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Abstract: Dietary intervention in the treatment of ulcerative colitis involves, among other things,
modifications in fatty acid content and/or profile. For example, replacing saturated long chain fatty
acids with medium chain fatty acids (MCFAs) has been reported to ameliorate inflammation. The
Black Soldier Fly Larvae’s (BSFL) oil is considered a sustainable dietary ingredient rich in the MCFA
C12:0; however, its effect on inflammatory-related conditions has not been studied until now. Thus,
the present study aimed to investigate the anti-inflammatory activity of BSFL oil in comparison
to C12:0 using TLR4- or TLR2-activated THP-1 and J774A.1 cell lines and to assess its putative
protective effect against dextran sulfate sodium (DSS)-induced acute colitis in mice. BSFL oil and C12:0
suppressed proinflammatory cytokines release in LPS-stimulated macrophages; however, only BSFL
oil exerted anti-inflammatory activity in Pam3CSK4-stimulated macrophages. Transcriptome analysis
provided insight into the possible role of BSFL oil in immunometabolism switch, involving mTOR
signaling and an increase in PPAR target genes promoting fatty acid oxidation, exhibiting a discrepant
mode of action compared to C12:0 treatment, which mainly affected cholesterol biosynthesis pathways.
Additionally, we identified anti-inflammatory eicosanoids, oxylipins, and isoprenoids in the BSFL
oil that may contribute to an orchestrated anti-inflammatory response. In vivo, a BSFL oil-enriched
diet (20%) ameliorated the clinical signs of colitis, as indicated by improved body weight recovery,
reduced colon shortening, reduced splenomegaly, and an earlier phase of secretory IgA response.
These results indicate the novel beneficial use of BSFL oil as a modulator of inflammation.

Keywords: black soldier fly larvae (BSFL); medium chain fatty acid (MCFA) C12:0; dextran
sulfate sodium (DSS)-induced colitis; macrophage; Toll-like receptor (TLR); lipopolysaccharides (LPS);
Pam3CSK4; proinflammatory cytokine; mammalian target of rapamycin (mTOR); peroxisome proliferator-
activated receptor (PPAR)

1. Introduction

Multiple dietary approaches have been adopted to evaluate the effects of various fatty
acids (FAs) on inflammatory bowel disease (IBD) and one of its main forms, ulcerative
colitis (UC). Toll-like receptors (TLRs) are pattern-recognition receptors (PRRs), key compo-
nents of the host immune system, which facilitate the recognition of pathogen-associated
molecular patterns (PAMPS) and initiate inflammatory signaling to effectively clear the
insult However, the excessive stimulation of TLRs can cause an imbalance between the
proinflammatory and anti-inflammatory factors that underlie the clinical features found
in inflammatory diseases. The expression of the genes coding for TLR 2, 4, 8, and 9 was
reported to be upregulated in patients with active UC [1]. Typically, the activation of TLR4
is preceded by the binding of Gram-negative bacterial lipopolysaccharides (LPS) to the
CD14 protein, which is then transferred to a TLR4/myeloid differentiation protein 2 (MD2)
complex to form a heterotetramer [2]. The lipid A region of LPS contains numerous satu-
rated fatty acyl chains, including lauric acid (C12:0) [3], that are required for binding to the
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hydrophobic pocket of MD2 [4,5]. TLR2/TLR1 and TLR2/TLR6 heterodimers are stimu-
lated by tri-acylated and di-acylated lipopeptides, respectively [6,7]. TLRs activation may
lead to several possible signaling cascades. The engagement of the myeloid differentiation
primary response 88 (MyD88) and/or the Toll/IL-1R domain-containing adaptor-inducing
IFN-β (TRIF) adaptor proteins ultimately leads to the activation of transcription factors
such as the nuclear factor-kappa B (NF-κB), activator protein-1 (AP-1), and interferon regu-
latory factor 3 (IRF3), resulting in an increase in the gene transcription of proinflammatory
factors [2,8]. The phosphoinositide 3-kinase (PI3K)/Akt pathway, which may also be acti-
vated upon TLR dimerization, is reported to be involved in immunometabolism, regulating
macrophage polarization phenotypes through the mammalian target of rapamycin (mTOR)
complex 1 [9]. The two extremes of functional polarization phenotypes are defined as
M1 (classically activated) and M2 (alternatively activated) macrophages, and they use
distinct metabolic programs to fuel their functions. Whereas M1-like macrophages are
reportedly driven via mTORC1 signaling, leading to the expression of glycolytic genes and
inflammatory cytokines, M2-like macrophages reportedly utilize fatty acid oxidation (FAO)
while resolving inflammation [10,11].

Black soldier fly (Hermetia illucens) larvae (BSFL) are considered the new “superstar”
producers of sustainable feed products since they provide high-quality protein. The protein
fraction is already industrialized as a premium food ingredient, but the remaining oil ex-
tract goes mostly unexploited. However, BSFL oil has a unique profile comprising 40–50%
lauric acid (C12:0), a saturated medium chain fatty acid (MCFA) carrying a backbone chain
of 12 carbon atoms. C12:0 is known for its antimicrobial effects on Gram-positive bacteria,
including gut bacteria [12]. In addition, MCFAs have distinct immunomodulatory proper-
ties. Diets enriched with MCFAs were reported to suppress inflammation in experimental
models of dextran sulfate sodium (DSS)-induced colitis compared to diets supplemented
with long chain fatty acids [13], lard [14], or ω-6 enriched formulas [15]. The inhibitory
cross-talk between C12:0 and TLR/NF-κB signaling was evidenced in vivo in LPS-induced
liver inflammation in rats [16] and in P. acnes-induced ear edema in mice [17]. Additionally,
MCFAs were also demonstrated to enhance the expression of secretory immunoglobulin
A (IgA) in response to LPS in the rat intestine [18]. Secreted IgA plays a critical role in the
defense against pathogens and has been reported to induce a therapeutic effect on colitis
models in mice [19]. In addition to C12:0, BSFL oil contains monounsaturated palmitoleic
(C16:1) and oleic (C18:1) acids. These FAs have been previously reported to increase the
gut microbiota diversity of healthy and unhealthy animal models, resulting in diminished
symptoms of IBD [20].

TLRs antagonists have been suggested to exert potential therapeutic effects aimed to
avoid intestinal inflammation [21,22]. In this context, nutritional therapy involving the
development of hit or lead compounds able to modulate TLR signaling may be of interest
in the management of inflammatory-related diseases.

This study aimed to examine the anti-inflammatory activity of BSFL oil, explore a
possible mechanism of action associated with TLR signaling in vitro, and provide a novel
assessment of BSFL oil’s putative protective effects against DSS-induced colitis in vivo.

2. Results
2.1. Suppression of TLR4-Mediated Proinflammatory Cytokines by Modified BSFL Oil (MBSFL)
and C12:0 in Macrophages

The possible anti-inflammatory activity of BSFL oil was measured using in vitro
systems of phorbol 12-myristate 13-acetate (PMA)-primed human THP-1 monocytes and
murine J774A.1 macrophages stimulated with various TLR ligands. For these in vitro
studies, the BSFL oil was saponified in order to form a modified BSFL oil (MBSFL) that
was soluble in an aqueous environment. The FA C12:0, which comprises 42% of the BSFL
oil’s FA composition (Supplementary Table S1) and is thought to play a role in mediating
anti-inflammatory responses, was used as a reference for our in vitro studies. Consequently,
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for additional comparative treatments, we selected a natural pure lauric acid (LA) and a
synthetic pure sodium laurate (SL).

Even though that cell viability remained high (Supplementary Figure S2), MBSFL
significantly reduced tumor necrosis factor alpha (TNFα) mRNA expression and protein
secretion levels, both in LPS-stimulated THP-1 and in J774A.1 macrophages. LA and SL
exhibited similar but less substantial effects, with a significant decrease in TNFα secretion
only in THP-1 cells (Figure 1A,E,I). In addition, MBSFL, LA, and SL significantly reduced
interleukin (IL)-6 and IL-1β protein secretion (Figure 1F,G,J) but had no significant effect
on the respective cytokine transcription levels (Figure 1B,C, respectively). IL-8 mRNA and
protein secretion levels were unaffected by MBSFL, LA, or SL treatment in LPS-stimulated
THP-1 cells (Figure 1D,H). J774A.1 cells did not secrete IL-1β nor IL-8, neither in resting
cells nor when cells were stimulated with LPS for 12 or 24 h.
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Figure 1. Suppression of Toll-like receptor (TLR) 4-mediated proinflammatory cytokines by modified
BSFL oil (MBSFL) and C12:0 in macrophages. Phorbol 12-myristate 13-acetate (PMA)-primed human
THP-1 and murine J774A.1 macrophages were treated with 250 µM MBSFL, 250 µM lauric acid (LA),
250 µM sodium laurate (SL), or dexamethasone (DEX; Positive control, 2 µg/mL in THP-1, 1.2 µg/mL
in J774A.1), followed by lipopolysaccharides (LPS) stimulation, compared to stimulated vehicle-
treated control (C + LPS), and untreated and unstimulated cells (GM; Negative control). (A–D) mRNA
expression and; (E–H) Protein secretion levels of tumor necrosis factor alpha (TNFα), interleukin
(IL)-6, IL-1β, and IL-8 in PMA-primed THP-1 cells stimulated with 10 ng/mL LPS for 12 h and 20 h,
respectively; (I,J) TNFα and IL-6 levels in the medium of J774A.1 cells 24 h following 7.5 ng/mL
LPS stimulation. mRNA expression was measured by qPCR (n = 4–6), and secreted cytokines in the
medium were measured by ELISA (n = 8–10); ns: not significant, * p < 0.05, ** p < 0.01, **** p < 0.0001.
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2.2. MBSFL and C12:0 Reciprocally Modulate TLR2-Mediated Proinflammatory Cytokines
Expression and Secretion in Macrophages

The putative anti-inflammatory effect of MBSFL and C12:0 was further investigated
by the evaluation of their potential to suppress proinflammatory cytokines expression and
secretion induced by either a TLR2-TLR1 ligand, Pam3CSK4 (Pam3), or a TLR2-TLR6 ligand,
Pam2CSK4 (Pam2). MBSFL treatment significantly reduced Pam3-induced TNFα cytokine
secretion in both THP-1 and J774A.1 cells (Figure 2D,G), as well as Pam2-induced TNFα
mRNA expression in THP-1 cells and secreted protein levels in J774A.1 cells (Figure 2I,O).
MBSFL treatment additionally resulted in decreased IL-6 and IL-1β secretion induced by
Pam3 in THP-1 cells (Figure 2E,F). In contrast, LA and SL did not decrease TNFα protein
secretion in Pam3- or Pam2-stimulated THP-1 and J774A.1 cells (Figure 2D,G,L). Moreover,
LA increased TNFα levels in Pam2-stimulated J774A.1 cells (Figure 2O). The sole observed
decrease was in TNFα mRNA expression in Pam2-stimulated THP-1 cells (attributable
to LA and SL), which did not correspond with the overall obtained results (Figure 2I).
Additionally, treatment with LA or SL increased IL-6 secretion in Pam3-stimulated THP-1
cells as well as IL-6 mRNA expression and protein secretion in Pam2-stimulated THP-
1 cells compared to the control. IL-6-induced mRNA expression and protein secretion
were partially significant in both Pam3- and Pam2-stimulated THP-1 cells when compared
to MBSFL treatment, suggesting a reciprocal modulation effect of MBSFL vs. C12:0 in
TLR2-mediated signaling (Figure 2B,E,J,M).
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Figure 2. MBSFL and C12:0 reciprocally modulate TLR2-mediated proinflammatory cytokines
expression and secretion in macrophages. PMA-primed THP-1 and J774A.1 macrophages were
treated with 250 µM MBSFL, 250 µM LA, 250 µM SL, or DEX (positive control, 2 µg/mL in THP-1,
1.2 µg/mL in J774A.1), followed by stimulation with a TLR2 ligand and compared with stimulated
vehicle-treated controls (C + Pam3 or C + Pam2) and untreated and unstimulated cells (GM; Negative
control). (A–C) mRNA expression and; (D–F) Protein secretion levels of TNFα, IL-6, and IL-1β in THP-
1 cells stimulated with 50 ng/mL Pam3CSK4 (Pam3) for 12 h and 20 h, respectively; (G,H) TNFα and
IL-6 levels in the medium of J774A.1 cells 24 h following 50 ng/mL Pam3 stimulation; (I–K) mRNA
expression and; (L–N) Protein secretion levels of TNFα, IL-6, and IL-1β in THP-1 cells stimulated with
1 ng/mL Pam2CSK4 (Pam2) for 6 h and 20 h, respectively; (O,P) TNFα and IL-6 levels in the medium
of J774A.1 cells 24 h following 25 ng/mL Pam2 stimulation. mRNA expression was measured by
qPCR (n = 4–6), and secreted cytokines in the medium were measured by ELISA (n = 8–10); ns: not
significant, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

2.3. Treatment with MBSFL or SL Differentially Modifies the Transcriptome Profile of LPS or
Pam3-Stimulated THP-1 Cells

To identify the effect of MBSFL on TLR-mediated proinflammatory signaling pathways
compared to C12:0, we performed RNA sequencing (RNA-seq) analysis on PMA-primed
THP-1 cells stimulated with LPS or Pam3 in the presence or absence of MBSFL or SL.
The transcriptomic analysis identified that, in LPS-stimulated cells, treatment with MB-
SFL or SL essentially resulted in the upregulation of 27 Differentially Expressed Genes
(DEGs) and 25 DEGs, respectively. Among them, the peroxisome proliferator-activated
receptor (PPAR) β/δ directed target genes Carnitine palmitoyltransferase 1A (CPT1A) and
CD300A were upregulated by both MBSFL and SL (Figure 3A). qPCR analysis validated
the RNA-seq results and further showed that the expression of these genes was downregu-
lated by LPS; however, MBSFL and SL partially restored their expression to control levels
(Figure 3B,C). The gene expression of the metabolic regulator folliculin interacting protein
1 (FNIP1) was increased by MBSFL and SL treatment as well (Figure 3A,D). Amongst the
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highest-ranking pathways regulated by MBSFL were EIF2, mitotic roles of polo-like kinase
(PLK), and EIF4-p70S6K pathways (Figure 3E, Supplementary Table S4A). The graphical
summaries show the possible network effect of MBSFL treatment in activating peroxisome
proliferator-activated receptor-gamma coactivator (PGC) 1α-PPAR pathway in loop with
the activation of the NFE2-Like BZIP Transcription Factor 2 (NFE2L2) gene, which encodes
the nuclear factor erythroid 2-related factor 2 (NRF2), as well as the downregulation of
nuclear receptor-interacting protein 1 (NRIP1, aka RIP140) (Figure 3F). Nonetheless, inter-
estingly, LPS-stimulated macrophages treated with SL predicted the activation of sterol
regulatory element binding transcription Factor 2 (SREBF2, encodes SREBP2) at the core of gene
interaction, predominantly enriching the cholesterol biosynthesis pathway (Figure 3E,G).
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Figure 3. Differential transcriptome profile upon treatment with MBSFL or SL in TLR4-activated
macrophages. PMA-primed THP-1 cells were treated with 250 µM MBSFL or 250 µM SL, followed
by stimulation with 10 ng/mL LPS for 12 h and compared to stimulated vehicle-treated control
(C + LPS). (A) Heatmap of Differentially Expressed Genes (DEGs). The log 2-normalized counts
were standardized to have a zero mean and standard unit variance for each gene. The standardized
log counts were used for clustering analysis. The expression profile is accompanied by a color bar
indicating the standardized log 2-normalized counts; (B–D) mRNA expression of selected DEGs,
assessed by qPCR. Data are indicated as mean ± SEM (n = 4–6); ns: not significant, * p < 0.05,
** p < 0.01, *** p < 0.001, **** p < 0.0001; (E) Lists of selected canonical pathways affected by MBSFL or
SL treatment; (F,G) Graphical interaction networks of the major biological themes and their predicted
relationship affected by MBSFL or SL, respectively, based on Ingenuity Pathway Analysis (IPA), using
the threshold of fold changes ≥ 1.6 and p < 0.01.
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Transcriptomic analysis of Pam3-stimulated PMA-primed THP-1 cells identified that
MBSFL treatment resulted in 47 DEGs, of which 37 were downregulated and 11 were upreg-
ulated. SL treated macrophages exhibited 53 DEGs, of which 27 were downregulated and
26 genes were upregulated, compared to the stimulated but untreated cells in the control
group. MBSFL treatment reduced the transcript levels of genes involved in mTOR signaling
(encoding ribosomal proteins RPS27, RPS29) and genes encoding proinflammatory stimu-
lators (IL-23, nucleophosmin 1 (NPM1), pituitary tumor transforming gene 1 (PTTG1), ribosomal
protein 9 (RPL9), and serglycin (SRGN)), as well as genes involved in promoting macrophage
polarization toward an M1 phenotype (Oxidized low-density lipoprotein receptor 1 (OLR1)
and long noncoding RNA GAS5). Among the genes that were upregulated are PPAR
direct target genes CPT1A, PLIN2, and pyruvate dehydrogenase Kinase 4 (PDK4) (Figure 4A).
The DEGs of interest, which were involved in different biological processes, were further
validated using qPCR (Figure 4B–E). The results of canonical Ingenuity Pathway Anal-
ysis (IPA) indicated that MBSFL could be involved in 284 canonical pathways, with the
EIF2 signaling and mTOR signaling pathways found to be the highest-ranking signaling
pathways (Figure 4F, Supplementary Table S4B). Graphical summaries of the IPA network
showed that the anti-inflammatory network effect resulting from MBSFL supplementation
was predicted to be related to biological processes involving the inhibition of TLRs, RELA
(NF-κB p65 subunit), TNF, and IL-1β cytokines, as well as the upregulation of RICTOR (the
main component of mTORC2) (Figure 4G). In contrast, SL treatment activated signaling
pathways involved mainly in cholesterol biosynthesis (Figure 4F), and the associated inter-
action network map predicted the activation of SREBF2 to be linked to the downregulation
of endothelial Per-Arnt-Sim (PAS) domain protein 1 (EPAS1; aka HIF2A) transcription
factor and the downregulation of interferon (IFN) responses (Figure 4H).

Figure 4. Cont.
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Figure 4. Differential transcriptome profile upon treatment with MBSFL or SL in TLR2-activated
macrophages. PMA-primed THP-1 cells were treated with 250 µM MBSFL or 250 µM SL, followed
by stimulation with 50 ng/mL Pam3 for 12 h and compared to stimulated vehicle-treated control
(C + Pam3). (A) Heatmap of DEGs. The log 2-normalized counts were standardized to have a zero
mean and standard unit variance for each gene. The standardized log counts were used for the
clustering analysis. The expression profile is accompanied by a color bar indicating the standardized
log 2-normalized counts; (B–E) mRNA expression of selected DEGs, assessed by qPCR. Data are indi-
cated as mean ± SEM (n = 4–6); ns: not significant, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001;
(F) Lists of selected canonical pathways affected by MBSFL or SL treatment; (G,H) Graphical interac-
tion network of the major biological themes and their predicted relationship affected by MBSFL or
SL, respectively, based on IPA, using the threshold of fold changes ≥ 1.6 and p < 0.01.
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2.4. Fatty Acid Composition of the BSFL Oil Is Not Directly Correlated to Its
Anti-Inflammatory Effect

To assess the possible anti-inflammatory effect of BSFL FAs’ unique composition over
a single pure C12:0 component, a synthetic FAs mixture that mimics BSFL’s FA profile
was prepared. In contrast to MBSFL treatment effect, treatment with the FAs mixture did
not reduce TNFα secretion in LPS- or Pam3-stimulated J774A.1 or PMA-primed THP-1
macrophages. Moreover, a significant reduction in TNFα levels by FAs mixture was
observed only when J774A.1 and THP-1 cells were stimulated with Pam2 (Figure 5).
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Figure 5. Effect of a synthetic FAs mixture on TNFα secretion in activated macrophages. (A–C) PMA-
primed THP-1 cells were treated with 250 µM FAs mixture (MixFA) or 2 µg/mL DEX, followed by
stimulation with 10 ng/mL LPS (A), 50 ng/mL Pam3 (B), or 1 ng/mL Pam2 (C) for 20 h. (D–F) J774A.1
macrophages were treated with 250 µM MixFA or 1.2 µg/mL DEX, followed by stimulation with
7.5 ng/mL LPS (D), 50 ng/mL Pam3 (E), or 25 ng/mL Pam2 (F) for 24 h. Results were compared
to vehicle-treated (C-OH) stimulated controls and untreated and unstimulated cells (GM; Negative
control). TNFα in the medium was measured by ELISA (n = 8–10), ns: not significant, **** p < 0.0001.

2.5. The Ensemble of Anti-Inflammatory Bioactive Lipids Comprising BSFL Oil May Contribute to
Its Anti-Inflammatory Activity

The relatively weak correlation between C12:0 content and BSFL oil anti-inflammatory
activity led us to search for additional lipid mediators that could potentially contribute to
the overall anti-inflammatory characteristics of MBSFL. To this end, we conducted LC–MS
analysis to quantify eicosanoid levels since some eicosanoids have been shown to exert
pleiotropic signaling functions in metabolic homeostasis and immune responses. We mea-
sured the levels of pro-resolving cytochrome P450 (CYP450)-derived ω6 metabolites 9,10-
epoxyoctadecenoic acid (9,10-EpOME), 9,10-dihydroxy-12Z-octadecenoic acid (9,10-DiHOME),
and 11,12-epoxyeicosatrienoic acid (11,12-EET), the levels of the anti-inflammatoryω3 andω6
15-lipoxygenase (LOX)-derived 13S-hydroxy-9Z,11E,15Z-octadecatrienoic acid (13S-HOTrE)
and 15S-hydroperoxyeicosatetraenoic acid (15S-HpETE), respectively, as well as the anti-
inflammatory 12-LOX-derived lipoxin A4 (LXA4) and 12S-hydroxyeicosapentaenoic acid
(12S-HEPE) levels. 5-LOX-derived proinflammatory leukotriene (LT) B3 and LTC4 were
also detected but only at lower concentrations. Additionally, we identified prostanoids of
cyclooxygenase-2 (COX-2)-derived proinflammatory prostaglandin E2 (PGE2) and 6-keto
prostaglandin F1α (6-keto PGF1α) on one hand and negative autoregulators PGA1 and PGA2
on the other hand. N-acylamides, oleoyl serotonin (OA-5-HT) and N-acylethanolamines
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(NAEs) such as stearoyl ethanolamide (SEA), palmitoyl ethanolamide (PEA) and oleoyl
ethanolamide (OEA), were also detected (Table 1).

Table 1. LC–MS quantitative analysis of eicosanoids in MBSFL.

Group Compound Concentration
(pg/µL)

ω3 metabolite 13S-hydroxy-octadecadienoic acid (13S-HOTrE) 31,505
17,18-Dihydroxyeicosatetraenoic acid (17,18-DiHETE) 1654
12S-hydroxyeicosapentaenoic acid (12S-HEPE) 150

ω6 metabolite 9,10-dihydroxyoctadecenoic acid (9,10-DiHOME) 91,118
9,10-epoxyoctadecenoic acid (9,10-EpOME) 6390
12-hydroxyoctadecadienoic acid (12-HODE) 12,058
11,12-epoxyeicosatrienoic acid (11,12-EET) 224
Lipoxin A4 (LXA4) 1048
15S-hydroperoxyeicosatetraenoic acid (15S-HpETE) 989
5S-hydroxyeicosatetraenoic acid (5S-HETE) 159

Prostanoid Prostaglandin A1 (PGA1) 330
Prostaglandin B2 (PGB2) 1348
Prostaglandin E2 (PGE2) 1338
6-keto Prostaglandin F1α (6-keto PGF1α) 2898
Thromboxane B1 (TXB1) 5991

Leukotriene Leukotriene B3 (LTB3) 427
Leukotriene C4 (LTC4) 222

N-acylamide N-Linoleoyl Leucine 74,687
N-Oleoyl Valine 13,233
N-Palmitoyl Glycine (PalGly) 10,007

N-acylethanol amine (NAE) Stearoyl Ethanolamide (SEA) 16,739
Oleoyl Ethanolamide (OEA) 2608
Palmitoyl Ethanolamide (PEA) 383

N-acyl serotonin Oleoyl Serotonin (OA-5-HT) 7954

LC–MS analysis for the detection of metabolites associated with the mevalonate
pathway in the MBSFL identified the presence of macrophage immune regulatory sterols,
squalene, and dolichols. Ubiquinone profile of MBSFL was also determined (Table 2).

Table 2. LC–MS quantitative analysis of mevalonate pathway metabolites in MBSFL.

Group Compound Concentration (nmol/g)

Sterols Lanosterol 20.40
Desmosterol 2.17
7-Dehydrocholesterol (7-DHC) 0.56
Dihydrolanosterol 0.12
Zymosterol 2.31
Zymostenol 0.83

Ubiquinones CoQ-06 2.02
CoQ-07 2.76
CoQ-08 1.89
CoQ-09 24.19
CoQ-10 0.68
CoQ-11 0.03

Squalene 37.82
Dolichols (13 to 21 isoprene units) 42.71
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2.6. Amelioration of Colitis-Associated Indicators in DSS-Treated Mice by BSFL Oil

The putative protective role of BSFL oil in the management of inflammatory-related
diseases was investigated using a DSS-induced acute colitis mice model, in which the
effect of a BSFL oil (20%) diet was evaluated and compared to palm oil or soybean oil
diets. The resulting FA compositions of the diets are illustrated in Figure 6A. Within the
experimental period (25 days), changes in body weight followed a similar pattern among
the various groups (Figure 6B). All mice groups treated with 2.5% DSS showed body weight
loss starting from day 3 post DSS administration (day 17), followed by a recovery stage
beginning from day 23. However, the extent of weight loss was significantly smaller, and
concomitantly the increase in body weight during the recovery period was significantly
larger in DSS-treated mice fed with a BSFL oil diet compared with DSS-treated mice fed
either with soybean oil or palm oil diets, even though all groups received iso-caloric diets
(Supplementary Table S2) and food intake was overall similar among the DSS groups
(Supplementary Table S3). Disease activity index (DAI) was measured every day upon
DSS administration to quantify the severity of colitis development (Figure 6C). DAI of
DSS-treated mice was significantly elevated on day 16 compared to baseline and reached
its maximum on day 21. There were no significant differences in DAI among the different
dietary DSS groups, except on day 18 of the trial, in which mice fed palm oil diet had a
lower DAI score (p < 0.05).
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consumed (Figure 7A). There were no significant differences in neutrophil infiltration 
(Figure 7B) and crypt loss (Figure 7C,D), projecting the possible consequences of the 5-
day recovery period used in the present study. Myeloperoxidase (MPO) activity, a marker 
of neutrophil influx into the tissue, although repeated a similar pattern of insignificance 
between the different DSS-treated groups, increased significantly in the DSS-treated mice 
fed with palm oil when compared to that of the control group (Figure 7E).  

Figure 6. Effect of BSFL oil treatment on the clinical signs of dextran sulfate sodium (DSS)-induced
colitis: (A) FA composition of diets containing 20% soybean oil, palm oil, or BSFL oil; (B) Percentage
change in body weight; (C) Disease activity index (DAI), a summation of body weight loss, stool con-
sistency, and fecal blood; (D) Representative pictures displaying colonic tissues length; (E) Changes
in colon length; (F) Changes in spleen weight. Data presented indicate the mean ± SEM (n = 6–10),
ns: not significant, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.



Int. J. Mol. Sci. 2023, 24, 10634 13 of 23

Remarkably, the colon length of DSS-treated mice fed with a BSFL oil-based diet was
significantly longer compared to DSS-treated mice fed with soybean oil- or palm oil-based
diets (p < 0.05; Figure 6D,E). Colon shortening as a result of DSS treatment reached 18.8%
(p < 0.0001) in BSFL oil diet-fed mice in comparison with 27.9% (p < 0.0001) and 32.2%
(p < 0.0001) colon shortening in soybean oil diet-fed mice and palm oil diet-fed mice,
respectively, when compared with that of DSS-untreated mice. Furthermore, as shown in
Figure 6F, the diet containing BSFL oil showed a protective effect on spleen overactivity,
as the spleen weight of mice fed with a BSFL oil-based diet was significantly smaller than
the spleen weight of mice fed with soybean oil or palm oil diets (p < 0.05). In addition, in
comparison with DSS-untreated mice, the spleen weights of DSS-treated mice fed with
soybean oil and palm oil diets were significantly larger (90.24%, p < 0.0001; 46.54%, p < 0.01,
respectively) in contrast to DSS-treated mice fed with a BSFL oil-based diet (31.3% increase,
a negligible difference).

2.7. Histopathological Signs of Colitis in DSS-Treated Mice as a Function of Diet Composition

Histological analysis revealed an increase in the infiltration of lymphocyte cells in
the colonic mucosa, which was induced by DSS treatment and unaffected by the type of
diet consumed (Figure 7A). There were no significant differences in neutrophil infiltration
(Figure 7B) and crypt loss (Figure 7C,D), projecting the possible consequences of the 5-day
recovery period used in the present study. Myeloperoxidase (MPO) activity, a marker
of neutrophil influx into the tissue, although repeated a similar pattern of insignificance
between the different DSS-treated groups, increased significantly in the DSS-treated mice
fed with palm oil when compared to that of the control group (Figure 7E).
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Treatment 

To examine whether dietarily administered BSFL oil could affect intestinal IgA pro-
duction in DSS-induced colitis, we measured the amounts of fecal IgA released as a func-
tion of time. Figure 8 illustrates that fecal IgA release increased in all DSS-treated mice 
groups compared to IgA values detected in healthy mice fed a control diet. However, mice 
fed according to a BSFL oil-based diet showed an earlier response of intestinal IgA pro-
duction, with significantly increased levels of fecal IgA as early as just 24–72 h following 
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Figure 7. Histologic markers of inflammation and myeloperoxidase (MPO) activity in colon tissues of
DSS-induced colitis mice fed with a soybean oil-, palm oil-, or BSFL oil-based diet compared to healthy
mice fed with a soybean oil-based diet (control). Colonic histopathological score of (A) Lymphocyte
infiltration; (B) Neutrophil infiltration; (C) Crypt loss; (D) Representative images of hematoxylin and
eosin (H&E) staining of colon tissue from each group (original magnification ×10); (E) MPO activity
in colon tissue. Values are the mean ± SEM (n = 4–10), ns: not significant, ** p < 0.01, *** p < 0.001,
**** p < 0.0001.



Int. J. Mol. Sci. 2023, 24, 10634 14 of 23

2.8. BSFL Oil Induces an Enhanced Earlier Expression of Secretory IgA in Response to
DSS Treatment

To examine whether dietarily administered BSFL oil could affect intestinal IgA produc-
tion in DSS-induced colitis, we measured the amounts of fecal IgA released as a function
of time. Figure 8 illustrates that fecal IgA release increased in all DSS-treated mice groups
compared to IgA values detected in healthy mice fed a control diet. However, mice fed
according to a BSFL oil-based diet showed an earlier response of intestinal IgA produc-
tion, with significantly increased levels of fecal IgA as early as just 24–72 h following
DSS administration, compared to DSS-treated mice fed according to soybean oil- or palm
oil-based diets.
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soybean oil-based diet (control). Values are the mean ± SEM (n = 7–10); ns: not significant, * p < 0.05,
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3. Discussion

This study aimed to evaluate the potential of BSFL oil extract in functioning as a novel
putative immunomodulator for the amelioration of IBD based on the notion that this oil
extract is rich in lauric acid, which has been reported to exert antimicrobial effects on gut
bacteria [12] and anti-inflammatory activity in experimental models in vivo [16,17]. To our
knowledge, the role of BSFL oil in inflammation has never been studied until now.

Macrophages are resident cells of almost every tissue in the body and provide key
orchestrators of chronic inflammatory disorders. Macrophages have been reported to
play a role in the pathological progression of UC disease in comparison with other leuko-
cytes [23]; thus, this evidence prompted us to explore the potential anti-inflammatory
effect of MBSFL in murine J774A.1 and PMA-primed human THP-1 macrophages stimu-
lated with various TLR ligands, as a model of inflammation in vitro. Overall, the results
indicate that MBSFL exerts a distinct modulatory effect in activated macrophages, possi-
bly dependent on both TLR4 and TLR2 signaling. This premise is based on the finding
that MBSFL treatment resulted in a clear reduction in TNFα, IL-6, and IL-1β secretion
in LPS-stimulated macrophages, as well as a reduction in secreted TNFα and IL-6 in
Pam3-stimulated macrophages. In comparison, C12:0 LA and SL suppressed the release of
proinflammatory cytokines TNFα, IL-6, and IL-1β only in LPS-stimulated PMA-primed
THP-1 and J774A.1 macrophages. These results are in agreement with those described by
Nishimura et al. [24], who showed that LA suppressed TNFα, IL-1β, and IL-6 cytokine
production by LPS-stimulated primary microglia. It is worth noting that C12:0 has been
reported to promote both TLR4- and TLR2-mediated inflammation, but only in resting,
non-activated macrophage cell lines [25–27]. BSFL oil contains 42% C12:0, and although
both LA and SL suppressed the release of proinflammatory cytokines in TLR4-activated
macrophages, LA and SL treatment of TLR2-activated PMA-primed THP-1 cells failed to
decrease TNFα secreted levels and resulted in increased IL-6 mRNA expression and protein
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secretion compared to both control and MBSFL treated cells. Therefore, these discrepant
findings were further investigated and clarified using RNA-seq.

Transcriptome analysis of TLR-activated macrophages in the presence or absence of
MBSFL supported its anti-inflammatory effect. In Pam3-stimulated PMA-primed THP-1
cells treated with MBSFL, a significant downregulation of the expression of genes in-
volved in macrophage pro-inflammatory activation was predicted, along with a shift
in lipid-glucose metabolism. MBSFL treatment reduced the transcription levels of vari-
ous proinflammatory stimulators: the proinflammatory cytokine IL-23A, NPM1, which,
when secreted by macrophages, binds TLR4 and promotes TNFα production [28] and
the inflammation-related oncogene PTTG1 [29] and SRGN and RPL9, whose knockouts
were reported to decrease NF-κB activation in vitro [30,31]. The genes encoding ribosomal
proteins RPS27 and RPS29 were also reduced by MBSFL treatment. The inhibition of
mTORC1 is thought to result in the downregulation of genes encoding ribosomal proteins
in the 60S and 40S subunits, including RPS27 [32]. Furthermore, MBSFL treatment resulted
in a decreased expression of M1-associated macrophage markers such as OLR1 [33] and
GAS5 [34]. The anti-inflammatory network effect resulting from MBSFL supplementation
was predicted to be related to biological processes involving the inhibition of TLRs and
RELA transcription factor and upregulation of RICTOR, suggesting alterations in EIF2
signaling and mTOR signaling. The downregulation of the PI3K/AKT/mTOR pathway
was reported to suppress M1 macrophage polarization, thus ameliorating DSS-induced
UC in the mice [35]. Concurrently, MBSFL treatment resulted in an increased expression of
PPAR direct target genes PDK4 and CPT1A, the latter of which is the rate-limiting enzyme
in FAO. The suggested increase in FAO coincides with the observed decrease in the expres-
sion of genes associated with M1 activation, as M2-like macrophages are reported to utilize
FAO while resolving inflammation induced by PPARγ and controlled by mTORC2 [10].
These results can provide a new and interesting research direction for future studies, po-
tentially leading to investigations into the role of MBSFL in immunometabolism involving
macrophage polarization switch and the control of mTOR signaling. In LPS-stimulated
macrophages, a similar pattern involving the upregulation of PPAR direct target genes,
such as CPT1A, SLC25A20, and CD300A, by MBSFL treatment was observed. PPARβ/δ
activation of CD300A was previously reported to inhibit TLR4 signaling [36]. A PPARα/δ
agonist, lanifibranor, was reported to reduce the expression of proinflammatory mediators
while upregulating genes involved in lipid metabolism in hepatic metabolically activated
macrophages (derived from infiltrating monocytes) [37]. Taken into consideration that
PPARs are nuclear receptors that bind FAs and integrate metabolic and inflammatory sig-
naling pathways [38], a pathway predicted by our results of the gene interaction network
map to be affected by MBSFL treatment, it is important to further validate the potential role
of MBSFL as a PPAR agonist in future studies. An analysis of the IPA network showed that
the possible role of MBSFL in the activation of PPARα and PPAR
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naling, resulting in increased SREBP2 transcriptional activity and cholesterol biosynthe-
sis, while contrasting type I and II IFN signaling [43]. This predicted signaling may par-
tially explain our results of increased proinflammatory cytokines secretion in TLR2-acti-
vated THP-1 macrophages treated with SL. Whether C12:0 is a weak agonist of TLR2 

is seemingly linked to
the activation of PGC1α and the NRF2 coding gene NFE2L2, as well as the downregulation
of the RIP140 (NRIP1) transcription regulator. PGC1αwas reported to counteract the induc-
tion of inflammation by reducing the activity of NF-κB [39] and to promote mitochondrial
antioxidant enzyme expression through the NFE2L2 pathway [40]. RIP140 antagonizes
PGC1α and PGC1β activity [41], and its overexpression was reported to inhibit mito-
chondrial ATP production, enhance glycogenesis, promote the translocation of NF-κB, and
increase the production of proinflammatory cytokines in vitro [42]. Therefore, the predicted
alterations in the expression of these genes induced by MBSFL treatment further support
the anti-inflammatory effect of MBSFL in LPS-stimulated macrophages.

The possible role of MBSFL in immunometabolism switch was not proven to be
attributed to its high C12:0 content. DEGs and bioinformatics analysis showed that treat-
ing LPS- or Pam3-stimulated PMA-primed THP-1 cells with SL induced the upregula-
tion of pathways mainly involved in cholesterol biosynthesis, presumably mediated via
the SREBF2-induced upregulation and downregulation of IFN responses, clearly propos-
ing a different mechanism of action in comparison with the treatment effect of MBSFL.
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Macrophages are reported to shift their cholesterol metabolism in a context-specific manner
to ensure the generation of inflammation. Supporting this view, SL shares a TLR2 agonistic
character, as TLR2 agonists are reported to activate MyD88-dependent AKT/mTOR sig-
naling, resulting in increased SREBP2 transcriptional activity and cholesterol biosynthesis,
while contrasting type I and II IFN signaling [43]. This predicted signaling may partially
explain our results of increased proinflammatory cytokines secretion in TLR2-activated
THP-1 macrophages treated with SL. Whether C12:0 is a weak agonist of TLR2 remains
an intriguing question. Furthermore, these findings challenge a paradigm by which C12:0
contributes to MBSFL potency to modulate TLR-mediated proinflammatory signaling.

LC–MS analysis for the detection of potent bioactive lipid metabolites resulted in a
broad array of potent bioactive eicosanoids, oxylipins, and metabolites of the mevalonate
pathway, providing a new perspective in BSFL oil analyses. These metabolites include
the CYP450-derived LA and AA epoxy-oxylipins, which have already been proven to
play a role in monocyte lineage recruitment and resolution activity during inflammatory
resolution [44]. Specifically, 9,10-DiHOME and 9,10-EpOME have been studied for their
dual association in inflammation and negative feedback that limits inflammation and pain
perception [45]. The following were also detected: 15-LOX-derivedω3 13S-HOTrE which
was reported to reduce IL-1β secretion and increase IL-10 secretion [46], 15-LOX-derived
ω6 15S-HpETE which was reported to down regulate TNFα, and 12-LOX-derived LXA4
and 12SHEPE which were reported to exert anti-inflammatory effects. In addition, the
presence of N-acylserotonin OA-5-HT and NAEs such as SEA, PEA, and OEA, which are
key fundamental signaling molecules that have been shown to possess anti-inflammatory
properties in vivo [47–49], may also potentially contribute to MBSFL anti-inflammatory
activity. N-linoleoyl leucine, N-oleoyl valine, and N-palmitoyl glycine were also detected;
however, their role in inflammation is yet to be elucidated. Contributing to the complexity
of the ensembled eicosanoids detected in MBSFL, we identified molecules opposing regula-
tory actioned PGs, such as PGE2 and 6-keto PGF1α, molecules demonstrated to be involved
in processes leading to the classic signs of inflammation [50], and additionally PGB2, which
has been reported to modulate NO production in LPS-stimulated RAW264.7 [51], and
PGA1, which has been reported to directly inhibit IKK (leaving NF-κB inactive) [52]. We
also identified metabolites of the mevalonate pathway that could serve as potential anti-
inflammatory mediators within the MBSFL: Ubiquinones, squalene which was reported to
modulate over-activation of monocytes and macrophages [53], and sterol intermediates
such as lanosterol, an endogenous immune regulator of macrophages in response to inflam-
matory stimuli [54], and desmosterol, dihydrolanosterol, and zymosterol which have been
proven to activate lipid X receptors (LXRs) [55], i.e., negative regulators of macrophage
inflammatory gene expression [56]. To our knowledge, this study is the first of its kind to
identify the presence of potent bioactive metabolites produced by BSF during its larval
stage; therefore, comparative data from the literature are absent, and the actual contribution
of these specific intermediate compounds to the anti-inflammatory activity of BSFL oil
warrants further study.

In our in vivo experiment, we showed that BSFL oil improved the clinical manifesta-
tions of experimental DSS-induced acute colitis. The efficacy of administration of a diet
rich in BSFL oil (20%) for 25 days was demonstrated in C57BL/6 mice treated with 2.5%
DSS during days 14–19 of the trial. A BSFL oil-based diet improved the body weight gain
during the recovery phase of induced colitis and ameliorated some of the predominant
clinical symptoms of colitis, such as reduced colon length and enlarged spleen. Inter-
estingly, among the DSS-treated groups, a different pattern of time-dependent increased
fecal IgA secretion was measured as follows: Mice fed according to a BSFL oil-based diet
showed an early response of intestinal IgA production that was significantly higher over
the period of DSS administration compared to DSS-treated mice fed according to soybean
oil- or palm oil-based diet. Increased fecal IgA content is related to improved gut mucosal
immune response [57], and Moon et al. demonstrated that mice with decreased levels of
IgA were more susceptible to DSS-induced colitis than those with higher IgA levels [58].
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To our knowledge, this study is the first of its kind to use BSFL oil in an in vivo colitis
model; therefore, future studies using additional established in vivo models of intestinal
inflammation should aim to validate the protective role of BSFL oil in IBD.

4. Materials and Methods
4.1. Modified BSFL (MBSFL) Oil

BSFL oil extract containing triglycerides (Entoprotech Ltd., Caesarea, Israel) was
saponified, i.e., reacted with potassium hydroxide to produce glycerol and lauric acid salts,
as described in a published international patent application WO2020234884A1 [59].

4.2. Fatty Acid–Albumin Complex

MBSFL, natural lauric acid (Sigma-Aldrich, St. Louis, MO, USA, catalog no. W261416),
synthetic sodium dodecanoate (sodium laurate; Sigma-Aldrich, catalog no. L9755), or
FA mixture (composition is detailed in Supplementary Table S6) were solubilized in al-
bumin, bovine serum (BSA; Sigma-Aldrich, endotoxin-free fraction V, FA-poor, catalog
no. 126579, or heat shock fraction, protease-free, FA-free, and essentially globulin-free,
catalog no. A7030) to a concentration of 100 mM at 45 ◦C for 30 min (stock solution).
Dexamethasone (Sigma-Aldrich, catalog no. D4902) was also mixed with BSA to compare
treatment conditions. Fresh stock solutions were prepared 24 h before each experiment.

4.3. Cell Lines

Murine macrophage J774A.1 cell line (ATCC® TIB67™, Manassas, VA, USA) were
maintained in a growth medium composed of Dulbecco’s Modified Eagle’s Medium
(DMEM; BI, Kibbutz Beit Haemek, Israel), supplemented with 10% (v/v) heat inactivated
fetal bovine serum (HI-FBS; Gibco, Paisley, UK), 1% (v/v) penicillin-streptomycin (Sigma-
Aldrich), and 0.5% (v/v) sodium pyruvate (Sigma-Aldrich). Human myeloid leukemia
cell line THP-1 (a kind gift from Prof. Gabriel Nussbaum, The Innate Immunity Lab-
oratory, The Hebrew University-Hadassah School of Dental Medicine, Israel) were cul-
tured in RPMI 1640 medium (ATCC® 30-2001™) containing 10% (v/v) HI-FBS, 1% (v/v)
penicillin-streptomycin and 1% (v/v) sodium pyruvate. Cells were maintained at 37 ◦C in
a humidified 5% (v/v) CO2 incubator.

4.4. Cell Treatment

THP-1 cells (1 × 106 cells/mL) were seeded onto a 96-well culture plate (Thermo Fisher
Scientific Inc., Roskilde, Denmark) for ELISA analysis or a 6-well plate (Eppendorf AG,
Hamburg, Germany) for qPCR analysis. In order to induce differentiation, THP-1 cells
were primed by 10 ng/mL PMA (Sigma-Aldrich) for 72 h, followed by washing with PMA-
free medium prior to treatments. J774A.1 cells (2.85 × 105 cells/mL) were seeded onto a
96-well culture plate (for ELISA analysis) and incubated for 24 h before treatment. Cells were
treated with 250 µM MBSFL, 250 µM LA, 250 µM SL, dexamethasone (2 µg/mL in THP-1
or 1.2 µg/mL in J774A.1), or a vehicle treatment (BSA alone (C), or BSA plus ethanol at a
final concentration of 0.03% (C-OH)). One hour after treatment, cells were stimulated with
7.5–10 ng/mL LPS from E. coli O111:B4 (Sigma-Aldrich, catalog no. L5024), 50 ng/mL a
synthetic triacylated lipopeptide, Pam3CSK4 (InvivoGen, San Diego, CA, USA), or a synthetic
diacylated lipopeptide, Pam2CSK4 (1 ng/mL in THP-1 or 25 ng/mL in J774A.1; InvivoGen).

4.5. Cell Viability Assay

Cell viability was evaluated by using the MTT test. Cells were seeded and treated as
described above. At the end of the experiment, supernatants were removed and fresh high
glucose DMEM without phenol red (Sartorius, Beit Haemek, Israel) containing 0.25 mg/mL
of Thiazolyl Blue tetrazolium bromide (MTT; Thermo Fisher Scientific Inc., catalog no.
L11939) was added to each well for 2 h. Finally, insoluble formazan crystals were dissolved
in 100 µL dimethyl sulfoxide (DMSO; Bio-Lab Ltd., Jerusalem, Israel) for 15 min, and the
absorbance was measured at 570 nm using a microplate reader (Infinite M Plex, Tecan
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Trading AG, Mannedorf, Switzerland). The viability was determined as the percentage of
viable cells in treated cultures compared to the percentage of the control group.

4.6. Enzyme-Linked Immunosorbent Assay (ELISA)

To detect secreted TNFα, IL-6, IL-1β, and IL-8 cytokine levels, culture supernatants
were collected and analyzed with ELISA kits (Invitrogen, Carlsbad, CA, USA) according to
the manufacturer’s instructions.

4.7. Reverse Transcription PCR (RT-PCR) and Real-Time PCR (qPCR)

Total RNA was isolated from treated THP-1 cells using Nucleospin RNA II kit
(Macherey-Nagel, Duren, Germany) and 1 µg was reverse transcribed with qScript® cDNA
Synthesis Kit (Quantabio, Gaithersburg, MD, USA). qPCR amplification was performed
using QuantStudio 1 system (Applied Biosystems Inc., Waltham, MA, USA), with Fast
SYBR™ Green Master Mix (Applied Biosystems Inc.). Primer-BLAST on-line tool was
used to design specific primers for hTNFα, hIL-6, hIL-1β, hIL-8, hRPL9, and hGAPDH.
Previously described qPCR primer sequences were used for hCPTIA [60], hCD300A [61],
hFNIP1 [62], hIL-23A [63], and hOLR1 [64]. The primers used are listed in Supplemen-
tary Table S5. All results were normalized to expression of GAPDH gene. The relative
expression levels were calculated using the 2−∆∆CT relative quantification method.

4.8. RNA Sequencing Protocol and Computational Pipeline

Library construction and sequencing. Total RNA was extracted as detailed above.
RNA-seq analysis was conducted by the Crown Genomics institute of the Nancy and
Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of
Science. A bulk adaptation of the MARS-Seq protocol [65,66] was used to generate RNA-
Seq libraries to profile the expression of THP-1-treated cells (Supplementary Method S1).
Sequence data analysis. Assembly and annotation were performed as described previ-
ously [67,68]. Differential analysis was performed using DESeq2 package (v1.26.0, Michael
Love (HSPH, Boston, MA, USA), Simon Anders, Wolfgang Huber (EMBL, Heidelberg,
Germany)) [69] with the betaPrior, cooks Cutoff, and independent Filtering parameters set
to False. Raw p values were adjusted for multiple testing using the procedure of Benjamini
and Hochberg. Pipeline was run using snakemake [70]. DEGs were determined by a p-adj
of <0.01 and absolute fold changes > 1.6 and max raw counts > 10. Bioinformatics analysis.
PCA, Hierarchical clustering, and K-Means clustering were performed (Supplementary
Method S1). Standardized, log 2-normalized counts were used for clustering analysis. Clus-
tering analysis was performed using Rstudio (v3.6.1., Boston, MA, USA). DEGs, heatmaps,
canonical pathways, and graphical networks were analyzed using Ingenuity Pathways
Analysis (IPA, Qiagen, Redwood City, CA, USA).

4.9. Metabolomics

Quantitative analysis of all metabolites was carried out by an external authorized
laboratory, Creative Proteomics (Shirley, NY, USA). For the analysis of eicosanoids and
oxylipins, a LC–MS based platform was used, as detailed in the Supplementary Method S2.
The LC gradient was adapted from Watrous et al. [71]. To quantity isoprenyl phosphate
intermediates, isoprenoids, and sterols, UPLC–MS/MS was used, as detailed in Supple-
mentary Method S3.

4.10. Animals and DSS Model

Male 8-week-old C57BL/6 mice (Envigo, Rehovot, Israel) weighing 18–22 g were
housed in an environmentally controlled room at 22 ± 2.0 ◦C and 50 ± 5% humidity with
a 12 h:12 h light/dark cycle and given food and water ad libitum. After acclimatization
for 4 days, 51 mice were randomly divided into 3 diet groups (n = 17): 20% BSFL oil
(BioBee Sde Eliyahu Ltd., Kibbutz Sde Eliyahu, Israel)-based diet, 20% palm oil-based
diet (Envigo, Madison, WI, USA), or 20% soybean oil-based diet (control group; Envigo).
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Diet compositions are detailed in Supplementary Table S2. The day of special diet com-
position administration was defined as day 0. To induce colitis, after 14 days of special
diet administration, 10 mice from each diet group were treated with 2.5% w/v DSS (Alfa
Aesar, Tewksbury, MA, USA) via introduction into drinking water for 5 additional days,
followed by a 5-day recovery. The remaining 7 mice from each diet group received normal
drinking water during the entire trial period and served as control. Control groups and
DSS-treated mice were sacrificed on days 24 and 25, respectively. A schematic diagram of
the experimental design is illustrated in Supplementary Figure S1. During the first two
weeks of the trial, body weight was recorded every 3 days. Following DSS administration,
body weight, fecal blood (Beckman Coulter, Fullerton, CA, USA), and stool consistency
were determined daily. At the end of the trial, colon length and spleen weight were
measured. One part of colon tissue was divided and fixed in 4% formaldehyde (Bio-Lab
Ltd.) for pathological examination, and the remaining parts were stored at −80 ◦C for
further analysis. All animal care and experimental procedures were approved by the joint
ethics committee of the Hebrew University and Hadassah Medical Center, Israel (approval
number: AG-20-16366-4).

4.11. Fatty Acid Composition

The prepared diets were analyzed with respect to FA content by an external authorized
laboratory Merieux NutriSciences (Milouda & Migal Laboratories, Kiryat Shmona, Israel).
The analysis was based on the official methods outlined by Association of Official Analytical
Chemists (AOAC)—Official Method 996.06 “Fat (Total, Saturated, and Unsaturated) in
Foods” (hydrolytic extraction gas chromatographic method).

4.12. Disease Activity Index (DAI)

A summation of body weight loss, stool consistency, and stool blood was calculated as
described previously [72].

4.13. Histological Analysis

Three 0.5 mm sections of the colon were fixed in 4% formaldehyde (Bio-Lab Ltd.),
embedded in paraffin, and sectioned at 4 µm thickness. The sections were stained with
hematoxylin and eosin (H&E) and examined at 100× magnification via light microscopy.
H&E-stained sections from mice were scored (0–3) by a certified pathologist.

4.14. Myeloperoxidase (MPO) Assay

The level of colonic MPO was determined according to a published method [73] with
slight modifications. The colonic tissue specimen (20–40 mg) was homogenized on ice in
potassium phosphate buffer pH 6.5 (Sigma-Aldrich) with 0.5% (w/v) hexadecyltrimethy-
lammonium bromide (HTAB; Sigma-Aldrich) by three 30 s pulses in a Bead Ruptor (OMNI
International, Kennesaw, GA, USA). The homogenate was subjected to three 20 s soni-
cations, each followed by 15 min freeze–thaw cycles. The sample was then centrifuged
at 15,000× g for 30 min at 4 ◦C. A total of 7 µL of the supernatant fraction was added in
triplicate into a 96-well plate, followed by the addition of 200 µL of o-dianisidine mixture
containing 0.0005% (v/v) H2O2 (Sigma-Aldrich) to each of the wells, and then absorbance
at 450 nm was measured with the above plate reader. MPO activity was measured in units
(U) of MPO/mg tissue, where one unit of MPO was defined as the amount needed to
degrade 1 µmoL of H2O2 per minute at room temperature.

4.15. Fecal IgA

Fecal samples were extracted according to a method published previously by Yingzi
Cong et al. [74]. Fecal IgA was measured using mouse IgA ELISA kits (RayBiotech Life,
Inc., Peachtree Corners, GA, USA), according to the manufacturer’s instructions.



Int. J. Mol. Sci. 2023, 24, 10634 20 of 23

4.16. Statistical Analysis

Data were presented as means ± SEM. The statistical differences between groups were
determined by student’s t-test or one-way analysis of variance for multiple comparisons in
GraphPad Prism 9 software (GraphPad Software Inc., San Diego, CA, USA). Differences
were considered as significant at p < 0.05.

5. Conclusions

Our study provides a convincing indication of the anti-inflammatory activity of black
soldier fly larvae (BSFL) oil in vitro and its potential to ameliorate DSS-induced colitis
in vivo. Our results offer insight into BSFL oil’s potential in counteracting the initial events
of TLR2 and TLR4 activation for macrophage innate immune function, presumably associ-
ated with a macrophage-specific immunometabolism switch. This observed phenomenon
is apparently not fully attributed to the BSFL oil’s high FA C12:0 content, as a differ-
ent mode of effect on the inflammatory signaling cascade was demonstrated. Identified
anti-inflammatory eicosanoids, oxylipins, and isoprenoids in BSFL oil may potentially
contribute to an orchestrated anti-inflammatory response. We hope that advancing our
understanding of the effect of BSFL oil on the reprogramming of intracellular metabolism
and subsequent macrophage polarization will help to underly a mechanism of action that
could be targeted to normalize metabolic homeostasis in inflammatory disease conditions.
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