 
was induced in mice and half were treated with CCKB inhibitor LY225910 (10 mg/kg, s.c.) daily for 
8 days (arrows). The plot shows von Frey mechanical baseline each morning prior to the daily treat-
ment. Significant attenuation of the hypersensitivity occurred in days 6–8 after CCKBR scFv treat-
ment. ANOVA *** p < 0.001 compared to untreated mice with FRICT-ION. 
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persistent hypersensitivity in FRICT-ION (or in any chronic model). Anxiety- and depres-
sion-like behaviors were tested once in chronic weeks 6–10 to avoid the practice effects 
reported with re-testing. Initially, a pilot test with 3 scFvs (14-3, 77-2, 134-1) for anxiety 
with the zero maze found only the 14-3 scFv was similar to naïve mice for distance trav-
eled (Figure 11A). Both scFvs 77-2 and 14-3 were effective in maintaining time in the open 
areas of the zero maze (Figure 11B). Dose-dependent data for the zero maze assessing 
reduction of anxiety-like behavior found all doses of CCK-BR scFv 77-2 maintained dis-
tance traveled equivalent to naïve mice (Figure 11D). For a time in the open area of the 
zero maze the 3 highest doses of 77-2 scFv were effective for reducing that anxiety measure 
(Figure 11C).  

The dose dependency data for the light/ dark anxiety test for male mice are shown in 
Figure 12, as well as data for females with the lead scFv (Figures 11–13). Untreated mice 
with FRICT-ION, mice treated with low dose 0.04 mg/kg CCK-BR scFv, and mice treated 
with the control Zika scFv all developed both anxiety and depression. The dose study in 
male mice indicated the higher doses (0.4, 4, and 40 mg/kg) did develop changes in rearing 
behaviors (Figure 12C), but not in light occupancy (Figure 12D) time measures.   

In the female mice, the single 4 mg/kg dose tested prevented the development of all 
of the anxiety-like measures, with only the vehicle-treated FRICT-ION mice displaying 
anxiety with the light/dark test (Figure 12E,F). 

Figure 10. Treatment of FRICT-ION mice with CCKB inhibitor LY225910. The FRICT-ION model
was induced in mice and half were treated with CCKB inhibitor LY225910 (10 mg/kg, s.c.) daily
for 8 days (arrows). The plot shows von Frey mechanical baseline each morning prior to the daily
treatment. Significant attenuation of the hypersensitivity occurred in days 6–8 after CCKBR scFv
treatment. ANOVA *** p < 0.001 compared to untreated mice with FRICT-ION.

2.2.5. Efficacy of CCK-BR scFv for Prevention of Pain-Related Anxiety

The lead 77-2 scFv was selected based on the pK assessment and the mechanical
hypersensitivity trials determining the optimal administered dose was 4 mg/kg. Two
different anxiety tests were employed to assess the effects of CCK-BR scFvs. CCK-BR
scFvs given in week 3 diminished the anxiety-like behaviors that develop after 4–6 weeks
of persistent hypersensitivity in FRICT-ION (or in any chronic model). Anxiety- and
depression-like behaviors were tested once in chronic weeks 6–10 to avoid the practice
effects reported with re-testing. Initially, a pilot test with 3 scFvs (14-3, 77-2, 134-1) for
anxiety with the zero maze found only the 14-3 scFv was similar to naïve mice for distance
traveled (Figure 11A). Both scFvs 77-2 and 14-3 were effective in maintaining time in the
open areas of the zero maze (Figure 11B). Dose-dependent data for the zero maze assessing
reduction of anxiety-like behavior found all doses of CCK-BR scFv 77-2 maintained distance
traveled equivalent to naïve mice (Figure 11D). For a time in the open area of the zero
maze the 3 highest doses of 77-2 scFv were effective for reducing that anxiety measure
(Figure 11C).

The dose dependency data for the light/ dark anxiety test for male mice are shown in
Figure 12, as well as data for females with the lead scFv (Figures 11–13). Untreated mice
with FRICT-ION, mice treated with low dose 0.04 mg/kg CCK-BR scFv, and mice treated
with the control Zika scFv all developed both anxiety and depression. The dose study in
male mice indicated the higher doses (0.4, 4, and 40 mg/kg) did develop changes in rearing
behaviors (Figure 12C), but not in light occupancy (Figure 12D) time measures.
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Figure 11. Efficacy for Anxiety Reduction in Mice–Zero Maze. (A,B) Comparisons for three of the 
CCK-BR scFvs were tested for effects on anxiety measures typically associated with chronic pain in 
male mice. The scFvs 14-3 and 77-2 were efficacious in improving the time spent in the open area of 
the maze compared to vehicle treated mice. All the scFvs improved the distance traveled around the 
maze. (C,D) Dose comparisons of the 77-2 CCK-BR scFv were tested for effects on anxiety measures 
typically associated with chronic pain in male mice. The 0.4, 4.0, and 40 mg/kg doses were efficacious 
in improving the time spent in the open area of the maze. There were no significant changes in 
distance traveled around the maze at any dose. (E,F) In female mice, there was improvement for 
time spent in open area. However, the distance traveled around the maze was significantly different 
from naïve and untreated mice. ANOVA * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. 

Figure 11. Efficacy for Anxiety Reduction in Mice–Zero Maze. (A,B) Comparisons for three of the
CCK-BR scFvs were tested for effects on anxiety measures typically associated with chronic pain in
male mice. The scFvs 14-3 and 77-2 were efficacious in improving the time spent in the open area of
the maze compared to vehicle treated mice. All the scFvs improved the distance traveled around the
maze. (C,D) Dose comparisons of the 77-2 CCK-BR scFv were tested for effects on anxiety measures
typically associated with chronic pain in male mice. The 0.4, 4.0, and 40 mg/kg doses were efficacious
in improving the time spent in the open area of the maze. There were no significant changes in
distance traveled around the maze at any dose. (E,F) In female mice, there was improvement for time
spent in open area. However, the distance traveled around the maze was significantly different from
naïve and untreated mice. ANOVA * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

In the female mice, the single 4 mg/kg dose tested prevented the development of all
of the anxiety-like measures, with only the vehicle-treated FRICT-ION mice displaying
anxiety with the light/dark test (Figure 12E,F).
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Figure 12. Efficacy for Anxiety Reduction in Mice—Light/Dark Chamber. (A,B) Comparisons for 
three of the CCK-BR scFvs were tested for effects on anxiety measures typically associated with 
chronic pain in male mice. scFvs 14-3 showed a significant difference in the total rearing behaviors, 
but otherwise there were no significant changes in behavior. (C,D) Dose comparisons of the CCK-
BR scFv were tested for effects on anxiety measures typically associated with chronic pain in male 
mice. The highest dose was efficacious in improving the amount of rearing behavior. There was an 
improvement with higher doses with more time spent in the light chamber. (E,F) In female mice, 
treated mice spent significantly more time in the light chamber and demonstrated rearing behaviors 
after treatment with the 4 mg/kg dose. ANOVA * p < 0.05, ** p < 0.01, *** p < 0.001. 

2.2.6. Efficacy of CCK-BR scFv for Prevention of Depression 
Dose-dependent prevention of depression-like behavioral data are provided for mice 

in Figure 13. All doses of the CCK-BR scFv 77-2 (0.04, 0.4, 4, and 40 mg/kg) prevented the 
depression-like behaviors seen in FRICT-ION model vehicle-treated mice. This included 
the decrease in the number of times groomed and the total grooming time, standard de-
pression measures. 

The equivalent data with the optimal 4.0 mg/kg dose also prevented these same de-
pression-like behaviors in female mice. 

Figure 12. Efficacy for Anxiety Reduction in Mice—Light/Dark Chamber. (A,B) Comparisons for
three of the CCK-BR scFvs were tested for effects on anxiety measures typically associated with
chronic pain in male mice. scFvs 14-3 showed a significant difference in the total rearing behaviors,
but otherwise there were no significant changes in behavior. (C,D) Dose comparisons of the CCK-BR
scFv were tested for effects on anxiety measures typically associated with chronic pain in male
mice. The highest dose was efficacious in improving the amount of rearing behavior. There was an
improvement with higher doses with more time spent in the light chamber. (E,F) In female mice,
treated mice spent significantly more time in the light chamber and demonstrated rearing behaviors
after treatment with the 4 mg/kg dose. ANOVA * p < 0.05, ** p < 0.01, *** p < 0.001.

2.2.6. Efficacy of CCK-BR scFv for Prevention of Depression

Dose-dependent prevention of depression-like behavioral data are provided for mice
in Figure 13. All doses of the CCK-BR scFv 77-2 (0.04, 0.4, 4, and 40 mg/kg) prevented the
depression-like behaviors seen in FRICT-ION model vehicle-treated mice. This included
the decrease in the number of times groomed and the total grooming time, standard
depression measures.

The equivalent data with the optimal 4.0 mg/kg dose also prevented these same
depression-like behaviors in female mice.
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Figure 13. Efficacy for Reduction of Depression Behavior in Mice—Sucrose Splash. (A,B) Compari-
sons for three of the CCK-BR scFvs were tested for effects on depression measures typically associ-
ated with chronic pain in male mice. The scFvs 14-3 improved the total grooming time, but no vari-
ant had an effect on the number of times groomed. (C,D) Dose comparisons for the 77-2 CCK-BR 
scFv were tested for effects on depression measures typically associated with chronic pain in male 
mice. The 0.4, 4.0, and 40 mg/kg doses were efficacious in improving the number of times groomed 
compared to vehicle treatment and grooming time. (E,F) In female mice, treatment with the 77-2 
scFv improved the number of times groomed and the total grooming time. * p<0.05, ** p < 0.01, *** p 
< 0.001, 2-way ANOVA. 

2.2.7. Preliminary Demonstration of Brain Penetrance 
Our lead scFv 77-2 with highest affinity for CCKBR (Kd 195 nM, 750 bp) is ~1/6 of a 

Mab, half the molecular weight, and thus was predicted to access the central nervous sys-
tem (CNS). The presence of the His-tag marker remaining in the trigeminal ganglia and 
amygdala tissue homogenate seven weeks after the single i.p. injection suggests the CCK-
BR scFv 77-2 either crosses the blood brain barrier or can be transported by the nerve 
endings of the trigeminal nerve in the medullary dorsal horn to pain pathway components 
such as the amygdala (Figure 14).  

The presence of the His-tag was shown in the medulla in a previous study [31].  

Figure 13. Efficacy for Reduction of Depression Behavior in Mice—Sucrose Splash. (A,B) Com-
parisons for three of the CCK-BR scFvs were tested for effects on depression measures typically
associated with chronic pain in male mice. The scFvs 14-3 improved the total grooming time, but
no variant had an effect on the number of times groomed. (C,D) Dose comparisons for the 77-2
CCK-BR scFv were tested for effects on depression measures typically associated with chronic pain
in male mice. The 0.4, 4.0, and 40 mg/kg doses were efficacious in improving the number of times
groomed compared to vehicle treatment and grooming time. (E,F) In female mice, treatment with the
77-2 scFv improved the number of times groomed and the total grooming time. * p<0.05, ** p < 0.01,
*** p < 0.001, 2-way ANOVA.

2.2.7. Preliminary Demonstration of Brain Penetrance

Our lead scFv 77-2 with highest affinity for CCKBR (Kd 195 nM, 750 bp) is ~1/6 of
a Mab, half the molecular weight, and thus was predicted to access the central nervous
system (CNS). The presence of the His-tag marker remaining in the trigeminal ganglia
and amygdala tissue homogenate seven weeks after the single i.p. injection suggests the
CCK-BR scFv 77-2 either crosses the blood brain barrier or can be transported by the nerve
endings of the trigeminal nerve in the medullary dorsal horn to pain pathway components
such as the amygdala (Figure 14).
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Figure 14. CCKBR scFv 77-2 Brain Penetrance. Evidence of brain penetrance by the CCK-BR scFv 
His-tag biomarker. Western blot demonstrates the presence of scFv 77-2 his-tag in TG and amygdala 
brain homogenate 10 weeks after the single i.p. injection (n = 3). ANOVA **** p < 0.0001. 
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performed whole-cell patch-clamp electrophysiology recordings of cultured DRG neu-
rons at 18–40 h post-plating from naïve mice (n = 3, Figure 15A). We established that a 1 h 
pre-treatment in vitro with 10 ug/mL murine CCKBR scFv 77-2 produced a statistically 
significant (p < 0.01, one-way ANOVA with post hoc Tukey’s multiple comparisons test) 
in firing frequency compared to its vehicle control in response to stepwise current injec-
tion as shown in Figure 15B. In contrast, a 1 h pre-treatment with LY225910 (100 nM) did 
not produce a statistically significant reduction compared to its vehicle control, although 
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Figure 14. CCKBR scFv 77-2 Brain Penetrance. Evidence of brain penetrance by the CCK-BR scFv
His-tag biomarker. Western blot demonstrates the presence of scFv 77-2 his-tag in TG and amygdala
brain homogenate 10 weeks after the single i.p. injection (n = 3). ANOVA **** p < 0.0001.

The presence of the His-tag was shown in the medulla in a previous study [31].

2.2.8. Murine CCKBR scFv 77-2 Reduces DRG Neuron Excitability

To determine the effect of murine CCKBR scFv 77-2 on DRG neuron excitability, we
performed whole-cell patch-clamp electrophysiology recordings of cultured DRG neurons
at 18–40 h post-plating from naïve mice (n = 3, Figure 15A). We established that a 1 h
pre-treatment in vitro with 10 ug/mL murine CCKBR scFv 77-2 produced a statistically
significant (p < 0.01, one-way ANOVA with post hoc Tukey’s multiple comparisons test) in
firing frequency compared to its vehicle control in response to stepwise current injection
as shown in Figure 15B. In contrast, a 1 h pre-treatment with LY225910 (100 nM) did not
produce a statistically significant reduction compared to its vehicle control, although firing
frequency was reduced. There were no statistically significant differences observed in
intrinsic electrophysiological properties (input resistance, resting membrane potential,
or rheobase).
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lowing treatment with CCKBR scFv 77-2 (10 ug/mL) or CCKBR antagonist LY225910 (100 nM) com-
pared to vehicle controls (water for scFv and DMSO for LY225910. Only multi-firing neurons could 
be used for this analysis n = 6 Vehicle (water), n = 6 scFv 77-2, n = 8 Vehicle (DMSO) and n = 6 
LY225910. Inset: Comparison of data from plot. (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. 
One-way ANOVA with post hoc Tukey’s multiple comparisons test). (C) No statistically significant 
differences in rheobase, resting membrane potential or input resistance was observed between con-
ditions. Total n = 8 Vehicle (water), n = 7 scFv 77-2, n = 8 Vehicle (DMSO) and n = 9 LY225910.  
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Seven scFvs targeting CCK-BR generated using the robust platform technology were 
described here. This was accomplished with cell-free ribosome display in combination 
with cloning, expression, and purification of an anti-CCK-B scFv. Selection of a lead scFv 
antibody from the three with highest binding affinity allowed in vivo efficacy validation 
studies. Reduction of ongoing persisting pain was demonstrated with the lead CCK-BR 
scFv in in vivo studies with an orofacial neuropathic pain model. 

Aggregation is a common problem affecting biopharmaceutical development that 
can have a significant effect on the quality of the product, as well as the safety of patients, 
particularly because of the increased risk of immune reactions [39]. The aggregation of the 
CCK-B scFv antibodies potentially reflects aspects related to the employed protein expres-
sion and refolding strategy. Large-scale production of scFvs in bacterial expression sys-
tems, although practical and time-efficient, often leads to a product containing aggregates 
[40]. This may be significantly boosted by the particular propensity of the designed scFv 
to aggregate. Our in silico analyses showed some aggregation hotspots within the lead 
CCK-B scFvs amino acid sequences, but also those lead scFvs with low aggregation po-
tential. Furthermore, our computational approaches are suitable during early drug devel-
opment to select lead scFv molecules with reduced risk of aggregation and optimal devel-
opability properties.  

Our exploratory in-silico analyses additionally provide mechanistic insights into the 
antigen–antibody interaction. scFv77-2 was predicted to contact non-linear stretches 
within the CCK-B surface. In silico analysis of the putative scFv-CCK-B interface revealed 
that most of the antibody determinants involved in antigen recognition are located within 
the heavy-chain CDR1, heavy-chain CDR3, and the light-chain CDR1, whose residues are 
less prone to aggregation. 

Figure 15. Effect of scFv 77-2 on DRG neuron excitability. (A) Representative current clamp recording
of a DRG neuron showing response to 10 pA stepwise current injection from rheobase. (B) Number
of action potentials (APs) vs stepwise current injection (above rheobase) of DRG neurons following
treatment with CCKBR scFv 77-2 (10 ug/mL) or CCKBR antagonist LY225910 (100 nM) compared to
vehicle controls (water for scFv and DMSO for LY225910. Only multi-firing neurons could be used
for this analysis n = 6 Vehicle (water), n = 6 scFv 77-2, n = 8 Vehicle (DMSO) and n = 6 LY225910.
Inset: Comparison of data from plot. (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. One-way
ANOVA with post hoc Tukey’s multiple comparisons test). (C) No statistically significant differences
in rheobase, resting membrane potential or input resistance was observed between conditions. Total
n = 8 Vehicle (water), n = 7 scFv 77-2, n = 8 Vehicle (DMSO) and n = 9 LY225910.

3. Discussion
3.1. Generation of CCKBR scFv

Seven scFvs targeting CCK-BR generated using the robust platform technology were
described here. This was accomplished with cell-free ribosome display in combination
with cloning, expression, and purification of an anti-CCK-B scFv. Selection of a lead scFv
antibody from the three with highest binding affinity allowed in vivo efficacy validation
studies. Reduction of ongoing persisting pain was demonstrated with the lead CCK-BR
scFv in in vivo studies with an orofacial neuropathic pain model.

Aggregation is a common problem affecting biopharmaceutical development that can
have a significant effect on the quality of the product, as well as the safety of patients,
particularly because of the increased risk of immune reactions [39]. The aggregation of
the CCK-B scFv antibodies potentially reflects aspects related to the employed protein
expression and refolding strategy. Large-scale production of scFvs in bacterial expression
systems, although practical and time-efficient, often leads to a product containing aggre-
gates [40]. This may be significantly boosted by the particular propensity of the designed
scFv to aggregate. Our in silico analyses showed some aggregation hotspots within the
lead CCK-B scFvs amino acid sequences, but also those lead scFvs with low aggregation
potential. Furthermore, our computational approaches are suitable during early drug
development to select lead scFv molecules with reduced risk of aggregation and optimal
developability properties.

Our exploratory in-silico analyses additionally provide mechanistic insights into the
antigen–antibody interaction. scFv77-2 was predicted to contact non-linear stretches within
the CCK-B surface. In silico analysis of the putative scFv-CCK-B interface revealed that
most of the antibody determinants involved in antigen recognition are located within the
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heavy-chain CDR1, heavy-chain CDR3, and the light-chain CDR1, whose residues are less
prone to aggregation.

3.2. In Vivo Efficacy of CCKBR scFv

Thus, current treatment with analgesics even when combined with antidepressants
and/or anticonvulsants are generally unsatisfactory in providing pain relief [41]. As
an example of the unmet need, the current poor response rate to analgesics for painful
trigeminal neuropathy among women for providing >50% reduction of pain intensity is
only 11% [41]. The chronic pain experience exerts powerful persisting influences on the
brain, inducing permanent circuitry alterations that diminish physical and mental func-
tion. Effective non-addictive, non-opioid therapeutics for chronic orofacial pain remain a
critical need.

Previously, a CCK octopeptide antagonist (CCK-8) was reported to suppress binding
of naloxone to opioid receptors [42]. The study suggested the CCK-8 might be (1) sup-
pressing opioid binding by uncoupling opioid receptors from their G-protein effectors
pre-synaptically and (2) reducing the number and affinity of opioid receptors through a
preventative post-receptor mechanism. Further development of the CCK-BR scFv will
provide its relevance for use not only in regard to chronic neuropathic pain but its potential
adjuvant use to reduce opiate dose and tolerance. CCK-BR is involved in several differ-
ent aspects of the human pain experience that are particularly prominent in females [9].
CCKBR and its neuropeptide ligand, CCK, are widely expressed in sensory ganglia, spinal
cord, and the brain pain circuitry [10,11]. Axotomy results in CCK upregulation in sensory
neurons (30%) after 14 days [10]. A 4.7-fold upregulation of CCK-BR mRNA (p < 0.0001) is
reported in a mouse sciatic nerve injury model [12]. Our microarray gene chip expression
profile data identified >4-fold upregulation (p < 0.0001) of CCK-BR mRNA post day 3 in
trigeminal ganglia (TG) compared to naïves in our chronic trigeminal neuropathic pain
model [13]. CCK-BR mRNA remained upregulated 2.72-fold (p < 0.001) on post day 21.
In fact, CCKBR is contributory to chronic pain in a variety of animal models, with gene
expression changes over time [10,14,15].

Engineered antibodies of this type feature binding activity similar to monoclonal
antibodies but with stronger affinity and thus are suitable for in vivo models. The increased
tissue penetrability due to their smaller size provides access to the peripheral nerve ganglia
and the pain pathway sites centrally demonstrated with Western blots. More importantly,
scFv antibodies have promising biotherapeutic applications for both nervous and immune
systems, now recognized as interactive in chronic pain. The scFv antibodies have higher
affinity, stability, solubility, and binding specificity for cholecystokinin B but not A receptor.
The scFv optimized with the best binding affinity were selected for the in vivo and in vitro
efficacy demonstrated in the studies presented. It is well known that cholecystokinin B
receptor and its neuropeptide ligand are upregulated in chronic neuropathic pain and stress
models. They are abundant throughout pain pathway sites.

3.3. Efficacy of CCKBR scFv on Mechanical and Cold Hypersensitivity

The in vivo study for CCKBR scFv demonstrated efficacy for reduction of mechanical
hypersensitivity. The tests found the CCKBR scFv was equally effective in both sexes with
all doses (0.4–40 mg/kg), with no side effects, loss of weight, or change in organ weight.
Cold hypersensitivity was increased by the FRICT-ION model and diminished by CCK-BR
scFv 77-2 (0.4, 4 and 40 mg/kg). The PBS vehicle, Zika scFv, and low dose CCK-BR scFv
77-2 (0.04 mg/kg) were ineffective. Statistically significant reduction of both mechanical
and cold hypersensitivity was durable, shown here persisting 7 weeks after a single i.p. or
i.n. dose.

3.4. Efficacy for Anxiety- and Depression-like Behavior

Remarkably, the hypersensitivity persists in untreated mice with the FRICT-ION
chronic neuropathic pain model through 100 days. In addition to being a great model of
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craniofacial neuropathic pain, FRICT-ION is the only model of trigeminal neuralgia since it
is responsive to carbamazepine [43]. The reduction of hypersensitivity at 1 week prevents
the development of many of the anxiety and depression measures tested here with the zero
maze and the light/dark tests. Anxiety behaviors arise in the untreated mice with FRICT-
ION at 4–6 weeks and continue through the 10-week study. The accompanying depression,
tested with the sucrose splash test, follows a similar time course in the untreated mice
with FRICT-ION. Many of the depression-like behaviors are ameliorated by the single dose
CCK-BR scFv treatment.

The diminished hypersensitivity prevents cognitive disruption seen in the mice with
persisting hypersensitivity [31]. We have previously published results for the novel object
cognitive measure mice with FRICT-ION that were significantly affected, while those receiv-
ing scFv 77-2 had results similar to naïve mice [31]. Likewise, results for the conditioned
place preference box demonstrated that lead CCK-BR scFv 77-2 has no abuse potential [31].

The startling factor about the treatment with the small ribosome generated scFv
antibodies is that they are effective with only a single dose in this chronic craniofacial pain
model. The recovery is durable in this and the chronic spared nerve injury model [31].
The effectiveness of the small non-opiate scFv antibody targeting the cholecystokinin B
receptor (CCK-BR) alleviation of chronic orofacial hypersensitivity is sufficient to prevent
development of anxiety and depression in the chronic model.

3.5. Effect of scFv 77-2 on DRG Neuron Excitability

The direct effect of scFv 77-2 on reducing excitability of mouse trigeminal ganglia
neurons has previously been demonstrated in Westlund et al., 2021 [31]. The data generated
here agree with these findings and extend to DRG neurons as well. In addition, we show
that LY225910, a commercially available CCK2 antagonist does not produce a statistically
significant reduction in firing frequency in contrast to scFv 77-2. This is in agreement with
in vivo findings that LY225910 needs to be administered daily for at least 1 week in order to
produce an anti-allodynic effect, whereas only a single dose of scFv 77-2 is required. This
also suggests that the acute effect on peripheral sensory neurons may be the differentiating
factor that explains the mechanism of action of scFv 77-2’s relief of pain in chronic models
compared to pharmacologics such as LY225910.

These findings support the use of single-chain Fragment variable antibodies generated
with ribosome display technology as preferred non-opioid therapy to target and block the
cholecystokinin B receptor in vivo and in vitro chronic neuropathic pain models. Future
translational studies are needed to bring effective humanized scFv toward human use.

4. Materials and Methods
4.1. Generation of Cholecystokinin B (CCK-BR) scFvs

The methods of the immunization of mice, panning combinatorial antibody library
against CCK-B peptide antigen using in vitro ribosome display, construction of antibody
libraries, pull-down and selection, expression, purification, and characterization of antibod-
ies have been described in the Supplementary Section.

4.2. Protein Surface Analysis

Homology models of the scFv from amino acid sequences were generated by using
the I-TASSER (IterativeThreadingASSEmblyRefinement) [44–46]. The predicted structural
models were first refined using the protein preparation wizard [47] in Schrödinger’s Bio-
Luminate suite prior to protein surface patch calculation. The Protein Surface Analyzer
Tool, in combination with the aggregation score, AggScore, as defined by Sankar et al. [36]
and implemented in the Schrödinger’s Biologics Suite was used to calculate the aggrega-
tion propensity of the selected scFv. The method used the three-dimensional structure
to estimate the distribution of hydrophobic and electrostatic patches on the surface of
the protein.
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4.3. Computational Modeling

The advanced computational protocol used for determining interactions between
mouse scFv77-2 antibody and mouse CCK-B peptide involves several steps.

4.3.1. Homology Modeling

The I-TASSER is a bioinformatics method for predicting 3D structure model of protein
molecules from amino acid sequences [44–46,48]. The predicted structural models were
validated using high-resolution protein structure refinement (Protein refinement module,
Schrodinger-Prime module, Biologics suite, Schrodinger 2021-2) [49], ModRefiner [50], and
fragment-guided molecular dynamics (FG-MD) simulation [51]. The protein and peptide
were prepared using the Protein Preparation Wizard tool included in Maestro (Schrodinger
Suite 2022-4). Water molecules, co-factors of crystallization, and ligands were removed,
missing atoms were added, side chains and loops were filled by Prime, and hydrogens
were added with Epik module options provided in the protein preparations wizard at
physiological pH. This final structure of the protein was minimized with the OPSL-3e force
field as implemented in Maestro with an implicit solvent (water). The final minimized
structure was used for docking purposes.

4.3.2. Molecular Docking

The refined models were docked according to the Fast Fourier Transform (FFT)-
based program and PIPER [52]. The mouse scFv77-2-mouse CCK-B peptide docking
were modeled using the PIPER protein–protein docking program in the BioLuminate
product [53,54]. The largest cluster size with minimal local energy and a near-native
state of the protein conformation was chosen. Docking results were validated using the
LigPlot tool of Schrödinger suite 2022-4 or Ligplot+ v.2.2 software. An interactive map was
studied to identify the chemical nature of the interactions such as hydrogen bonds, π–π
interaction, side-chain bond, and backbone hydrogen bonds. Ligand–protein interaction
maps were also used to predict the position and interacting amino acids of the scFv77-2 and
CCK-B peptide.

4.3.3. Molecular Dynamics (MD) Simulations

MD simulation studies for the selected docked poses were carried out by the Desmond
module of Schrödinger suite 2022-4 with OPLS4 force field [55]. The protein–ligand complex
was embedded in a predefined TIP3P water model in the orthorhombic box [56]. The
box volume was minimized, and the overall system charge was neutralized by adding
Na+ or Cl− ions and 0.15 mM NaCl to construct near-physiological conditions. The
temperature and pressure were kept constant at 300 K and 1.01325 bar throughout the
simulation using Nose-Hoover thermostat [57] and Martyna-Tobias-Klein barostat [58]
methods. The simulations were performed for >100 ns using NPgammaT ensembles
for proteins and membranes ensemble considering the number of atoms, pressure, and
timescale [59]. During simulations, long–range electrostatic interactions were calculated
using Particle–Mesh–Ewald method [60] and the whole ensemble was constructed as a rigid
body packing and relaxed gradually at 1.2 kilojoule of energy during the simulations [59].
The amino acid energy contributions that will be obtained from the prime molecular
mechanics-generalized born surface area (MM-GBSA) calculation was used in our study to
elucidate the key amino acids predicted to be critical protein–protein interaction.

4.4. Surgical Induction of the Trigeminal Neuropathic Pain Model

Validation of in vivo efficacy was assessed in BALB/c male and female mice injected
with the CCKBR scFv 3 weeks after induction of a chronic neuropathic pain model. The
chronic model causing compression and chemical irritation of the trigeminal nerve is
referred to by the acronym FRICT-ION (foramen rotundum inflammatory compression of
the trigeminal infraorbital nerve) [38]. The FRICT-ION trigeminal neuropathic pain model
was induced by inserting 3 mm of chromic gut suture (4-0) through a tiny scalpel incision in
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the oral buccal/cheek crease along the trigeminal maxillary nerve branch (V2) as it passes
into the foramen rotundum of the skull. The surgery was performed in <10 min, including
anesthetic induction and recovery time. In sham surgery group mice, the oral buccal
incision was made but the nerve is untouched. Naïve control mice remained untouched
but were subjected to all behavioral testing. Mechanical and cold hypersensitivity in
FRICT-ION mice developed reliably on the snout in all animals within the next week. The
experimental timeline is provided in the “Section 2.2. In vivo validation”.

4.5. Lead CCK-BR scFv Determination

Three CCK-BR scFv antibodies (77-2, 134-1, 14-3) with the highest binding affinity
were given a single dose to determine efficacy. The lead scFv 77-2 with the highest affinity
for CCKBR (KD 195 nM, 750 bp) is ~1/6 the size of a MAb and thus can access the central
nervous system (CNS).

4.6. In Vivo Behavioral Read-Outs

The effectiveness of the CCK-BR scFv was assessed with methods standard in the
field. Mean experimental results were compared among groups. Males and females were
compared separately and together since there was no difference. This includes evoked
and spontaneous behaviors that are relevant to the human condition and thus are better
predictors of anti-allodynic, anxiety- and depression-like behavioral efficacy.

4.6.1. Von Frey Fiber Assessment of Hypersensitivity

Assessment of sensitivity on the snout was performed before nerve injury to determine
baseline threshold and performed weekly after nerve injury, through 10 weeks. Hypersen-
sitivity is assessed by reflexive withdrawal response time to mechanical stimulation on
the snout with graded thin nylon von Frey filaments with defined bending forces (tensile
strength) (Figures 3D,E, 4 and 5) [38,61–63]. A trial consisted of 5 applications of several
selected mid-range von Frey filaments applied once every 3 to 4 s. If no positive response
was evoked, the next stronger filament was applied. The mean occurrence of withdrawal
events in each of the trials was expressed as the number of responses out of 5: 0 indicates no
withdrawal and 5 indicates the maximum number of withdrawals. An arithmetic algorithm
was used to convert the fiber strength into grams force 30 when three of five responses were
evoked from a given fiber. Behavioral assessment of hypersensitivity continued through
10 weeks post model induction. Responses to decreased gram force compared to controls
indicated decreased sensitivity threshold or “hypersensitivity”.

4.6.2. Cognition Dependent Anxiety-like and Depression-like Behavioral Tests

Effectiveness of the CCK-BR scFv to anxiety- and depression-related behaviors are
assessed using the light/dark box, elevated zero maze, and sucrose splash tests. Anxiety-
and depression-like behaviors are quantified prior to euthanasia in week 10 [38,64,65].
Computer-linked video recordings are used to quantify the behaviors.

4.6.3. Light/Dark Place Preference Test

The light/dark box used to assess anxiety-related behaviors consists of two equally
sized chambers, one darkened and one brightly illuminated. Collected variables in this two-
chamber test are (1) the time spent in each chamber, (2) the number of transitions between
chambers, (3) the number of rearing events, (4) entry latency into the light chamber, and
(5) latency of first re-entry (transition) back into the dark chamber. Anxiety-like behavior
is significantly greater in neuropathic pain models that do not receive the parent CCKBR
scFv (n = 6, * p < 0.05 ANOVA).

4.6.4. Elevated Zero Maze

The elevated plus maze is a widely used test for measuring anxiety-like behavior, by
determining a preference between a comparatively safe environment (closed arms) and a
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threatening environment (open arms). In principle, the more “anxious” the subjects are,
the less likely they will explore a risky or threatening environment. Anxiety-like behavior
in the elevated zero maze is determined by the (1) number of open and closed quadrant
entries, (2) total open and closed area occupancy, and (3) by the number of exploratory
rearing events. High anxiety states are directly related to open area avoidance.

4.6.5. Sucrose Splash Test

Depression-like behavior is validated with the sucrose splash test where measurement
of decreased grooming behavior is a symptom of depression. Frequency, duration, and
latency of grooming are scored (10 min) after spraying a 10% sucrose solution (~250 µL)
on the base of the tail. Grooming time after sucrose splash test was increased significantly
after scFvs 12 and 95 in an initial test (n = 6, * p < 0.05 ANOVA).

4.7. Western Blot

Our lead scFv 77-2 with the highest affinity for CCKBR (KD 195 nM, 750 bp) is ~1/6
the size of an IgG and thus can access the central nervous system (CNS), as shown with
evidence of the His-tag marker remaining in the TG and amygdala 7 weeks after a single
intraperitoneal injection of CCK-BR scFv 77-2.

4.8. Dorsal Root Ganglion Cultures

Animals were deeply anesthetized with 3% isoflurane and then decapitated prior to
dissection of dorsal root ganglia (DRG) for primary cultures. DRG cultures were prepared
as described previously in Malin et al. [66].

4.9. Whole-Cell Patch Clamp Electrophysiology

Neurons were identified by infrared differential interference contrast (IR-DIC) con-
nected to an IR2000 camera (Dage MTI, Michigan City, IN, USA). Current-clamp recordings
were performed using a Molecular Devices Multiclamp 700B (Scientifica, Uckfield, UK).
Signals were filtered at 5 kHz, acquired at 50 kHz using a Molecular Devices 1550B con-
verter (Scientifica, UK), and recorded using Clampex 11 software (Molecular Devices,
Scientifica, UK). Electrodes were pulled with a Zeitz puller (Werner Zeitz, Martinsreid,
Munich, Germany) from borosilicate thick glass (GC150F, Sutter Instruments, Novato, CA,
USA). Electrode resistance was 5–8 MΩ. Bridge balance was applied to all recordings. For
DRG culture recordings intracellular solution contained (in mM) 125 K-gluconate, 6 KCl,
2 CaCl2, 10 HEPES, 10 EGTA, 2 Mg-ATP, pH 7.3 with KOH. Artificial cerebrospinal fluid
(aCSF) contained (in mM) 113 NaCl, 3 KCl, 25 NaHCO3, 1 NaH2PO4, 2 CaCl2, 2 MgCl2,
and 11 D-glucose. For brain slice recordings intracellular solution contained (in mM)
120 K-gluconate, 11 KCl, 1 CaCl2, 2 MgCl2 10 HEPES, 11 EGTA, 4 Mg-ATP, 0.5 Na-GTP pH
7.3 with KOH. aCSF contained (in mM) 113 NaCl, 3 KCl, 25 NaHCO3, 1 NaH2PO4, 2 CaCl2,
2 MgSO4, HEPES 5 mM and 11 D-glucose.

4.10. Statistical and Data Analysis

Behavioral data analysis was performed using GraphPad Prism (9.2.0).
A p-value < 0.05 was considered statistically significant. Statistical tests are shown in
the figure legends.

Electrophysiology data analysis was performed using Easy Electrophysiology (v.2.5.1)
and Clampfit 11.2. Recordings were not corrected for junction potential. Experimenters
were blinded during experiments and analysis. All statistical analysis was performed
using GraphPad Prism (v9.2.0). A p-value < 0.05 was considered statistically significant.
Statistical tests are shown in the figure legends.

5. Conclusions

While acute and post-surgical pain are effectively managed by opiates, the genera-
tion of therapies effective for persisting and chronic pain have been stymied by lack of
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understanding of the differences between the physiological and molecular characteristics
of acute versus chronic pain now emerging. Chronic pain can induce permanent brain cir-
cuitry alterations that further diminish physical, emotional, and mental function. Urgently
needed are non-opioid therapeutics that address and/or prevent the effects of chronic
pain on higher brain processes such as anxiety and depression, without affecting cognitive
functions. This unmet need is remedied with our CCK-BR scFv generated using ribosomal
display technology, cloning, expression, and affinity purification described here. Three
top scFv leads of eight generated were characterized in vivo and shown to be effective in
reducing mechanical and cold hypersensitivity. More importantly, the CCK-BR scFv was
able to stem the increase in anxiety and depression characteristic of the chronic trigeminal
neuropathic pain model. Speculation as to whether this scFv targeting a mouse peptide
sequence of mouse CCK-BR peptide is as effective or more effective in a human test system
remains to be determined.

6. Patents

Therapeutic Antibody Fragments, Methods Of Making, And Methods of Use. US
Patent WO-2020092883-A1, Publication date: 5 July 2020.

Therapeutic Antibody Fragments, Methods of Making, and Methods of Use. US Patent
Application Pub. No. US 2021/0340265 A1, Authorized by Karin Westlund High, Ravi
Venkata Durvasula, Adinarayana Kunamneni. Application No. 17/284,208, filed 9 April
2021, published 4 November 2021.
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