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Abstract: Circulating tumor RNA (ctRNA) has recently emerged as a novel and attractive liquid
biomarker. CtRNA is capable of providing important information about the expression of a variety
of target genes noninvasively, without the need for biopsies, through the use of circulating RNA
sequencing. The overexpression of cancer-specific transcripts increases the tumor-derived RNA
signal, which overcomes limitations due to low quantities of circulating tumor DNA (ctDNA). The
purpose of this work is to present an up-to-date review of current knowledge regarding ctRNAs and
their status as biomarkers to address the diagnosis, prognosis, prediction, and drug resistance of
colorectal cancer. The final section of the article discusses the practical aspects involved in analyzing
plasma ctRNA, including storage and isolation, detection technologies, and their limitations in
clinical applications.

Keywords: circulating tumor RNA; circulating cell-free RNA; colorectal cancer; biomarker discovery;
blood-based liquid biopsy; circulating RNA sequencing; diagnostic; prognostic and predictive
biomarkers of CRC

1. Introduction

Colorectal cancer (CRC) has the second-highest rate of new diagnoses and cancer-
related deaths worldwide, with nearly 1,930,000 and 930,600 cases in 2020, respectively [1].
According to the worldwide surveillance of cancer survival within the CONCORD program,
the 5-year survival rate for people with CRC is approximately 71% in Southeast Asia, with
large variations depending on the stage of the disease at the time of diagnosis—from
approximately 90% for those diagnosed at stage I to slightly over 10% for those who
develop metastatic cancer at stage IV [2–4]. The surgical resection of CRC is the standard
of care, followed by adjuvant chemotherapy based on the clinical and pathological risk
factors for the disease [4]. Despite this, relapse still occurs in more than 30% of patients with
resectable CRC [4]. The current approaches, such as periodic computed tomography scans
and carcinoembryonic antigen (CEA) level monitoring, demonstrate limited sensitivity
to detect recurrent disease [5]. Given this, there is an urgent need to develop methods
that are cost-effective, sensitive, and accurate for the detection of minimal residual disease
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(MRD), which can inform treatment decisions, particularly for patients with a borderline
performance status who are concerned about treatment side effects [4,6].

CRC is a complex disease that can be influenced by a variety of genetic and epigenetic
factors. It has been demonstrated that the widely accepted genetic model of tumor devel-
opment, which involves mutations in specific genes such as adenomatous polyposis coil
(APC), Kirsten-ras, (K-ras), and p53, is unrepresentative of the majority of CRC cases [7].
Multiple genetic pathways have been found to contribute to CRC, resulting in a hetero-
geneous pattern of tumor mutations [7]. The development of colorectal cancer has also
been linked to epigenetic changes, including abnormal DNA methylation and chromatin
modification [8]. CRC types with methylated genes have been classified as CpG Island
Methylator Phenotype (CIMP) cancers, which are characterized by a high frequency of
methylated genes [8]. High intra-tumor heterogeneity (ITH) and inter-patient heterogeneity
are well-known features of CRC that impact tumor molecular characterization [9]. These
mutations are composed of multiple cell types or subclones, each of which shows differ-
ent gene expression profiles [9]. Additionally, some studies have found that exogenous
factors such as diet, lifestyle, nutrition, the microbiome, and the environment can affect
pathogenesis, as well as non-neoplastic cells, such as immune cells, resulting in further
heterogeneity [9,10]. Due to all these differences, different patients respond differently to
treatment and have varying outcomes. Therefore, a growing number of researchers have
now recognized the importance of investigating the interactions between tumor molecular
changes and the tumor microenvironment (TME), which vary from individual to individ-
ual [11]. With the development of high-sensitivity detection and quantification techniques,
such as next-generation sequencing (NGS), genome-wide sequencing, and droplet digital
polymerase chain reactions (ddPCR), the study of heterogeneity has become more feasible.
Currently, whole-exome sequences performed on multiple biopsy sites are the standard
method of assessing ITH. These analyses are subject to the limitations of the tissue biopsy,
such as being non-repeatable, providing limited information from a single biopsy site, low
frequency, and inaccuracy, leading to the underestimation of the mutational landscape,
which may affect the treatment accuracy [12,13].

To overcome the limitations of tissue biopsies, liquid biopsies, as a minimally invasive
approach to the analysis of genetic material in the blood, serum, plasma, urine, and
saliva [14–19], have rapidly developed in recent years. Liquid biopsies involve isolating
tumor-derived components, such as circulating tumor cells (CTCs), circulating tumor
DNA (ctDNA) and RNA (ctRNA), and extracellular vesicles (EV), which can provide
additional useful information for diagnostic, prognostic, predictive, drug resistance [20–22],
and subtype classification [23] purposes according to their multi-omics data, including
genomics, transcriptomics [24], proteomics [13], and metabolomics [25]. For instance, a
liquid biopsy can be used to detect the recurrence of CRC and monitor the treatment
response [26], as well as to detect mutations, such as RAS mutations, which are associated
with treatment resistance and disease progression [27].

The circulating RNA sequencing technique has been widely used in clinical research
to identify circulating cell-free RNA (cfRNA) biomarkers that may be associated with
a variety of diseases, including infectious diseases, cancer, and autoimmune disorders.
Researchers can gain insights into the molecular mechanisms behind disease development
and progression by analyzing the RNA profiles of cfRNA. cfRNA is released from cells
into the extracellular matrix and primarily serves as a signaling molecule in cell-to-cell
communication [14]. In a similar manner to ctDNA, cfRNA is passively leaked from
apoptotic, tumor, or necrotic cells [28]. cfRNA was first discovered in 1999 in the plasma
of nasopharyngeal carcinoma patients [29], followed by its discovery in the serum of
melanoma patients [30]. In 2006, Wong et al. were the first to demonstrate that plasma
beta-catenin mRNA can serve as a potential marker for CRC [31]. Recently, cfRNAs have
been recognized as biomarkers that are useful in identifying and detecting tumors and
monitoring personalized therapies [28,32].
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In this work, we present an up-to-date overview of the current knowledge of cfRNAs
and their status as biomarkers to address the diagnosis, prognosis, prediction, and drug
resistance of CRC. Finally, we conclude by discussing the practical aspects of the analysis
of cfRNA, including storage and isolation, detection technologies, and the limitations of
clinical applications.

2. Blood-Based Liquid Biopsy in CRC

In recent years, increased interest has emerged in various circulating biomarkers,
such as CTCs, and various forms of EV/platelet-encapsulated, ctDNA, and ctRNA, includ-
ing messenger RNA (mRNA), microRNA (miRNA), circular RNA (circRNA), and long
non-coding RNA (lncRNA) [33]. The strengths and limitations of different liquid biopsy
components are listed in Table 1 [32,34,35].

CTCs are tumor cells that have detached from the primary tumor and entered the
bloodstream, and they can be isolated from peripheral blood and analyzed for DNA, RNA,
and protein markers [36]. Our previous study effectively demonstrated that the count of
CTCs varies in relation to the tumor node metastasis (TNM) stage, as well as between pre-
operative and post-operative phases. This result suggests their utility in tracking therapy
responses [37] and offering prognostic and potentially predictive value [38–40] for patients
with metastatic CRC. CTCs have been demonstrated in several studies to be associated
with a poor prognosis and short overall survival in patients with CRC [41] and in the
monitoring of metastatic process and disease progression [38–40,42]. Furthermore, CTCs
have the potential to provide valuable insights into the biology of CRC and the mecha-
nisms of metastasis. A detailed analysis of the genomic and phenotypic characteristics of
CTCs can provide information regarding potential targets for therapy, as well as a better
understanding of the mechanisms underlying tumor progression and metastasis [42]. In
spite of these strengths, CTCs still have several limitations in CRC research and clinical
practice. The rarity of CTCs in peripheral blood, being present at very low concentrations,
makes their detection and isolation difficult [43]. Currently, CTC detection methods are
limited in their sensitivity, and some patients may lack the presence of CTCs [44]. Moreover,
the heterogeneity of CTCs poses a challenge to their characterization and analysis. The
clinically relevant and useful functions of CTCs may be influenced by their phenotypic
and molecular heterogeneity [45]. Besides this, the detection and analysis of CTCs are also
limited by the absence of standard methods [46]. Due to methodological constraints, CTCs
have not yet gained widespread acceptance as a crucial component of cancer patient care.
Such limitations may result in the requirement for substantial quantities of fresh blood and
labor-intensive, expensive processes [47]. This obstacle is especially prominent in the early
stages of cancer, considering the minimal number of CTCs present in the cancer patient’s
bloodstream [48,49]. In addition, false positives may occur when CTCs are detected in
inflammatory diseases of the gastrointestinal tract. For example, the chronic inflammation
of the gastrointestinal tract, as a characteristic of inflammatory bowel disease (IBD), can
lead to the massive infiltration of circulating leukocytes into the intestinal tract, resulting
in ulcerative colitis and Crohn’s disease. These leukocytes, such as neutrophils, T-cells,
and monocytes, can cause inflammation and contribute to false positive results [50]. False
negative results can occasionally occur when circulating tumor cells (CTCs) are isolated
and detected [51,52].

EVs have emerged as important players in CRC research, with both strengths and lim-
itations. EVs, including exosomes, contain various molecules that can serve as biomarkers
to assess the diagnosis, prognosis, and response to treatment for CRC [53]. In addition
to reflecting tumor heterogeneity, they also play a role in intercellular communication,
which affects tumor progression, metastasis, and the immune response [53]. The isolation
of EVs from various body fluids provides an effective method for non-invasive sampling.
In spite of this, the heterogeneity of EVs and the lack of standardization of protocols for
their isolation and characterization pose considerable challenges. Other limitations include
contamination with non-EV particles and difficulties in determining the functions of the
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particles. The regulation of enriched microRNA by tumor-derived EVs has been found to
promote tumor progression and T-cell dysfunction [54]. A high level of circulating EVs
has been associated with a poor prognosis in CRC patients and a shorter survival time, as
they stimulate and suppress tumor-specific and non-specific immune responses [54]. Based
on these findings, EVs may contribute to tumor progression by modulating the immune
response. However, the heterogeneity of EVs and the lack of standardized protocols for
their isolation and characterization pose challenges [53]. Contamination with non-EV
particles and functional characterization difficulties are additional limitations [53].

The concentration of circulating cell-free nucleic acid is associated with the aggres-
siveness of CRC, disease stage, and tumor volume, indicating the treatment response, and
can also serve as a prognostic marker in evaluating whether the disease is progressive,
relapsing, or MRD [20–22,55]. With the usage of high-sensitivity detection and quantifica-
tion techniques, in clinical research and practice, circulating cell-free DNA (cfDNA) has
been increasingly applied in the detection of resistance mutations and oncogenic driver
mutations [20–22,55]. For instance, mutations in APC, KRAS, TP53, and SMAD4 have been
reported as key drivers of progression and metastasis in CRC [56]. Besides this, the number
of resistance mechanisms to anti-EGFR therapies in CRC patients has been previously
reported, including mutations of BRAF, MEK, and the EGFR extracellular domain (ECD)
and the amplification of ERBB2, MET, KRAS, and NRAS, which could benefit from the
inclusion of targeted therapies in standard protocols, emphasizing the importance of per-
sonalized medicine [20–22]. Recently, researchers identified acquired genomic alterations,
including mutations in RAS, BRAF, and the EGFR ectodomain, as the major mechanisms of
resistance to later-line anti-EGFR antibody therapy in metastatic CRC patients who received
cetuximab or bevacizumab as major mechanisms of resistance to early-stage therapies [57].

Although the tumor burden is positively correlated with ctDNA, false negative results
arising from small ctDNA concentrations, the short half-lives of ctDNA, and low signal-
to-noise ratios make it difficult to detect cfDNA and determine the tumor tissue of origin
(TOO) [24], especially in the early stages, when metastasis has begun [12,58,59]. Another
practical challenge regarding cfDNA is that the majority of cfDNA features are not tissue-
specific, which makes it difficult to determine the tumor tissue of origin of a patient
who has been positively screened for cancer [14]. ctDNA analysis is also limited by the
lack of standardization of methodologies [59]. Furthermore, ctDNA analysis is currently
unable to analyze RNA [59]. Although the targeted analysis of methylation markers on
cfDNA can cause cancer to be localized in a highly specific manner [60], it is important to
explore additional biomarkers to complement detection by cfDNA in the early stages of
cancer, to enhance its detection and localization. Considering that cfRNA analysis provides
valuable information on gene expression, splicing, and post-transcriptional regulation,
cfRNA become an additional biomarker for the diagnosis, monitoring, and treatment of
cancer, along with cfDNA.

The stability of cfRNA is relatively low as it is rapidly degraded by ribonucleases and
99% of naked RNA is degraded after only fifteen seconds of incubation [12,61]. However,
endogenous cfRNA can be secreted from both cancerous and non-cancerous cells via
microvesicles, nucleoproteins, and protein–RNA complexes, which act as protectors to
prevent the cfRNA from being degraded by ribonucleases [12,28]. Several studies have
demonstrated the recovery of full-length mRNA from plasma, suggesting that cfRNA is
relatively stable in the blood [14]. These findings have generated considerable interest in
cfRNA as a potential diagnostic biomarker for sensitive, fast, and inexpensive diagnostics
in CRC [12,55,62].

The use of cfRNA analysis in CRC has several strengths and limitations. One of the
major advantages of cfRNA analysis is its ability to profile RNA expression, which provides
valuable information about gene expression patterns and potential biomarkers in CRC [24].
Secondly, an analysis of cfRNA within the tumor microenvironment can provide valuable
insights into cell-to-cell communication in CRC. Certain cfRNAs may indicate intercellular
communication between cancer cells, non-cancerous cells, and microorganisms [63]. For
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example, extracellular vesicle (EV)-associated non-coding RNAs, including cfRNAs, have
been implicated in tumorigenesis and have been shown to serve as diagnostic and therapeu-
tic targets for cancer [63]. Additionally, cfRNA analysis can assist in identifying the tissue
of origin (TOO) and cancer subtypes through cell-type decomposition and cell-type-specific
RNA markers [14,64]. For personalized medicine and treatment decisions, this information
is crucial, as different cancer types may require different therapeutic approaches [64]. Sci-
entists have also used cfRNA analysis to examine the immune heterogeneity associated
with particular mutations and tumor microenvironment characteristics, in order to identify
immune-related pathways and potential therapeutic targets based on the analysis of cfRNA
transcriptomic profiles [65,66]. However, there are limitations associated with cfRNA anal-
ysis in CRC. Firstly, the amount of cfRNA is low, making it difficult to detect and analyze
it [67]. Furthermore, cfRNA is susceptible to degradation and instability, which further
complicates its analysis [67]. Obtaining cfRNA from blood samples can be challenging,
requiring specialized techniques to isolate and preserve the RNA molecules [68]. Addi-
tionally, there is a lack of standardization of procedures in cfRNA analysis, resulting in
inconsistent results across different studies and laboratories [68]. Due to these limitations,
cfRNA analysis cannot be widely used and implemented in the clinical setting for CRC.

A higher level of cfRNA has been observed in patients with solid tumors [69]. It has
been suggested that cancer cells communicate with the surrounding immune and stromal
cells via extracellular RNA, which can lead to the increased proliferation and malignancy of
surrounding cells, angiogenesis [70], and the development of future metastatic sites due to
escaping the immune response [71,72]. As a biomarker, cfRNA may hold certain advantages,
despite being technically more challenging than cfDNA. The ability of cfRNA to play a role
in mediating intercellular communication may allow us to improve our understanding of
the intercellular communication pathways involved in the normal differentiation as well as
the initiation and transformation of CRC. The use of cfRNA has been shown to increase
the yield of gene expression information, especially when the cfDNA concentrations are
insufficient for detection. Moreover, differences in the cfRNA expression patterns of the
cancerous and healthy organs may reflect functional, longitudinal changes during disease
or the treatment of a disease.

Table 1. Strengths and limitations of different liquid biopsy components.

Liquid Biopsy Component Strengths Limitation

ctDNA

• Analyzing drug effects and predicting
acquired resistance [20–22,57,73]

• Minimal residual disease detection [55]
• The method and data analysis are well

established
• Monitoring the progression of the

metastatic process [57]

• Low predictive value for mutations
occurring in single or small groups [59]

• Insufficient sensitivity to detect mutations
when mutant allele fraction (MAF) is
low [58]

• Lack of standardization of
methodology [59]

• Inability to analyze RNA [59]
• Difficult to determine the tumor tissue of

origin (TOO) [24]

ctRNA

• Profiling RNA expression [24]
• The tissue of origin (TOO) [14,64]
• Cell-to-cell communication [65,66,69–72]

• Low RNA abundance and instability [67]
• Difficult RNA extraction [68]
• Lack of standardization of

methodology [68]
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Table 1. Cont.

Liquid Biopsy Component Strengths Limitation

CTC

• Analyzing molecular and morphological
characteristics [42]

• Profile analysis of DNA, RNA, and
proteins [36]

• Utility as a prognostic or predictive
marker [38–41]

• Monitoring metastatic process and
disease progression [37–40,42]

• Functional analysis [36]

• Low level of efficiency in blood
isolation [43]

• Instability of CTCs [44]
• CTC heterogeneity [45]
• Lack of standardization of

methodology [46,47]
• Inflammatory diseases of the

gastrointestinal tract result in false positive
results [50]

• Tumor metastasis and CTC isolation result
in false negative results [51,52]

EV

• Stable in biological fluids [53]
• Low immunogenicity [54]
• Cell-to-cell communication [53]

• Variability among isolation techniques; lack
of standardization [53]

• Contamination of non-EV particles and the
difficulty of functional characterization [53]

3. Application of Circulating RNA Sequencing in Colorectal Cancer

Based on the specific characterization of cfRNAs, it may be possible to develop indi-
vidualized therapeutic and diagnostic options, which can take into account the interaction
between the tumor and TME in the other cancer types. For instance, Raez et al. examined
and measured PD-L1 cfmRNA expression to assess the clinical responses of patients with
non-small-cell lung cancer, and they concluded that cfRNA can be used as a tool to predit
the onset and progression of cancer [55]. Hieter et al. distinguished cancers from premalig-
nant conditions and predicted disease onset using cfRNA profiles [74]. Likewise, cfRNA,
in conjunction with the telomere-specific reverse transcriptase mRNA, was used in another
study to measure the responses of cancer patients to chemotherapy, and the results showed
that cfRNA could be used to predict and measure the effects of chemotherapy [75,76].
cfRNA has also been shown to contain organ-specific transcripts that can be affected by the
development of cancer or tumors [14,77]. Moreover, Li et al. identified potential biomarkers
for lung cancer subtypes using circulating cfRNA sequencing. Several differentially ex-
pressed genes and pathways associated with lung cancer subtype classification were found
to be associated with different lung cancer subtypes. Furthermore, the cfRNA biomarkers
were able to predict the outcomes of patients, including their responses to therapy and
survival times [78]. The high signal strength of cfRNA is leading scientists to examine
whether cfRNA can be used to detect and monitor post-surgical MRD and the disease
burden, to predict the recurrence of disease [55] and determine whether it is useful for
clinicians to track the treatment response or resistance based on tumor heterogeneity.

CRC biomarker discovery is mostly facilitated by differential gene expression (DEG)
analysis of disease groups with healthy controls [79,80]. Samples with different species or
stages can be analyzed for circulating RNA sequencing to identify genes that are differ-
entially expressed, revealing their functions and possible molecular mechanisms [14,79].
Recently, circulating RNA sequencing has made a significant contribution to research in
various fields, particularly in cancer research, such as cancer diagnostic, prognostic, pre-
dictive, subtype classification, and drug resistance applications, involving different novel
circulating cfRNA biomarkers in CRC, such as cell-free message RNA (cf-mRNA), cell-free
microRNA (cf-miRNA), cell-free long non-coding RNA (cf-lncRNA), and cell-free circu-
lar RNA (cf-circRNA) (Figure 1). Supervised machine learning has become increasingly
popular in cancer research as a means of identifying and validating diagnostic biomarkers.
The idea behind this approach is to use algorithms to learn from labeled data to make
predictions or decisions about new, unknown information [81]. The use of supervised
machine learning in cancer research involves identifying gene expression signatures from
cancer and non-cancer samples, which may then be used to predict the cancer diagnosis
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or prognosis [81]. On the other hand, unsupervised machine learning is used most of-
ten regarding the cancer prognosis and treatment response to identify patterns in large
datasets without prior knowledge of the underlying structure, allowing the discovery of
novel patterns and associations [81,82]. To identify key characteristics of the data, several
dimensionality reduction techniques, such as principal component analysis and indepen-
dent component analysis, can be used. As another application of unsupervised machine
learning in cancer research, the identification of subtypes of cancer based on molecular
characteristics can also be used. For example, clustering algorithms can be used to classify
patients with similar gene expression profiles, thereby identifying cancer subtypes with
distinct molecular characteristics and clinical outcomes.
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Cancer biomarker validation using public datasets has become increasingly common,
as it provides the opportunity to evaluate the biomarker’s performance in a large number of
samples with information on clinical outcomes and patient characteristics. These datasets
include the National Center for Biotechnology Information (NCBI), the European Bioinfor-
matics Institute (EBI), and the Cancer Genome Atlas (TCGA). To determine the sensitivity,
specificity, and accuracy of the biomarker, a statistical analysis, such as receiver operating
characteristic (ROC) analysis, is performed on public datasets. An important step in the
validation of biomarkers using public datasets is cross-validation. This involves testing
the biomarker’s performance in independent datasets, to ensure that the biomarker does
not overfit the original dataset and can be generalized to other datasets by performing this
step [83]. Moreover, a comprehensive understanding of the interactions between proteins
and the mechanisms underlying various biological processes and diseases can be gained
by integrating protein–protein interaction (PPI) networks with the Kyoto Encyclopedia of
Genes and Genomes (KEGG).

BioRender.com
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4. Circulating Cell-Free RNA as a Diagnostic Biomarker in CRC

Several studies have demonstrated that various cf-mRNAs are present in the plasma
of CRC patients, and their levels are predictive of patient survival [24,31,55,75,79,84,85]
(Table 2). Wong et al. were the first to demonstrate that plasma beta-catenin mRNA can
serve as a potential marker for CRC [31]. Our team also demonstrated that the downregu-
lation of RAS homolog family member A (RHOA) and glycogen synthase kinase 3 alpha
(GSK3A) expression in plasma may function as a diagnostic biomarker of colorectal ade-
noma using a target sequencing approach [79]. Reduced GSK3A expression may be due to a
dysfunctional immune response in colorectal adenoma, and inactivation of RHOA induces
cancer cells to invade and de-differentiate through the Wnt signaling pathway [79]. Addi-
tionally, the SOX9-based 9-gene panel (SOX9, GSK3A, FZD4, LEF1, DVL1, FZD7, NFATC1,
KRT19, and RUVBL1) demonstrated a high level of non-invasive diagnostic performance
for CRC (AUC: 0.863) [84]. SOX9 is involved in CRC cell invasion and migration and has
been shown to promote tumor growth and metastasis by regulating various signaling path-
ways, including the Wnt/β-catenin pathway [84]. Prostaglandin-endoperoxide synthase 2
(PTGS2), jagged canonical notch ligand 1 (JAG1), and guanylate cyclase 2C (GUCY2C)
mRNA levels in serum and peripheral blood were found to be upregulated in metastatic
CRC by ddPCR, while a correlation was found between the serum expression of GUCY2C
and GUCY2C/PTGS2 and the therapeutic response [86]. Patients with metastatic colorectal
cancer (mCRC) had significantly higher levels of B2M, TIMP-1, and CLU mRNAs in their
plasma [87]. The combination of the three mRNAs’ levels can be used to discriminate
between mCRC and healthy individuals’ plasma, with an AUC of 0.903, 82% sensitivity,
and 93% specificity [87].

The use of blood serum/plasma miRNAs as diagnostic biomarkers for CRC has been
reported by several research groups, as these biomarkers are easy to handle, inexpensive,
and can be obtained with minimal invasiveness. Nassar et al. identified miRNA panels
(miR-21, miR-145, miR-203, miR-155, miR-210, miR-31, miR-345) that may also be useful
in diagnosing advanced-stage IV [88]. Fellizar et al. evaluated the expression levels of
miR-21-5p, miR-29a-3p, miR-92a-3p, miR-135b-5p, miR-196b-5p, and miR-197-3p in 41 CRC
patents and matched adjacent tumor tissue validated with 36 matched plasma samples.
miR-21-5p, miR-29a-3p, miR-92a-3p, miR-196b-5p, and miR-197-3p, but not miR-135b-5p, were
upregulated in both the CRC tissue and plasma samples, and they can therefore act as
potential diagnostic biomarkers of CRC [89]. In Silva et al.’s study, they combined four
plasma miRNAs to construct a signature that was able to distinguish between CRC patients
and healthy individuals, as well as adenomas and thickened polyps [90]. Recently, the
expression of miR-133a, miR-574-3p, and miR-27a was found to differ significantly among
different stages, grades, and sizes of CRC, with the combination of these biomarkers
showing higher sensitivity for early diagnosis [91].

CRC has been associated with the deregulation of cf-lncRNA transcripts, which im-
pacts primary cancer hallmarks, such as proliferation, apoptosis, invasion, metastasis, and
angiogenesis, which have been linked to drug resistance and metabolic disorders [92]. Due
to their ability to target multiple pathways disrupted in patients with CRC, lncRNAs are
attractive therapeutic candidates. Thus far, there are over 210,000 different lncRNAs that
have been identified, and they have been demonstrated to have an important role in the reg-
ulation of transcriptional control, splicing, and post-transcriptional progression [93]. Ju et al.
demonstrated that the overexpression of lncRNA differentiation antagonizes non-protein-
coding RNA (DANCR) in CRC, and it also tended to have the worst prognosis and served
as a potential diagnostic biomarker for CRC [94]. Akbari et al. showed that the expression
levels of ATB and CCAT1 in plasma were significantly upregulated in CRC compared with
healthy controls, with sensitivity and specificity of 82% and 75%, respectively [95]. Besides
these studies, Radanova et al. demonstrated a significant increase in cf-circRNA expression
in the plasma of patients with advanced disease, compared to healthy controls, for the four
cf-circRNAs hsa_circ_0001445, hsa_circ_0003028, hsa_circ_0007915, and hsa_circ_0008717.
Moreover, a panel of hsa_circ_0001445 and hsa_circ_0007915 was found to differentiate
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between patients in stage III and stage IV with high sensitivity and specificity (90.98% and
60.71%, respectively) [96].

To further categorize these biomarkers based on their functional mechanisms, mRNA
biomarkers such as SOX9, GSK3A, GUCY2C, B2M, TIM-1, and CLU are involved in various
pathways that regulate the development and progression of CRC, including the Wnt/β-
catenin pathway [84,97], PI3K/AKT/mTOR pathway [84], cyclic guanosine monophos-
phate (cGMP) signaling pathway [86], major histocompatibility complex (MHC) class
I pathway [87], immune response regulation, and apoptotic pathway [87]. RHOA and
PTGS2 are involved in the actin cytoskeleton dynamics pathway [79] and the production of
prostaglandins [86], respectively. JAG1 is involved in the regulation of the Notch signaling
pathway, which plays a complex role in CRC [98].

For the non-coding RNA biomarkers, we can further categorize them based on the
tumor development. Let-7e-5p, a microRNA, has been demonstrated to function as a tumor
suppressor by inhibiting cell proliferation in human cells [99]. It has also been found that
miR-106a-5p, another microRNA, is dysregulated in patients with CRC and may serve as
a useful biomarker for the early detection of the disease [100]. In addition, miR-133a has
been implicated in the progression of CRC and has been shown to inhibit cell proliferation
and cell cycle progression [101]. miRNA-21, miR-29a-3p, miR-92a-3p, and miR-210 have also
been identified as potential biomarkers in CRC, with the dysregulation of these microRNAs
associated with tumor progression and metastasis [102–104]. The CCAT1 gene has also been
identified as a potential biomarker in CRC, being detectable in all stages of tumorigenesis,
as well as the peripheral blood of patients with CRC [105].

Table 2. Different diagnostic biomarkers on CRC.

Year Biomarker Biomarker
Type Samples

Up-
/Downregulated in

CRC Patients
Value Technology Reference

2019 RHOA, GSK3A mRNA
40 plasma

adenoma CRC
39 plasma normal

Down Diagnosis Target-Seq [79]

2023 SOX9 mRNA
34 plasma

adenoma CRC
19 plasma normal

Up Diagnosis Target-Seq [84]

2021 PTGS2, GUCY2C, and JAG1 mRNA 59 serum mCRC Up Diagnosis ddPCR [86]

2023 B2M, TIM-1, and CLU mRNA
107 plasma

mCRC
53 plasma control

Up Diagnosis RT-qPCR [87]

2022
miR-21, miR-145, miR-203,
miR-155, miR-210, miR-31,

miR-345
miRNA Up Diagnosis RT-qPCR [88]

2022
miR-21-5p, miR-29a-3p,

miR-92a-3p, miR-196b-5p,
miR-135b-5p

miRNA
41 CRC tissue and

adjacent tumor
tissue

36 plasma CRC

Up
Down Diagnosis RT-qPCR [89]

2023 miRNA-133a, miRNA-574-3p,
miRNA-27a miRNA 100 serum CRC

20 control
Down

Up Diagnosis RT-qPCR [91]

2021 miR-28-3p, let-7e-5p,
miR-106a-5p, and miR-542-5p miRNA 109 plasma Up Diagnostic RT-qPCR [90]

2019 ATB and CCAT1 IncRNA 74 plasma CRC
74 control Up Diagnosis RT-qPCR [95,106]

2020 DANCR IncRNA
40 serum CRC

40 control
Up Diagnosis RT-qPCR [94]

2021
hsa_circ_0001445,
hsa_circ_0003028,

hsa_circ_0007915, and
hsa_circ_0008717

circRNA 150 plasma CRC Up Diagnosis RT-qPCR [96]

5. Circulating Cell-Free RNA as a Prognostic Biomarker in CRC

The first study to establish an association between circulating miRNA and prognosis
in CRC was published in 2010 [107]. Several promising cfRNAs are associated with overall
survival (OS) and poor progression-free survival (PFS) among CRC patients. It is also
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possible to predict the prognosis of CRC by analyzing the cfRNAs that circulate in the blood-
stream and provide insights into the biological behavior and clinical evolution (Table 3). In
our recent study, we also found that the combination of 15-hydroxyprostaglandin dehydro-
genase (HPGD), phosphofurin acidic cluster sorting protein 1 (PACS1), and tyrosyl-DNA
phosphodiesterase 2 (TDP2) expression was associated with survival probability (AUC of
0.838) when using whole-transcriptome sequencing, which supports the idea that these
genes may be used as potential prognostic biomarkers for CRC [24]. Pun et al. analyzed
postoperative plasma Bmi1 mRNA levels, which were reduced significantly in patients who
did not show a reduction in postoperative Bmi1 mRNA levels; thus, it can be used to predict
distant metastasis and monitor occult metastasis [108]. Moreover, He et al. demonstrated
that the presence of high levels of SSR4 expression in tumor-infiltrating lymphocytes (TILs)
may be used as a prognostic biomarker to predict better OS and treatment outcomes in CRC
patients; this was demonstrated using bioinformatic analysis on the colon adenocarcinoma
(COAD) dataset [109]. Cui et al. demonstrated that the CXCL3 levels were upregulated
in CRC patients, and it is associated with cancer progression and poor prognosis for CRC
patients [110]. The presence of high miR-1290 expression has been associated with an ad-
vanced stage and poor prognosis of CRC [106]. According to Kudelova et al., the significant
downregulation of miR-16-5p was observed and the upregulation of miR-155-5p, miR-21-5p,
and miR-191-5p was observed. The same pathways may also contribute to intestinal ep-
ithelial regeneration and control wound healing. It has been suggested that the levels of
miRNA expression associated with intestinal wound healing and the recurrence of disease
are influenced by the levels of miRNA in patients’ circulation [111]. Besides the above, Hao
et al. found that stratified stage I to III patients whose plasma miR-21 level was high had
a significantly worse survival outcome when predicting CRC recurrence, indicating that
stratified patients have different values when predicting CRC recurrence [112].

Table 3. Different prognostic biomarkers for CRC.

Year Biomarker Biomarker
Type Samples

Up-
/Downregulated
in CRC Patients

Value Technology Reference

2023 HPGD, TDP2, PACS1 mRNA

8 plasma pre-surgery
CRC and

post-surgery CRC;
8 tumor tissue and

adjacent tumor tissue

Down
Up Prognosis Transcriptome

Seq [24]

2021 SSR4 mRNA Up Prognosis Data Mining [109]

2022 CXCL3 mRNA 228 CRC vs. 216
control Up

Diagnosis
and

Prognosis
RT-qPCR [110]

2014 Bm1 mRNA 45 CRC Down Prognosis RT-qPCR [108]

2022 miR-1290 miRNA Up Prognosis ddPCR [106]

2022
miR-155-5p, miR-21-5p,

miR-191-5p
miR-16-5p

miRNA 110 plasma CRC Up
Down Prognosis RT-qPCR [111]

2022 miR-21 miRNA 113 CRC Up Prognosis RT-qPCR [112]

6. Circulating Cell-Free RNA as a Response to Therapy and Drug Resistance in CRC

Precision therapies have revolutionized the oncology field by targeting specific gene al-
terations characteristic of specific neoplasms, resulting in the development of new treatment
options, such as anti-EGFR, anti-HER2, and anti-VEGF antibodies; immune checkpoint
inhibitors; and small-molecule tyrosine kinase inhibitors [113]. However, over time, tumor-
induced resistance mechanisms have become more prevalent, making these drugs increas-
ingly ineffective. Therefore, it has become increasingly necessary to identify biomarkers
that can provide insights into the emergence of resistance mechanisms. Drug resistance
to targeted therapies is influenced by a variety of biological determinants, including the
existence of undetectable genomic drivers, mutations in drug targets, the activation of
survival signaling pathways, and the inactivation of downstream death signaling path-
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ways [113]. Several studies have demonstrated the potential predictive value of miRNAs
as biomarkers for anti-targeted therapy responses in tissue samples [113]. Furthermore, the
tumor microenvironment may contribute to resistance via several mechanisms, including
promoting the immune evasion of cancer cells, obstructing the absorption of drugs, and
stimulating the growth factors of cancer cells [113].

cf-miRNAs were first investigated in 2013 as non-invasive biomarkers for the predic-
tion of chemotherapy resistance in CRC [114]. Many studies have been conducted in the last
few years to investigate the role of serum and plasma miRNAs in predicting the sensitivity
of CRC to chemotherapy [114–116]. Patients with chemoresistant CRC were found to have
lower levels of miR-1914-3p and miR-1915-3p in plasma than those with responsive disease.
It has been demonstrated that these two miRNAs contribute to the resistance of cells to
oxaliplatin and 5-fluorouracil (5-Fu) [116]. Ge et al. also demonstrated that the inhibition
of miR-96 increased oxaliplatin sensitivity in CRC cells [117]. Zhang et al. conducted a
large-scale validation phase, which resulted in the identification of five miRNAs (miR-20a,
miR-130, miR-145, miR-216, and miR-372) that were significantly downregulated in serum
upon exposure to oxaliplatin, which enabled differentiation between primary sensitive
and resistant patients, demonstrating the value of this panel in selecting a treatment for
CRC [118]. In another study, Ye et al. demonstrated that the lncRNA GMDS-AS1’s direct
target, HuR, is constitutively activated by STAT3/Wnt signaling and plays an important
role in the development of CRC tumors; thus, it can be used to diagnose, monitor, and
predict CRC outcomes [119]. The downregulation of plasma lethal-7 (Let-7) miRNA levels
has been observed in CRC patients, and there was a significant association between higher
plasma levels of let-7 and CRC patients. This can improve survival outcomes regardless of
the mutational status of KRAS and can provide insights into the patient population that
responds to anti-EGFR therapy [120,121]. There is an association between the expression
of miR-31-5p and shortened PFS in patients with metastatic CRC treated with anti-EGFR
therapy [122]; thus, it has demonstrated a strong diagnostic ability for CRC in serum [123].
Schou et al. also demonstrated that cetuximab and irinotecan failed to elicit a response in
patients with high plasma miR-345 expression [124].

7. Challenges in Circulating RNA Sequencing in Plasma

Circulating RNA sequencing in plasma has emerged as a promising method for the
identification of disease biomarkers and potential therapeutic targets. According to the
literature review, there are several challenges associated with the use of cfRNA analysis,
which can impact the accuracy and reproducibility of the results.

The technical challenges, low cfRNA quantities, RNA degradation, heterogeneity of
plasma samples, RNA fragmentation, contamination, lack of standardization, and bioin-
formatics challenges are the main challenges. Pre-analytical parameter setting, as well as
robust and standardized protocols to optimize the potential of RNA-seq for plasma cfRNA
analysis, is important to overcome these challenges. Several pre-analytical parameters can
influence the ctRNA detection sensitivity, which is strongly dependent on the quantity and
quality of the input material. Precaution is essential to prevent cfRNA degradation and con-
tamination by fat, genomic DNA, Ca2+, proteins, cell debris, and exogenous contaminants,
such as glove powder [125]. gDNA contamination can affect the concentration level of RNA
in plasma/serum, which could affect the accuracy of the final results because of the large
number of cellular proteins, as well as cellular debris [126]. Other pre-analytical factors
also influence the limit of detection and accuracy of the analysis, including the nature of
the anticoagulant in the blood collection tube, plasma volume, preservation approaches,
and extraction approaches. The use of different blood collection tubes has been evaluated
in several studies [127–129]. A pre-coated sample tube with preservatives is used to avoid
cell lysis, thereby preventing the release of cell-free nucleic acid from hematopoietic cells.
EDTA tubes should not be centrifuged for more than four hours after sampling [128].
Alternatively, other blood collection tubes containing stabilizing agents, such as cell-free
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RNA Streck tubes, can be stored at room temperature for several days without adversely
affecting the results of subsequent analyses [129].

Following the collection of blood, the tubes must be centrifuged to separate the plasma.
The centrifugal force was shown to cause the inconsistent quantification of mRNA in plasma
by Wong et al. [130]. Numerous studies have attempted to determine the best centrifugation
protocol to determine the optimal concentration of cfRNA during this step [80,130,131].
Following our first study examining the effect of the centrifugal force on plasma cfRNA by
RT-qPCR, we validated two-step centrifugation protocols using target mRNA sequencing,
which was found to be the most suitable for the prevention of undesirable genomic DNA,
reducing the degradation of cfRNA and efficiently removing RNA-associated particles,
such as cell debris, from plasma [131]. To avoid cell lysis, blood cells must be centrifuged
slowly (1600× g for 10 min at +4 ◦C) first. Following this, cellular debris and fragments
can be removed from the plasma supernatant by short-term high-speed centrifugation
(16,000× g for 10 min at +4 ◦C). While collecting the plasma after the first spin, it is critical
not to disrupt the buffy coat. The plasma samples should be preserved with Trizol LS
reagent before long periods of storage at −80 ◦C, which is used for the isolation of total RNA
from cells by disrupting and dissolving cell components while maintaining the integrity of
the RNA at the same time [132].

An individual transcriptome snapshot can be approximated with cfRNA obtained
from blood samples. However, diverse methodologies for cfRNA isolation are subject to
biases that may obscure any useful biological information. Currently, commercial column-
based kits are more widely used than traditional methods, such as phenol–chloroform and
guanidium–thiocyanate. Wong et al. optimized the extraction of non-viral mRNA from
plasma using Trizol LS and the RNeasy kit together, resulting in the isolation of all RNA
molecules larger than 200 nucleotides [132]. The traditional approach favors the isolation
of selective RNA populations, which often leads to a decrease in the amount of cfRNA
produced [133]. It has been reported by Kim et al. that biological samples with low levels
of RNA cannot be extracted with the guanidium–thiocyanate approach, due to GC-poor
or highly structured miRNAs [134]. However, the technical differences related to the kit-
dependent biases will provide varying levels of plasma cfRNA content [135]. Therefore,
it is important to select the best method for the isolation of RNA based on the study’s
end goal. Meanwhile, DNA contamination is a major concern in cfRNA isolation, and an
additional step to treat the sample with DNAse before [79,131] or after extraction [136] is
necessary. Alternatively, several studies show that using carriers, such as glycogen, can
increase the RNA yield [137]. To assess the efficiency and reproducibility of an extraction
method, so-called spike-in controls can be used to spike the starting material with artificial
or exogenous ribonucleotides and quantify their recovery [137]. For the extraction of
samples with low RNA content and small RNA species, it is also suggested to add MgCl2,
to stabilize the RNA–RNA interaction [137].

A major challenge in the bioinformatics analysis of circulating RNA sequencing data
is the quality of the sequencing reads. The reads obtained from sequencing data are often
short and of low quality, which can result in errors in the alignment and quantification of
the reads [138]. Moreover, circulating RNA sequencing data may contain contaminants
and biases due to the presence of extracellular vesicles and other cellular debris in plasma
samples [139]. Identifying circulating RNA biomarkers is another challenge. It is necessary
to integrate multiple datasets from different studies and to use complex statistical models
to identify circulating RNA biomarkers [140]. Additionally, the lack of standardized
pipelines for the analysis of circulating RNA sequencing data is a significant challenge.
In the absence of standardization, different bioinformatics pipelines may yield different
results [141]. Finally, interpreting data from circulating RNA sequencing can be challenging.
To verify the biological significance of the identified circulating RNA biomarkers, functional
studies need to be performed, which are time-consuming and expensive.
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8. Future Perspectives

Future research perspectives on tumor heterogeneity in CRC patients and cfRNA
research will require further advancements in technology, as well as the integration of
multi-omics approaches. A combination of single-cell sequencing (scRNA seq) and tran-
scriptome sequencing can provide a more detailed understanding of the genetic, genomic,
and transcriptional heterogeneity within tumors. For instance, Jin et al. used published
single-cell transcriptomics datasets to deconvolute the cell type abundance among paired
plasma samples from CRC patients who underwent tumor-ablative surgery, to identify
tissue-specific contributions to the cfRNA transcriptomic profile, and they found that in-
testinal secretory cells were downregulated after surgery [24]. Besides this, an analysis
of transcriptomic profiles by scRNA seq provides a comprehensive view of the cellular
activity within the TME, as well as their interactions with each other. Through scRNA seq,
the molecular and genomic profiling of high-quality and high-quantity immune cells can be
performed and cellular heterogeneity in the cancer microenvironment can be assessed [142].
Advances in technology, such as next-generation sequencing (NGS) and single-cell tran-
scriptomics, enable a more comprehensive analysis of intra-tumor heterogeneity. The focus
of future research should be on integrating multi-omics approaches and exploring the
dynamics of tumor heterogeneity in order to identify novel therapeutic targets and to
improve personalized treatment strategies for CRC.

Many researchers have recently discovered that analyzing the patterns of DNA frag-
ment sizes in the blood allows them to identify cancer as well as its location in the body [143].
A better understanding of cfDNA fragmentation has provided several fragmentomic mark-
ers, including fragment sizes, preferred ends, end motifs, single-stranded jagged ends,
and nucleosomal footprints [144]. The application of “fragmentomics” to cfRNA remains
controversial, given that cfRNA is highly degraded and comparatively unstable compared
to cfDNA and may be cleaved by members of the ribonuclease A (RNases) superfamily,
resulting in different length distributions. Therefore, a comprehensive understanding of
cfRNA fragmentation patterns holds significant potential in advancing our understand-
ing of a variety of biological processes as well as diseases. Identifying the fragmentation
patterns of cfRNA can provide valuable insights into the mechanisms by which RNA is
degraded, the stability of RNA, and the functional consequences of RNA fragmentation. It
is essential to leverage advanced technologies and analytical approaches to fully explore the
future perspectives of cfRNA fragmentation patterns. With high-throughput sequencing
techniques, such as RNA-seq, cfRNA fragmentation patterns can be comprehensively and
unbiasedly profiled [145]. Moreover, the integration of bioinformatics tools and machine
learning algorithms can facilitate the identification of specific fragmentation patterns and
their functional significance.

The clinical implementation of cfRNA-based assays relies on the crucial identification
of specific cfRNA molecules or fragmentation patterns consistently associated with cancer
diagnosis, prognosis, and treatment responses.

Future perspectives in this field hold great promise in improving cancer diagnostics,
monitoring treatment responses, and advancing personalized medicine. The standardiza-
tion of liquid biopsy workflows and the optimization of pre-analytical conditions, including
standardized protocols for blood collection, storage, and processing, are essential to ensure
the reproducibility and reliability of cfRNA analysis. Additionally, the development of
robust and sensitive techniques for cfRNA extraction, library preparation, and sequencing
is crucial to obtain accurate and consistent results. The integration of cfRNA analysis
with other liquid biopsy components, such as ctDNA and CTCs, can provide a more
comprehensive and informative picture of the tumor’s molecular profile, enhancing the
sensitivity and specificity of liquid biopsy assays and improving their clinical utility in
cancer management.
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9. Conclusions

In conclusion, the role of cfRNA in the development of CRC has been extensively
studied. CRC biomarkers, including both coding and non-coding RNAs, have emerged
as promising tools for diagnosis, prognosis, prediction, and monitoring. By comparing
the strengths and limitations of different liquid biopsy components, we can improve
our understanding and make corresponding decisions or accurately select strategies, in
order to improve their clinical utility in cancer management. The heterogeneity of patient
populations, small sample sizes, the availability of samples, and the time-consuming and
expensive nature of the methods are the most significant barriers that hinder researchers’
decisions to pursue prospective validation. It is therefore essential to identify unique
circulating signatures in CRC that are specific and sensitive by utilizing a standardized,
consistent approach throughout the entire research process, including blood collection,
plasma preparation, handling, storage, and extraction and quantification, to minimize the
risk of conducting a costly and time-consuming prospective validation study that may
result in unusable results. The characterization of the TME and the understanding of its
function and formation will contribute to an improved understanding of its potential as a
CRC biomarker in the future.
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