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Simple Summary: Melanoma is one of the deadliest types of skin cancer, accounting for the majority
of skin cancer-related deaths. The function of Nudt2 in melanoma is unknown. The goal of this study
was to examine the role of Nudt2 in melanoma cells and in vivo model. In melanoma, Nudt2 appears
to be a tumor-promoting gene that could be utilized as a cancer therapy target.

Abstract: Nudt2 encodes a diadenosine tetraphosphate (Ap4A) hydrolase that catalyzes the hy-
drolysis of Ap4A and is involved in the lysyl tRNA synthetase-Ap4A-Nudt2 (LysRS-Ap4A-Nudt2)
signaling pathway. We have previously demonstrated that this pathway is active in non-small cell
lung cancer. Nudt2 was shown to be involved in cell proliferation in breast cancer, making it an
important target in cancer therapy. Currently, the function of Nudt2 in malignant melanoma has not
been demonstrated. Therefore, we investigated the role played by Nudt2 in the growth of human
melanoma. Our study showed that Nudt2 knockdown suppressed anchorage-independent growth
of human melanoma cells in vitro. The in vivo effect of Nudt2 was determined by investigating the
role played by Nudt2 knockdown on the ability of the cells to form tumors in a mice xenograft model.
Nudt2 knockdown significantly suppressed tumor growth in this model. Moreover, overexpression
of Nudt2 resulted in an increase in anchorage-independent growth of these cells, whereas Nudt2
knockdown decreased their migration. In addition, Nudt2 knockdown reduced vimentin expression.
Vimentin is one of the mesenchymal markers that are involved in the epithelial mesenchymal tran-
sition (EMT) process. Thus, Nudt2 plays an important role in promoting anchorage-independent
growth and cell migration in melanoma.

Keywords: Nudt2; anchorage-independent growth; xenograft model; cell migration; melanoma

1. Introduction

Nudix (nucleoside diphosphate linked moiety X)-type motif 2 (Nudt2) is a member of
the MutT family of nucleotide pyrophosphatases, a subset of the larger Nudix hydrolase
family which is widespread among bacteria, eukaryotes, and viruses [1]. Nudt2 encodes
an Ap4A hydrolase that is involved in the hydrolysis of Ap4A (diadenosine 5′, 5′′′-p1, p4-
tetraphosphate) to AMP and ATP, thus regulating the intracellular level of Ap4A. Ap4A is
found in all living cells, both prokaryotic and eukaryotic, and studies conducted in our lab
have previously identified it as a bona fide second messenger [2–5]. It is a small molecule
composed of two adenosine moieties joined in a 5′-5′ linkage by a chain of four phosphates
and was discovered as an in vitro synthesis product of lysyl-tRNA synthetase (LysRS) [6].
In activated eukaryotic cells, Ap4A is synthesized by serine 207 phosphorylated LysRS as
part of the S 207 LysRS–Ap4A signaling pathway that was discovered and characterized by
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our team [3,7–9]. Our studies showed that in activated cells both microphthalmia transcrip-
tion factor (MITF) and upstream stimulating factor 2 (USF2) are positively regulated by
Ap4A, allowing the transcription of their respective target genes [4,5] (Scheme 1). Ap4A
has been implicated in the function of many cellular process including apoptosis [10], DNA
damage response [11], and many other signaling pathways [12,13]. Nudt2 promotes prolif-
eration of breast carcinoma cells in vitro, and is a potent prognostic factor in human breast
carcinomas, under a different mechanism of estrogen [14]. RNAseq analysis in KBM-7
chronic myelogenous leukemia cells with or without Nudt2 knockdown indicated Nudt2
involvement in cell proliferation, invasion and metastasis [15]. Knockdown of Nudt2 sup-
pressed proliferation of several breast carcinoma cell lines by regulating mTROC1 activity
via physical interaction with RagGTPases [16], suggesting that Nudt2 inhibition could have
strong anti-tumor effects. Furthermore, we have shown that LysRS is phosphorylated on
serine 207 in EGFR-mutated non-small cell lung cancer, and that this phosphorylation is
correlated with increased disease-free survival [17]. We have also demonstrated that the
LysRS-Ap4A pathway is active in various melanoma cell lines [2]. During the process of
epithelial mesenchymal transition (EMT), epithelial markers, such as E-cadherin, will de-
crease and there will be an increase in mesenchymal markers, such as vimentin, N cadherin,
and matrix metalloproteases (MMPs), in addition to the involvement of many transcription
factors that regulate this process including snail, slug, and twist [18].
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Scheme 1. LysRS-Nudt2-Ap4A-Hint-1-MITF pathway in activated mast cells. Following mast
cell activation, LysRS is phosphorylated on the serine 207 residue through the MAPK pathway.
This phosphorylation dissociates LysRS from the MultiSynthetase complex (MSC), which then
translocate into the nucleus. The phosphorylated form of LysRS at serine 207 can produce an Ap4A
inside the nucleus. Ap4A will bind Hint-1 and MITF complex cause a dissociation of Hint-1 from
MITF. Upon dissociation, MITF will be able to transcribe its target genes. Upon mast cell activation,
Ap4A hydrolase (Nudt2) will associate with importin beta and it will translocate into the nucleus.
The presence of Ap4A hydrolase in the nucleus leads to hydrolysis of Ap4A into AMP and ATP
decreases its levels. When Ap4A level is decreased, Hint-1 will associate again with MITF, leading to
the resting state in the cells.
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These observations indicate that the Nudt2 may have profound importance in melanoma
proliferation. Thus, the main goal of the present study is to explore the role played by Nudt2
in melanoma cell function by using in vitro assays and the xenograft model. In addition, we
followed the effect of Nudt2 on EMT by checking vimentin expression.

2. Results
2.1. Generation of Stable Nudt2 Knockdown Melanoma Cell Lines

We have recently identified that the LysRS-Ap4A-Nudt2 pathway is involved both in
non-small cell lung cancer and melanoma. Here, we investigated whether Nudt2 plays a
role in melanoma cell growth by first lowering Nudt2 levels in these cells. Control and
Nudt2-knocked down human melanoma cell line (CHL−1) were produced using either
non-targeting or Nudt2-specific shRNA lentiviral particles. The stable knockdown of Nudt2
was verified in this cell line via the Western blot analysis and mRNA expression level was
verified using real-time PCR (Figure 1 and Figure S1).
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Figure 1. Generation of stable Nudt2 knockdown melanoma cell lines. CHL−1 melanoma cell line 

was infected with shRNA against Nudt2 (shNudt2) or non-targeting shRNA (shNC). Western blot 

analysis of Nudt2 protein in CHL−1 cell line. Relative expression level of Nudt2 to β-actin was de-

termined via Western blot (n = 7). Relative mRNA expression level was determined via qPCR (n = 

6). Results are represented as mean ± SEM. For statistical analysis, Wilcoxon signed-rank test was 

used. (* p < 0.01). 
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Figure 1. Generation of stable Nudt2 knockdown melanoma cell lines. CHL−1 melanoma cell line
was infected with shRNA against Nudt2 (shNudt2) or non-targeting shRNA (shNC). Western blot
analysis of Nudt2 protein in CHL−1 cell line. Relative expression level of Nudt2 to β-actin was
determined via Western blot (n = 7). Relative mRNA expression level was determined via qPCR
(n = 6). Results are represented as mean ± SEM. For statistical analysis, Wilcoxon signed-rank test
was used. (* p < 0.01).

2.2. Nudt2 Is Required for Anchorage-Independent Growth of Melanoma Cells

Tumorigenesis and carcinogenesis require the acquisition of many tumor features,
including increased cell growth rate and anchorage-independent growth potential [19].
The soft agar colony formation assay is an in vitro assay that is used to assess tumorigenesis
capacity. In this assay, transformed cells gain the ability to expand in the absence of
anchorage environment. The colony formation assay was used to assess the effect of Nudt2
knockdown on anchorage-independent development. Nudt2 knockdown resulted in a
reduction in colony number and size CHL−1 cell line (Figure 2A). The number of colonies
(Figure 2B) decreased by 88% in CHL−1 cell (p = 0.0312). These findings showed that
Nudt2 plays an important role in promoting anchorage-independent melanoma tumor cell
growth and tumorigenesis.
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Figure 2. Effect of Nudt2 knockdown on anchorage-independent growth (soft agar assay). shNC 

and shNudt2 melanoma cells were seeded at 1 × 104 in 24-well plates for 21 days. Colonies were 
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sented as mean ± SEM (CHL−1, n = 7). The two-tailed Wilcoxon signed-tank test was used for sta-

tistical analysis (CHL−1 p = 0.0312). (* p < 0.01). 

2.3. Nudt2 Knockdown Suppress Xenograft Tumor Growth In Vivo 

In order to explore whether Nudt2 knockdown affects tumor growth in vivo, we used 

a xenograft tumor model. For this purpose, we prepared luciferase-expressing cells from 

Nudt2 knockdown and control cells by infecting the cells with lentiviral particles contains 

luciferase-expressing vector; luciferase will help us to monitor tumor growth in in vivo 

imaging as mentioned in detail in the Materials and Methods section. NOD/SCID mice 

were subcutaneously injected with either control CHL − 1 melanoma cells or Nudt2 

knocked down IVIS; the analysis revealed a significant difference in tumor growth be-

tween the control and Nudt2 knockdown groups (p = 0.032; Figure 3D,F). The tumors in 

mice injected with CHL−1 Nudt2 knockdown cells grew at a slower rate and had a smaller 

volume than the tumors in mice injected with control melanoma cells (Figure 3G,H). Tu-

mor volume in the Nudt2 knockdown group was lower than that of the control group, 

with a reduction of 96%. The difference in tumor volume between the control and Nudt2 

knockdown groups was significant, with a p value of 0.006. These results suggest that 

Nudt2 suppressed tumor growth in this in vivo xenograft model. 

Figure 2. Effect of Nudt2 knockdown on anchorage-independent growth (soft agar assay). shNC
and shNudt2 melanoma cells were seeded at 1 × 104 in 24-well plates for 21 days. Colonies were
stained with 1 mg/mL of p-iodonitrotetrazolium violet stain. (A). Representative photomicrographs
of CHL−1. (B). Colonies were counted using Image J software( ij153-win-java8). The data are
represented as mean ± SEM (CHL−1,n = 7). The two-tailed Wilcoxon signed-tank test was used for
statistical analysis (CHL−1 p = 0.0312). (* p < 0.01).

2.3. Nudt2 Knockdown Suppress Xenograft Tumor Growth In Vivo

In order to explore whether Nudt2 knockdown affects tumor growth in vivo, we used
a xenograft tumor model. For this purpose, we prepared luciferase-expressing cells from
Nudt2 knockdown and control cells by infecting the cells with lentiviral particles contains
luciferase-expressing vector; luciferase will help us to monitor tumor growth in in vivo
imaging as mentioned in detail in the Materials and Methods section. NOD/SCID mice
were subcutaneously injected with either control CHL−1 melanoma cells or Nudt2 knocked
down IVIS; the analysis revealed a significant difference in tumor growth between the
control and Nudt2 knockdown groups (p = 0.032; Figure 3D,F). The tumors in mice injected
with CHL−1 Nudt2 knockdown cells grew at a slower rate and had a smaller volume than
the tumors in mice injected with control melanoma cells (Figure 3G,H). Tumor volume in
the Nudt2 knockdown group was lower than that of the control group, with a reduction of
96%. The difference in tumor volume between the control and Nudt2 knockdown groups
was significant, with a p value of 0.006. These results suggest that Nudt2 suppressed tumor
growth in this in vivo xenograft model.

2.4. Nudt2 Overexpression Increased Anchorage-Independent Growth in a Melanoma Cell Line

Recent research supports Nudt2’s role in the regulation of cellular proliferation in
breast cancer [14,16]. The purpose of this study was to find out whether Nudt2 has an effect
on anchorage-independent growth in melanoma cell lines. To investigate this, lentiviral
infection of human melanoma CHL−1 was used to produce stable cell lines overexpressing
wild-type (WT) Nudt2 by using PLX304-V5-Nudt2 expressing vector. As a control, infection
with an empty vector (PLX304-EV) was used. Western blot was used to compare the
expression levels of WT vs. EV. V5 antibody was used to check the overexpression of
Nudt2, which is tagged to V5 in the expression vector: it showed one band in overexpressed
cells compared with none in control. When Nudt2 antibody was used, two bands were
detected in overexpressed cells, corresponding to V5−Nudt2 fusion and to endogenous
Nudt2. In control, only endogenous Nudt2 was detected (Figure 4A). The colony formation
assay was used to determine the effect of WT Nudt2 overexpression (PLX304−V5−Nudt2)
on anchorage-independent growth (Figure 4B and Figure S2). Overexpression of WT
Nudt2 increased the colony number and colony size in CHL−1 cell compared to cells
transfected with EV (PLX304−EV). These findings suggest that Nudt2 is important to
support anchorage-independent growth in human melanoma cells.
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Figure 3. Nudt2 suppresses tumor growth in the xenograft model. CHL−1 Nudt2 knockdown or con-
trol cells were injected subcutaneously into NOD/SCID mice. (A–C). Representative images of tumor
growth in bioluminescence imaging (IVIS), 7–16 and 28 days post-injections. (D–F). Representative
measurement of tumor burden, 7–16 and 28 days post-injection (total Flux, photons/s), p = 0.032
calculated to compare total flux at day 7 vs. total flux at day 28). (G). Representative tumors from
control group and Nudt2 knockdown group after surgical removal. (H). Represent tumor volume in
control group vs. Nudt2 knockdown group p = 0. 006. Mann–Whitney test was used for the statistical
analysis in the in vivo comparisons. (* p < 0.01).
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Figure 4. Soft agar colony formation in cells overexpressing WT Nudt2(PLX304−V5−Nudt2). Stable 
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Figure 4. Soft agar colony formation in cells overexpressing WT Nudt2(PLX304−V5−Nudt2). Stable
overexpression of WT Nudt2 was generated in CHL−1 melanoma cell and the cells were seeded at
5000 cells/250 µL in 24-well plates for 21 days. (A). Expression of endogenous Nudt2, overexpressed
Nudt2 (V5−Nudt2) was analyzed via Western blot. (B). Representative photomicrographs: colonies
were stained with p-iodonitrotetrazolium violet stain. (C). Colony numbers were counted using the
Image J software(ij153-win-java8); n = 7. The data are represented as mean ± SEM. For statistical
analysis, Wilcoxon signed-rank test was used. * p < 0.01.
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2.5. Nudt2 Knockdown Decreased Cell Migration

Cells that have developed the ability to grow in an anchorage-independent environ-
ment will migrate and invade [20]. The aim of this study was to see if Nudt2 knockdown
affected cell migration. A wound scratch model was used to test the migration of melanoma
Nudt2 knockdown cell lines (Figure 5A). Every 2 h for 48 h, cell migration was calculated
as a percentage of relative wound density (RWD) (Figure 5A) (p = 0.03). Protein expression
of vimentin, a mesenchymal marker involved in EMT during metastasis, was detected in
Nudt2 knockdown and control cells of CHL−1. It was observed that vimentin expression
was reduced in Nudt2 knockdown cells compared to control (Figure 5B and Figure S3).
Moreover, expression level of N cadherin, MMP9 and snail was checked. The results
showed that there is no change in protein expression level of these proteins in Nudt2
knockdown cells compared with control (Figure S4).
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Figure 5. Effect of Nudt2 knockdown on cell migration. The ability of Nudt2 knockdown cells to 
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Figure 5. Effect of Nudt2 knockdown on cell migration. The ability of Nudt2 knockdown cells to
migrate was measured in a scratch wound assay using the IncuCyte live imaging system. (A). Micro-
scope imaging of migrating control (shNC) and Nudt2 knockdown (shNudt2) CH−1 cells acquired
at 0 and 24 h, respectively. Relative wound density (RWD%) was measured using Incucyte software
(Incucyte-2022A) metrics for every 2 h for a total of 48 h. Area under the curve (AUC) was computed
by numerical integration. Data are presented as individual experiments (CHL− -1, n = 7). p values
were calculated for the comparison between shNudt2 AUC and shNC AUC. (B). Represent expression
level of vimentin in Nudt2 knockdown and control cells in Western blot. Results are represented as
mean ± SEM, p = 0.03. (* p < 0.01).

3. Discussion

High expression levels of Nudt2 has been observed in breast cancer and it has been
shown to affect cell proliferation [14,16]. In this study, Nudt2 was shown to have a sig-
nificant role in promoting breast cancer proliferation by different mechanisms from estro-
gen [16]. Nudt2 has been demonstrated to have a role in breast cancer proliferation by
regulating mTORC1 localization and activity which are regulated by Nudt2 and RagGTPase
interactions [16]. This suggests that it is a tumor-promoting gene, and its high expression
in breast cancer cells could make it a prognostic marker for that cancer. A previous report
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showed that Nudt2 knockout in chronic myelogenous leukemia cells regulate many genes
involved in tumorigenesis and metastasis indicating that Nudt2 may have a major role
in tumorigenic potential of cancer cells [15]. All these studies showing the importance of
Nudt2 in regulation of breast cancer proliferation under different mechanisms led us to
study its roles in melanoma. In this study, we found that Nudt2 knockdown inhibited
anchorage-independent melanoma growth but without any effect on cell proliferation
(Figure 2), and its knockdown reduced tumor growth in vivo (Figure 3). Moreover, we
showed that Nudt2 overexpression increased anchorage-independent growth in human
melanoma cells (Figure 4). We wanted to understand the molecular mechanism behind
this effect. As previously shown, Nudt2 regulates cell proliferation in breast cancer cell
lines via its effect on mTORC1 activity [16]. In this study, we investigated the effect of
Nudt2 knockdown on mTROC1 downstream targets, such as p-P70 s6 kinase, but we
did not see any change in these proteins’ expression level, which indicates that Nudt2
knockdown has no effect on mTROC1 activity in melanoma and the effect of Nudt2
on anchorage-independent growth in melanoma is not mediated by mTROC1 activity.
Anchorage-independent growth is a hallmark of cancer and a contributor to cancer metas-
tasis [20]. Anchorage-independent growth is connected to EMT in many cancers [21].
EMT involves many epithelial and mesenchymal markers, such as E cadherin, N cadherin,
vimentin, slug, snail, and MMP9. During EMT, epithelial markers, such as E cadherin, will
decrease while mesenchymal protein expression will increase [18]. In this study, we checked
whether Nudt2 effect on anchorage-independent growth is accompanied by cell migration
and changes in EMT markers. Our results showed that Nudt2 knockdown decreased cell
migration in CHL−1and Nudt2 knockdown reduced the expression of vimentin without
any change in the expression level of N-cadherin, snail, and MMP9 (Figure S4). These
results indicate that Nudt2 effect on anchorage-independent growth is not fully regulated
by EMT. These results confirmed that Nudt2 is a potent regulator of tumorigenicity in
melanoma cell lines and in a xenograft model, indicating that Nudt2 is very important
to support anchorage-independent growth in melanoma and that Nudt2 could serve as
a target for cancer therapy. Further investigation is needed to understand the molecular
mechanism behind the effect of Nudt2 on anchorage-independent growth in melanoma.
Moreover, it is very important to determine whether Ap4A is involved in this process, and
if it has role, what is the mechanism behind it.

4. Materials and Methods
4.1. Cell Culture

The human melanoma cell line CHL−1 (ATCC CRL-9446) was maintained in a
growth medium containing DMEM (#01-052-1A, Biological Industries, Cromwell, CT, USA),
100 units/mL penicillin, 100 µg/mL streptomycin, 1 mM sodium pyruvate (#03-042-1B,
Biological Industries) and 10% fetal bovine serum.

4.2. Stably Transfected Melanoma Cell Lines

Human melanoma cells (1 × 106) were cultured in 6-well plates to reach 60% con-
fluence on the day of infection. They were infected with either Nudt2 shRNA lentiviral
particles (#sc-60188-V; Santa Cruz Biotechnology, Almog, Israel) or control shRNA lentiviral
particles (# sc-108080; Santa Cruz Biotechnology) using polybrene transfection reagent (#TR-
1003-G; Merck, Herzliya, Israel) at a final concentration of 8 µg/mL. The cells were then
incubated at 37 ◦C, in a 5% CO2 incubator for 24 h, after which the medium was replaced
with complete medium. Another 24 h later, the medium was replaced by a puromycin
selection medium, which was optimized for each cell line according to their killing curves.
Selected colonies of the cells were expanded and maintained.

4.3. Expression Vector, Lentiviral Production, Cell Infection and Preparation of Luciferase
Expressing Cells

Lentiviral production was performed using X-tremeGENE HP Transfection Reagent.
A mixture of vsvg/viral envelope plasmid, dvpr/viral packaging vector, PLX304 empty
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vector (Addgene) or Nudt2 WT vector or PLX304-Luciferase-V5 vector were co-transfected
into the 293T cells. Supernatants containing viral particles were collected and used for
infection. The PLX304-Blast-V5 Nudt2 (V5-Nudt2) lentiviral expression vector (CCSB-
Broad Lentiviral Expression Library, Dharmacon) was used as the expression vector. The
empty PLX304 vector (pLX304 was a gift from David Root (Addgene plasmid # 25890;
http://n2t.net/addgene:25890 (accessed on 6 June 2018); RRID: Addgene_25890) was used
as control. CHL−1 cells was infected with either PLX304 empty vector or Nudt2 WT
using polybrene transfection reagent at a final concentration of 8 µg/mL. 1 × 106 cells were
cultured in 6-well plates to reach 60% confluence on the day of infection. The cells were then
incubated at 37 ◦C, in a 5% CO2 incubator for 24 h, after which the medium was replaced
with complete medium. Another 24 h later, the medium was replaced by a blasticidine
selection medium, which was optimized for the cell line according to the killing curve.
The selected colonies of the cells were expanded and maintained. To prepare luciferase-
expressing cells, 1 × 106 cell of CHL−1 human melanoma stable Nudt2 knockdown and
control were cultured in 6-well plates to reach 60% confluence on the day of infection.
They were infected with lentiviral particles prepared using PLX304 Luciferase-V5 plasmid
blast (a gift from Kevin Janes; Addgene plasmid # 98580; http://n2t.net/addgene:98580
(accessed on 19 January 2021); RRID: Addgene_98580) using polybrene transfection reagent
at a final concentration of 8 µg/mL. The cells were then incubated at 37 ◦C, in a 5% CO2
incubator for 24 h, after which the medium was replaced with complete medium. Another
24 h later, the medium was replaced by a blasticidine selection medium. The selected
colonies of the cells were expanded and maintained. Please see Table 1.

Table 1. The lists of constructs and vectors used in this study.

# Expression Vectors Catalog Number/Company Usage in This Study

1 Empty PLX304 vector
(lentiviral-expressing vector) # 25890, Addgene Plasmid Used to prepare Control cells for

overexpression system

2 PLX304-Blast-V5 Nudt2
(lentiviral-expressing vector)

CCSB-Broad Lentiviral
Expression Library, Dharmacon

Used to prepare Nudt2
overexpression cells

3 PLX304 Luciferase-V5 plasmid blast
(lentiviral-expressing vector) # 98580, Addgene plasmid

Used to prepare luciferase-expressing
cells to monitor tumor growth in

in vivo study

4.4. Gel Electrophoresis and Western Blotting

Human melanoma cell lines were washed and lysed on ice with lysis buffer containing
50 mM Tris-HCl, 1% Nonidet P-40, 0.25% Na-deoxycholate, 150 mM NaCl, 1 mM EDTA,
X1 protease inhibitor cocktail, 1 mM phenylmethylsulfonyl fluoride, 1 mM sodium ortho-
vanadate, and 17 mM NaF. Proteins were resolved using 8–15% SDS-PAGE under reducing
conditions and transferred to polyvinylidene difluoride membranes (Merck Millipore,
Herzliya, Israel). Visualization of the proteins was performed via chemiluminescence with
EZ-ECL (#20-500-1000, Biological Industries).

4.5. Antibodies

Antibodies against Nudt2 (#10484-1-AP, dilution 1:1000, Proteintech, Biotest, Kfar Saba,
Israel), β-Actin (#A1978, dilution 1:10,000, Sigma-Aldrich, Jerusalem, Israel), V5-antibody
(#v8012, dilution 1:2000, Sigma Aldrich), vimentin antibody (#5741T, dilution 1:2000, Cell
Signaling, Jerusalem, Israel), N cadherin antibody (#13116, dilution 1:2000, Cell Signaling,
Jerusalem, Israel), MMP9 antibody (#13667, dilution 1:2000, Cell Signaling, Jerusalem, Israel),
and Snail antibody (#3879, dilution 1:2000, Cell Signaling, Jerusalem, Israel) were used.

4.6. Soft Agar Colony Formation Assay

Soft agar colony formation assays were performed in 24-well plates. The lower layer
was prepared from 0.8% noble agar in complete medium and 500 µL of agar; medium
mixture was added to each well. In the top layer, 1× 104 cells/250µL or 5× 103 cells/250 µL

http://n2t.net/addgene:25890
http://n2t.net/addgene:98580
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were suspended in 0.3% noble agar in complete medium. After the agar solidified, 500 µL
of complete medium were added. Fresh medium was added every 3–5 days. Cells were
incubated at 37 ◦C in a CO2 incubator for 21 days, after which the colonies were stained
with p-iodonitrotetrazolium violet (#I8377, Sigma Aldrich, Israel ). The number of cells was
counted via the Image J software(ij153-win-java8).

4.7. Mice

NOD.CB17-Prkdcscid/NCrHsd mice were purchased from Envigo Laboratory (Jerusalem,
Israel). 4-week-old male mice were used in this experiment. All mice experiments were carried
out under the Hebrew University’s Institutional Animal Care and Use Committee-approved
protocol MD-20-15907-5. The Hebrew University is an Association for Assessment and
Accreditation of Laboratory Animal Care-approved institute.

4.8. Tumor Xenograft Model

Mice were injected subcutaneously with CHL−1 Nudt2 knockdown or the control stable
human melanoma cell line that expressed luciferase (5 × 106 in 200 µL PBS). Tumor imaging
was performed once a week for four weeks. For bioluminescence imaging mice, mice were
injected intraperitoneally (IP) with 5 mg/mL luciferin (VivoGIo™ Luciferin, in vivo grade,
#P1043, Promega, Sartorius, Beit HaEmek, Israel) in a 0.5 mL volume and anesthetized
with isoflurane using a non-rebreathing system, induction 2–3%, maintenance 0.25–2%. The
imaging time for mice was between 5 and 10 min. The IVIS Lumina LT system was used to
capture bioluminescence images (The WOHL Institute, Translational Medicine at Hadassah
Medical Center, Ein Kerem, Israel). IVIS-Lamina-X5 software (4.5.5.19626 (3 August 2017)was
used to analyze all of the images. Twenty-nine days after cell injection, tumors were surgically
removed from mice. The tumors were measured using a caliper and their volume was
calculated using the following formula: (length × width2)/2. The tumors in these mice were
monitored weekly using a bioluminescence imaging system (IVIS). Measurement of tumor
burden via bioluminescence imaging was calculated as total flux, photons/s.

4.9. Statistical Analysis

The two-tailed Wilcoxon signed-rank test was used for in vitro experiments and the
Mann–Whitney test was used for in vivo study.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms241310513/s1.
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