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Abstract: Small open reading frames (sORFs) are often overlooked features in genomes. In the
past, they were labeled as noncoding or “transcriptional noise”. However, accumulating evidence
from recent years suggests that sORFs may be transcribed and translated to produce sORF-encoded
polypeptides (SEPs) with less than 100 amino acids. The vigorous development of computational
algorithms, ribosome profiling, and peptidome has facilitated the prediction and identification of
many new SEPs. These SEPs were revealed to be involved in a wide range of basic biological processes,
such as gene expression regulation, embryonic development, cellular metabolism, inflammation,
and even carcinogenesis. To effectively understand the potential biological functions of SEPs, we
discuss the history and development of the newly emerging research on sORFs and SEPs. In
particular, we review a range of recently discovered bioinformatics tools for identifying, predicting,
and validating SEPs as well as a variety of biochemical experiments for characterizing SEP functions.
Lastly, this review underlines the challenges and future directions in identifying and validating
sORFs and their encoded micropeptides, providing a significant reference for upcoming research on
sORF-encoded peptides.

Keywords: small (short) open reading frame; sORF; sORF-encoded peptides; SEPs; micro-proteins;
peptidome; coding potential prediction

1. Introduction

According to the ENCODE database, about 2–3% of the human genome is composed of
protein-coding genes, and more than 80% are viewed as ncRNAs [1,2]. With the advanced
development of high-throughput sequencing technology, more and more diverse ncRNAs
have been discovered to be involved in numerous essential biological processes, such as
genomic regulation [3], environmental responses [4], and body development [5]. Generally,
ncRNAs are classified into long non-coding RNAs (lncRNAs), small RNAs (miRNAs),
piwi-interacting RNAs (piRNAs), circular RNAs (cirRNAs) and others. They were initially
considered “transcriptional noise” [6,7]. However, research has reversed the view that
ncRNAs represent “junk” transcription products [8]. One or more short open reading
frames (sORFs), which rarely use AUG as the start codon, may be present in these ncRNAs.
The majority are initiated by near-homologous codons (meaning codons that differ from
AUGs by one nucleotide), such as CUG, GUG, UUG, and ACG [9]. These sORFs may
encode small proteins with less than 100 amino acids, and various professional terms have
been used to describe these proteins, such as micropeptides, small peptides, microproteins,
sORF-encoded peptides (SEPs), etc.
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Typically, an ORF is defined as a segment of conserved and non-overlapping nucleotide
triplets (codons) that can be translated into a functionally annotated protein [10]. Eukaryotic
messenger RNAs (mRNAs) usually contain a main ORF that produces protein-coding
regions. However, the traditional genetic rules, such as amino acid conservation and
homology, the absolute requirement for a starting codon (methionine), and the minimum
translation length, have greatly limited the identification of transcripts with non-canonical
protein-coding capabilities. Therefore, we regarded these proteins encoded by previously
neglected open reading frames with fewer than 300 nucleotides (nt) as sORF-encoded
peptides (SEPs). SEPs are biologically active molecules that range from highly conserved to
primate-specific [11], implying that they perform both basal and species-specific functions.
To date, SEPs have been found to function in a variety of biological processes, including
embryogenesis [12–14], myogenesis [15–17], cellular metabolism [18,19], inflammation [20–22],
and carcinogenesis [23–26].

Due to the limitations of the conservation screening mechanism and detection sen-
sitivity, SEPs with a small molecular weight and a low expression abundance are often
overlooked, which may lead to many crucial regulatory mechanisms being “hidden”. There-
fore, it is challenging to determine the potential functional roles of such micro-proteins.
With the increasing interest in SEPs, a large number of new ORF translation products
have been identified and validated. In summary, this reflects the diversity of SEPs under
different physiological conditions. It is urgent to identify and characterize their functional
roles, which may reveal many new molecules involved in regulatory mechanisms.

2. Localities and Characteristics of sORFs and SEPs

In recent years, extensive translations of sORFs at genomic locations in animal, plant,
fungal, and bacterial species have been revealed based on high-throughput next-generation
sequencing technologies [27–29]. Theses sORFs can be located within coding transcripts
such as 5′ UTR (5′ untranslated regions), CDS (coding sequences), 3′ UTR (3′ untranslated
regions) or even within non-coding RNAs, such as long non-coding RNAs (lncRNAs),
cirRNAs, and mitochondrial RNAs (mtRNA) (Figure 1A). sORFs are essentially hidden
genomic features in the organism [30]. Therefore, it is possible to find new proteins with
interesting functions.

As we all know, non-coding RNAs (ncRNA) include long non-coding RNAs (lncRNAs,
longer than 200 nt) and small non-coding RNAs (sncRNAs). Many important physiological
processes have been found to be regulated by the micro-peptides translated by lncRNAs [21,31,32].
Traditionally, upstream open reading frames (uORFs) are located upstream of protein-
coding genes and are considered as cis-acting elements for downstream expression through
a mechanism similar to competitive translation [33]. Beyond these, recent studies have
shown that uORFs can encode functional micro-peptides. Like uORFs, small peptides
encoded by dORFs (downstream open reading frames) are usually not conserved, and
the effects of the dORFs are not dependent on the small peptides, but on the translational
activity of the dORFs themselves [34]. CircRNAs often function as miRNA sponges and
play roles in transcriptional regulation and protein binding. CircRNAs have been shown to
have the ability to translate in recent years [35–37]. In addition, sORF-encoded peptides
(SEPs) were discovered in pseudogenes [38] as well as in intergenic regions [39].

Bioinformatic predictions and MS-based proteomics approaches have been used to
predict and identify SEPs with different lengths and start codons. Wang et al. identified
1682 peptides from 2544 human sORFs in Hep3B cells using a de novo approach com-
bined with RNA-Seq [40]. Several online sORF databases such as Smprot [41], sORF [42],
and OpenProt [43] have been constructed. Unexpectedly, a large proportion of SEPs are
translated with non-AUG initiation codons. Usually, alternative start codons only differ
from AUG by one nucleotide (e.g., CUG, GUG and UUG). It has been shown that these
non-classical start codons are homologous to the classical start codon ATG, which is often
located near the Kozak sequence [44]. Another theory suggests that the non-classical start
codon of sORFs is derived from the RNA editing of post-transcriptional mRNA, which
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converts uracil (U) to cytosine (C) in the transcription product initiation codon AUG by the
action of RNA editing enzymes, thus converting the classical start codon to a homologous
non-classical codon and regulating the translation efficiency of sORFs [45]. Additionally, it
was discovered that SEPs have similar length ranges, but slightly different distributions.
A possible explanation for this variation is the use of different scoring algorithms and
computational software (Figure 1B,C). However, these SEPs with less than 100 amino acids
in length deserve further investigation.
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Figure 1. Localities and characteristics of sORFs and SEPs. (A) Examples of sORFs within coding tran-
scripts (5′ UTR, CDS, 3′UTR) or even within non−coding RNAs (circRNA, lncRNA, mitochondrial
RNA); (B) the percentage of ATG and non-ATG start codons in public databases and a representative
study; (C) the AA length distribution of SEPs.

3. Ribosome Profiling (Ribo-Seq) for Identification of SEPs

Ribosome profiling is an emerging technique that uses deep sequencing to monitor
in vivo translation and provides a systematic method for the experimental annotation of
coding regions. The whole workflow is designed to degrade the RNA that is not protected
by ribosomes using RNA enzymes before centrifuging to separate the ribosome-protected
mRNA fragments. These 30 nt footprints can be directly mapped to the original mRNA by
deep sequencing and further used to pinpoint the precise location of the ribosomes during
translation (Figure 2). However, Wilson et al. demonstrated that not all sORFs bound to
ribosomes are translated [46]. In order to separate the mRNA bound to multiple ribosomes
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and distinguish single ribosome–mRNA complexes that are not translated, poly-Ribo-Seq
was developed. The technology provides more concrete evidence of active translation.
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Figure 2. Ribosome profiling process, where ribosome footprints are obtained for deep sequencing.
Isolation of ribosome-bound mRNAs is conducted through treatment of non-specific nucleases such
as RNase I. Ribosome footprints (showing positioning between start and stop codon of gene) are then
used for library generation and deep sequencing.

Ribosome profiling has proven to be a powerful technique to explore the translation
potential of sORFs by using multiple pipelines (Table 1). Previous studies have presented an
experimental and analytical framework for the systematic identification and quantification
of translation based on ORF-RATER [47]. RiboTaper can detect regions of active translation
based on three-nucleotide periodicity [48]. Calviello et al. used RiboTaper to identify
218 novel proteins in Chinese hamster tissue and CHO cell lines [49]. As the technology
has advanced and matured, more analytical tools such as Ribowave [50], RibORF [51], and
RiboCode [52] have been used to support the reference database construction for mining
SEPs from MS data.

While ribosome sequencing can provide a landscape of ribosome occupancy through-
out the transcriptome, its sequencing data can provide information on where translation
occurs and quantitative information, such as how much of the region is occupied by
ribosomes. Ribo-Seq does have some limitations. Firstly, Ribo-Seq requires the rapid
suppression of translation to capture ribosome snapshots in a specific physiological state,
leading to possible inaccuracies in data collection [53]. Secondly, the technique requires
inferring the speed of protein synthesis, but it is accurate based on the assumption that all
of the ribosomes have completed translation. In fact, translation pauses or discontinuities
may also occur under certain conditions, such as starvation [54]. Thirdly, contaminated
RNA fragments (including non-coding RNAs or ribosome–protein complexes) may mi-
grate during gradient centrifugation, be found in cDNA libraries, and lead to misreading
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in translation. Lastly, the generated RPFs with 30 bp are not easy to map [55]. Because
these RPFs are often too short to provide unique mapping information, when these short
sequences are aligned to the reference genome or transcriptome, they may align to multiple
locations due to the presence of repetitive or highly similar sequences. This makes it
difficult to determine the precise location of the mRNA on the ribosome during translation.
Moreover, the short length of these sequences can also lead to sequencing errors, which
further complicates the mapping process. In addition, these short sequences may not
provide enough context to accurately identify the frame of translation, which can affect
downstream analysis and interpretation.

Table 1. Evaluation tools/software of sORF translation by ribosomal profiling methods.

Tool Feature Availability Ref.

ORF-RAETER Translated ORF identification and quantification
based on linear regression.

https://github.com/alexfields/ORF-RATER.
githttps://github.com/alexfields/ORF-RATER [47]

Ribo-TISH A comprehensive toolkit for analyzing TIs and
predicting putative ORFs. https://github.com/zhpn1024/ribotish.git [56]

Ribowave
ORF prediction, protein abundance estimation, TE

calculation, and ribosomal frameshift
identification based on wavelet transform.

https://ribowave.ncrnalab.org/ [50]

RiboORF
ORF identification based on the arrangement of
the ribosome A site, the 3 nt periodicity, and the

consistency between codons.
https://github.com/zhejilab/RibORF.git [51]

RiboHMM ORF identification based on the total abundance
and periodic codon structure in RPF. https://github.com/djf604/RiboHMM.git [57]

ORFquant ORF prediction and quantification based on
multi-taper method.

https://github.com/lcalviell/ORFquant/
releases/tag/1.02 [49]

Ribotricer ORF prediction based on
three-nucleotide periodicity.

https://github.com/smithlabcode/ribotricer/
releases/tag/v1.3.3 [58]

PRICE
Resolving overlapping sORFs and noncanonical

translation initiation based on
machine-learning model.

https://github.com/erhard-lab/price.git [59]

Ribocode De novo assembly and annotation for translatomes
based on Wilcoxon signed-rank test. https://github.com/xryanglab/RiboCode.git [52]

RiboTaper ORF identification based on the characteristic
three-nucleotide periodicity of Ribo-Seq.

https://ohlerlab.mdc-berlin.de/software/
RiboTaper_126/ [48]

RP-BP ORF prediction based on unsupervised
Bayesian approach. https://github.com/dieterich-lab/rp-bp.git [60]

SPECtre ORF prediction based on 3 nt periodicity. https://github.com/mills-lab/spectre.git [61]

RiboToolkit Ribo-Seq web application for analysis and
implementation of a full ORF prediction pipeline.

http://rnainformatics.org.cn/RiboToolkit/
analysis.php [62]

GWIPS-Viz Online web server for visualizing processed
Ribo-Seq data.

https://gwips.ucc.ie/ [63]

Trips-Viz https://trips.ucc.ie/ [64]

4. Peptidomic-Based Methodology for Identification of SEPs

The MS-based technique is the most direct evidence that sORFs can be translated.
As with traditional bottom-up proteomics studies, the identification workflow for SEPs
includes sample extraction and enrichment, digestion and separation, MS data collection,
and analysis.

https://github.com/alexfields/ORF-RATER.githttps://github.com/alexfields/ORF-RATER
https://github.com/alexfields/ORF-RATER.githttps://github.com/alexfields/ORF-RATER
https://github.com/zhpn1024/ribotish.git
https://ribowave.ncrnalab.org/
https://github.com/zhejilab/RibORF.git
https://github.com/djf604/RiboHMM.git
https://github.com/lcalviell/ORFquant/releases/tag/1.02
https://github.com/lcalviell/ORFquant/releases/tag/1.02
https://github.com/smithlabcode/ribotricer/releases/tag/v1.3.3
https://github.com/smithlabcode/ribotricer/releases/tag/v1.3.3
https://github.com/erhard-lab/price.git
https://github.com/xryanglab/RiboCode.git
https://ohlerlab.mdc-berlin.de/software/RiboTaper_126/
https://ohlerlab.mdc-berlin.de/software/RiboTaper_126/
https://github.com/dieterich-lab/rp-bp.git
https://github.com/mills-lab/spectre.git
http://rnainformatics.org.cn/RiboToolkit/analysis.php
http://rnainformatics.org.cn/RiboToolkit/analysis.php
https://gwips.ucc.ie/
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4.1. Sample Extraction and Enrichment

The first critical step for SEP identification is extracting SEPs from complex biological
matrices while ensuring their integrity (Figure 3). SEPs with a small size and a low
molecular weight are difficult for peptidases to hydrolyze, and they may not have any sites
for protease digestion or may be covered by undesired protein degradation products [65].
SEP extraction is, therefore, more challenging than that of proteins. Previous studies
have tried various methods to ensure the integrity of SEPs, such as heating samples in
boiling water or lysis buffers, using an ultrasonic treatment, or adding protease inhibitors
to inhibit peptidase and protease activity [66,67]. However, some polypeptides, such
as peptidases or protease inhibitors, can interfere with the subsequent analysis of SEPs.
Therefore, some studies have proposed alternative methods, such as inducing protein
precipitation with hydrochloric acid or acetic acid, which not only effectively prevent the
degradation of SEPs, but also do not interact with polypeptide enzymes [67]. Therefore, the
treatment of biological samples is a key step in extracting SEPs. The stability of biological
samples and the objectives of the research should guide the selection of the appropriate
extraction techniques.
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Figure 3. General workflow of a peptidomics approach for identifying SEPs. SEPs are extracted
from complex biological samples, enriched by different methods such as protein precipitation,
ultrafiltration, and SPE, then digested with trypsin (or multiple enzymes). The tryptic peptides are
subjected to fractionation, MS data acquisition, and data analysis to identify SEPs.

The enrichment of SEPs is mainly used to separate the target peptides from other
proteins in the same sample, thus reducing the complexity of the sample. These separation
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methods frequently depend on various physical properties of the sample, such as the
size, hydrophobicity and charge. Organic solvent (acetonitrile [40], acetone, methanol [68],
trichloroacetic acid, and acetic acid [67]) precipitation could effectively retain low-molecular
weight proteins in the supernatant liquid. In another endeavor, sequential precipitation and
dehydration (SPD) based on a methyl tert-butyl ether/methanol/water system was used
to successfully detect 129 proteins smaller than 30 kDa from human plasma, showing a
good sensitivity and reproducibility. Size exclusion approaches have also been extensively
used for protein isolation. High-molecular weight proteins can be kept on filter by using 10
or 30 kDa molecular weight cut-off (MWCO) ultrafiltration membranes [69,70]. However,
this membrane-based technique has several drawbacks, including the potential blockage
of membrane pores due to concentrated macromolecules, the non-specific binding of
small proteins to hydrophobic surfaces, and time-consuming processes. C8-SPE is another
method based on hydrophilic and hydrophobic properties of SEPs [66]. It was reported
that a combination of these methods may be able to identify more SEPs [71].

4.2. Digestion of Samples for Mass Spectrometry

Sample digestion is a crucial component as well. SEPs tend to be short peptides with
less than 100 amino acids and fewer arginine and lysine residues than other peptides. The
single trypsin may cause cleavage failure or produce fewer trypsin peptides, reducing
the sequence coverage and making it impossible to be detected by MS [72]. Due to the
sequential digestion and complementary cleavage specificity, multi-protease digestion
combined with trypsin and other proteolytic enzymes such as Glu-C (endoproteinase Glu-
C), Lys-C (endoproteinase Lys-C), Lys-N (endoproteinase Lys-N), Asp-N (endoproteinase
Asp-N), Arg-C (endoproteinase Arg-C), and chymotrypsin has been shown to enhance
micro-peptide recognition effectively [73,74].

To date, mass spectrometry is still the only method available for the direct detection
and quantification of SEPs. Data dependent acquisition (DDA) is the most widely used for
MS acquisition analyses. In the past five years, thousands of SEPs have been identified
using DDA from different species, including humans [75], E. coli [76], and plants [77].
The method is suitable for peptides ranging from 8 to 25 amino acids, but SEPs cannot
produce fragments in this range due to the absence of required cleavage sites [78]. On
the other hand, due to the small size of micro-peptides, only one peptide can be used
for a peptide spectrum match (PSM) [79,80], which may increase the false detection rate
in SEP identification [81,82]. Fortunately, it was discovered that targeted proteomics is
a promising method with higher confidence. The expression of SEPs was tracked using
parallel reaction monitoring (PRM) and data independent acquisition (DIA) in different
biological samples [83]. In addition to simultaneously breaking up all precursor ions,
DIA also preserves data that can be analyzed repeatedly in silico using various spectral
libraries. Pak et al. [84] reported that the number of immune peptides identified had
increased by almost three-fold using DIA. By selectively detecting particular peptides,
parallel reaction monitoring (PRM) aims to achieve the relative or absolute quantification
of a target protein or peptide [85]. These approaches are expected to benefit substantially
from further improvements in analytical pipelines.

4.3. Database Construction for SEPs

With the accumulation of encoded sORFs and their corresponding SEPs, numerous
publicly accessible repositories devoted to sORFs have been developed for SEP identifica-
tion (Table 2).
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Table 2. Commonly used databases for micro-peptide research.

Database Resource URL Function

SmProt

Human and
other species

http://bigdata.ibp.ac.cn/SmProt/
index.html

A reliable repository with a comprehensive annotation of
small proteins derived from ribosome profiling, literature,

mass spectrometry (MS), etc.

sORF.org http://www.sorfs.org (The website
link is temporarily unavailable)

A public repository for sORFs identified both from
experiments and in silico (based on various bioinformatics
tools) to allow researchers to examine individual sORFs or

to perform searches.

Openprot https://www.openprot.org/

Contains all known proteins (RefProts), novel predicted
isoforms (Isoforms) and novel predicted proteins from

alternative ORFs (AltProts), supporting the annotation of
thousands of predicted ORFs.

nORF.org https://norfs.org/home
Combines existing databases such as sORFs.org,

OpenProt, and openCB to provide more
comprehensive information.

MetamORF https://metamorf.hb.univ-amu.fr/
Provides unique sORFs identified in the human and

mouse genomes with both experimental and
computational approaches.

FuncPEP https://bioinformatics.mdanderson.
org/Supplements/FuncPEP

A new database of functional ncRNA encoded peptides,
containing all experimentally validated and functionally

characterized ncPEPs.

PsORF
Plant

http://psorf.whu.edu.cn/

A web collection resource of small open reading frames
(sORFs) for 35 plant species to provide translation

evidence and information on the evolutionary
conservation of those small ORFs.

ARA-PEPs https://github.com/
rashmihazarika/ARA-PEPs.git

Specific to all putative sORF-encoded peptides in
Arabidopsis thaliana.

Both SmProt [86] and sORF.org [42] are well known to researchers. SmProt collects
small proteins from eight species, including Homo sapiens, Mus musculus, Rattus norvegicus,
Drosophila melanogaster, Danio rerio, Saccharomyces cerevisiae, Caenorhabditis elegans, and
Escherichia coli, that have been identified through ribosomal analysis data, the literature,
and mass spectrometry (MS) [86]. SmProt also includes information about the sequences,
genomic locations, coding potential assessment, function, and other characteristics of
the collected small proteins [41]. sORFs.org and OpenProt assess the identity of protein
sequences based on BLASTp scores. Specific details about the target micro-peptide, such as
the species, chromosome number, starting codon, and sORF attributes, can be requested
through sORFs.org [42]. While OpenProt proposes a comprehensive annotation of predicted
coding sequences on all transcripts, it provides obvious evidence for the expression of
novel protein products [43]. The combination of these public databases could speed up
the identification of micro-proteins. MetamORF only contains sORF data for Homo sapiens
and Mus musculus [87]. ARA-PEPs [88] and PsORF [88] are comprehensive web servers
dedicated to searching, browsing, visualizing, and downloading plant sORF-encoded
peptides. These resources make it simple to construct reference databases for identifying
and analyzing SEPs.

The combination of private databases and public databases is also a good choice.
Generally, custom databases rely on a six-frame translation of the genome sequence to
produce a reference database with all potential SEPs. Many researchers have combined
custom databases and public databases such as Ensembl, RefSeq, and UniProtKB [44,89] for
mining new SEPs [73,90–92]. However, it is undeniable that these databases contain a large
number of pseudo-sequences, which reduces the confidence of peptide profile matching
(PSM) and makes it challenging to detect SEPs with a low abundance [83].

http://bigdata.ibp.ac.cn/SmProt/index.html
http://bigdata.ibp.ac.cn/SmProt/index.html
http://www.sorfs.org
https://www.openprot.org/
https://norfs.org/home
https://metamorf.hb.univ-amu.fr/
https://bioinformatics.mdanderson.org/Supplements/FuncPEP
https://bioinformatics.mdanderson.org/Supplements/FuncPEP
http://psorf.whu.edu.cn/
https://github.com/rashmihazarika/ARA-PEPs.git
https://github.com/rashmihazarika/ARA-PEPs.git
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The de novo sequencing of MS data is a library-independent method that deciphers
protein or peptide sequences only from the spectrum without any genomic reference
information [93]. Chen et al. and Wang et al. identified hundreds of SEPs using PEAK [94]
and pNovo3 [40], respectively. However, it should be noted that many de novo peptides
cannot be matched to any ORFs using the algorithms available today. This may be due to
rare starting codons, mutations, or splicing, or it might require improved gene mapping
algorithms to dock de novo sequencing.

4.4. Bioinformatic Tools for sORF and SEP Predictions

With the advance of high-throughput sequencing technology, many functional SEPs
have been found. It is necessary to re-evaluate the coding potential of sORFs. However, the
identification and prediction of sORFs with coding capabilities have become more complex
due to the relative lack of consensus features. A wide variety of computational tools have
been developed for predicting and distinguishing non-coding and coding transcripts based
on nucleotide composition, codon substitution, machine-learning algorithms, and others
(Table 3).

Table 3. Some bioinformatic resources for coding potential of sORF.

Tools Data
Requirement Principle Utilized URL Ref.

CRITICA Whole genome Nucleotide sequence
composition

http://rdpwww.life.uiuc.edu (The website link is
temporarily unavailable) [95]

CPC/CPC2 RNA-seq Nucleotide composition,
sequence similarity http://cpc2.gao-lab.org/ [96]

PLEK RNA-seq Kmer composition of sequence https://sourceforge.net/projects/plek [97]

micPDP RNA-seq Codon conservation https://github.com/Drmirdeep/micpdp.git [98]

PhlyoCSF RNA-seq Codon substitution, nucleotide
sequence similarity http://compbio.mit.edu/PhyloCSF [99]

PhastCons Whole genome Nucleotide composition http://compgen.cshl.edu/phast/ [100]

sORF finder Any nucleotide
sequence Nucleotide composition http://evolver.psc.riken.jp/ (The website link is

temporarily unavailable) [101]

RNAcode RNA-seq Codon conservation https://github.com/ViennaRNA/RNAcode.git [102]

CNCI RNA-seq Nucleotide composition https://github.com/www-bioinfo-org/CNCI.git [103]

CPAT RNA-seq Permutation-free logistic
regression model https://wlcb.oit.uci.edu/cpat [104]

CNIT RNA-seq Nucleotide composition https://github.com/www-bioinfo-org/CNCI.git [105]

ORF finder Whole genome Nucleotide composition https://www.ncbi.nlm.nih.gov/orffinder/ [106]

iSeeRNA RNA-seq Machine-learning model http://www.myogenesisdb.org/iSeeRNA (The
website link is temporarily unavailable) [107]

COME RNA-seq Machine-learning model https://github.com/lulab/COME.git [108]

LncRNA-ID RNA-seq Machine-learning model https://github.com/zhangy72/LncRNA-ID.git [109]

lncRNA-MFDL RNA-seq Deep-learning classification
algorithms http://compgenomics.utsa.edu/lncRNA_MDFL/ [110]

uPEPperoni RNA-seq Codon substitution http://upep-scmb.biosci.uq.edu.au [111]

DeepCPP RNA-seq Machine-learning algorithms https://github.com/yuuuuzhang/DeepCPP.git [112]

RNAsamba RNA-seq Similarity to known proteins https://rnasamba.lge.ibi.unicamp.br/ [113]

MipepID Whole genome Machine-learning algorithms https://github.com/MindAI/MiPepid.git [114]

http://rdpwww.life.uiuc.edu
http://cpc2.gao-lab.org/
https://sourceforge.net/projects/plek
https://github.com/Drmirdeep/micpdp.git
http://compbio.mit.edu/PhyloCSF
http://compgen.cshl.edu/phast/
http://evolver.psc.riken.jp/
https://github.com/ViennaRNA/RNAcode.git
https://github.com/www-bioinfo-org/CNCI.git
https://wlcb.oit.uci.edu/cpat
https://github.com/www-bioinfo-org/CNCI.git
https://www.ncbi.nlm.nih.gov/orffinder/
http://www.myogenesisdb.org/iSeeRNA
https://github.com/lulab/COME.git
https://github.com/zhangy72/LncRNA-ID.git
http://compgenomics.utsa.edu/lncRNA_MDFL/
http://upep-scmb.biosci.uq.edu.au
https://github.com/yuuuuzhang/DeepCPP.git
https://rnasamba.lge.ibi.unicamp.br/
https://github.com/MindAI/MiPepid.git
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4.5. Prediction of Coding Potential and Sequence Conversion of sORFs

As an original tool, the coding region identification tool invoking comparative analysis
(CRITICA) compares genomic regions across multiple species to identify conserved non-
coding regions that are likely to contain functional sORFs [95]. Another computational
tool, the coding potential calculator (CPC), calculates a coding potential score based on
features such as ORF length, ORF coverage, and conservation [96]. Therefore, it may
miss some functional sORFs that are not conserved across species. Y. et al. used CPC
to predict the coding potential of the lncRNA DLEU1 and found that DLEU1 encodes
a membrane-channel small peptide that affects glioma cell development, invasion, and
metastasis [115].Other tools such as RNAcode [102], micPDP [98], and phyloCSF [99] make
use of a different principle known as codon substitution. The criteria used by PhyloCSF
to identify sORFs include the presence of an ORF with a length of at least 30 nucleotides
and evidence of purifying selection across multiple species. Mackowiak et al. predicted
354 conserved sORFs in the lncRNAs based on Ribo-Seq and PhyloCSF, and validated
22 peptides using MS spectral data [116]. ORF finder is a tool that identifies ORFs in
nucleotide sequences. It does not specifically predict sORF coding potential, but rather
identifies all ORFs, including potentially functional and non-functional ones. Growing
evidence points to machine-learning (ML) algorithms as another options for sORF coding
potential prediction, such as DeepCPP [112] and MipepID [114]. In particular, MipepID
is designed specifically to predict the coding potential of sORFs. Fesenko, Igor et al.
identified thousands of evolutionarily conserved smORFs in Physcomitrium patens using
MipepID [117]. Therefore, CRITICA is the most effective tool for identifying functional
sORFs in some species, while PhyloCSF and CPC/CPC2 may be better suited for identifying
conserved and novel sORFs, respectively. ORF finder is a useful tool for identifying all
ORFs in a sequence, but may identify many false positive sORFs. The emergence and
development of these tools reflects the endeavor to study sORFs.

4.6. Prediction Tools Related to SEP Structure

In addition to predicting the coding potential of sORFs, it is necessary to perform
structurally related predictions of their functional micro-peptides. Currently, several tools,
such as TMHMM [118], SignalP [119], ProtScale [120], and AlphaFold2 [121], also have
been used to predict the localization, transmembrane regions and protein structure of
the target micro-peptides. TMHMM is currently the most effective and best-performing
method for the prediction of transmembrane segments of micropeptides [118]. SignalP
5.0 predicts the presence of signal peptides and the location of their cleavage sites, which
helps researchers to understand the mode of action of micro-peptides. A tool called
ProtScale makes it possible to compute and represent the profile produced by any amino
acid scale, and it serves as a guide for the identification of micro-peptide transmembrane
regions. Additionally, SWISS-MODEL [122] and AlphaFold2 can be applied to generate
reliable 3D protein models, which can enable an in-depth exploration of the biological
functions and structural features of micro-peptides. Zhou et al. used several functional tools,
including IAMPE [123], Phobius [124], Pfam [125], TMHMM, and ProtScale, to analyze
these candidate micro-peptides, indicating that an SEP (SEP068184) may regulate oxidative
resistance through involving metabolic pathways and interacting with cytoplasmic proteins
in Deinococcus radiodurans [126]. Moreover, there are additional resources available for
researchers to investigate the specific physical and chemical properties or functions of SEPs,
including ProtParam, BUSCA [127], and SOPMA [128].

5. Experimental Validation of Micro-Peptide Coding Potential and Function

Recent studies have identified thousands of additional components of the proteome.
The majority of these components are micro-peptides that sORFs in noncoding regions
translate. Although Ribo-Seq, bioinformatics prediction and peptidomics are mostly suf-
ficient for the requirements of high-throughput micro-peptide screening and discovery,
corresponding biochemical experiments are necessary to prove their true existence.
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5.1. Validation of Translation of sORFs from Putative SEPs

Firstly, antibodies can specifically recognize a target protein and are a direct and highly
sensitive method for detecting the endogenous expression of SEPs in tissues or cells. Li et al. de-
tected the endogenous expression of MIAC by preparing monoclonal antibodies to MIAC [129].
However, these SEPs have a low antigenicity and contain transmembrane structural domains,
which largely limit the selection of immune epitopes and make it still extremely challenging to
produce specific and effective antibodies against peptides [19,30,130,131].

For SEPs without corresponding antibodies, an epitope tag is another option for
detecting the endogenous expression of SEPs. In order to create a fusion protein that
contains both SEPs and protein tags, fluorescence (GFP) or epitope tags can be inserted into
the candidate SEP sequence using CRISPR/Cas9-mediated gene-editing techniques. The
presence of the SEP is then confirmed by Western blotting and the immunoprecipitation
of these fusion proteins [17,132–135]. To determine whether the sORF in the CASIMO1
transcript was translated into a micro-peptide, Schwarz et al. inserted a FLAG tag at the
C-terminus of the CASIMO1 coding sequence and detected the expression of CASIMO1-
FLAG by an anti-FLAG antibody [136]. Nevertheless, if these SEPs are relatively small,
additional peptide fractions may alter their physiological properties, localization, or protein
interactions [137]. There are a variety of different epitope tags, including FLAG [136],
APEX [137], HA [138], V5, fluorescent proteins, etc. It is essential to choose the appropriate
epitope tag according to the characteristics of the SEP.

In addition to micro-peptide validations based on antibody studies, the sORF coding
potential may also be determined using in vitro translation assays [15,138,139]. The exper-
iment requires additional experiments to verify the release of the SEP [130], such as the
introduction of frameshift mutations, which are used as negative controls to further verify
the results.

5.2. Demonstration and Validation of Biological Relevance for SEPs

The above experiments validated the capacity of sORFs for translation; however,
molecular experiments are needed to determine the potential function of the identified
SEPs. Most of these methods are similar to determining the common protein function, but
are relatively complex. The CRISPR/Cas9 technique is frequently employed to detect the
effects of SEPs on phenotypes [11,15,140]. Special vectors for SEPs, such as loss-of-function
(e.g., knockdown or knockout) or gain-of-function (e.g., overexpression or activation)
vectors, can be designed for cell transfection to observe the effect on the phenotype, further
inferring the function of SEPs. Fu et al. identified a highly conserved transmembrane
micro-peptide called NEMEP by CRISPR/Cas9, providing a clear example of the direct
functional effect of altered glucose metabolism on cell fate decisions [138]. However, not
all SEPs can benefit equally from the functional validation experiments of CRISPR/Cas9.
When translatable sORFs exist in lncRNAs, the validation experiments often need to be
achieved using frameshift or start codon mutations, which not only selectively inhibit
micro-peptide expression, but also have no impact on lncRNAs [30,141].

Synthesizing the corresponding peptides is another way to confirm the function of
SEPs. Pauli et al. successfully applied this method to demonstrate that the synthesized
toddler peptide has the same phenotype as mRNA overexpression [142]. In addition,
rescue experiments can be performed to verify whether the sORFs or SEPs are responsible
for regulatory functions [143]. After the functions of SEPs are certified, the underlying
regulatory mechanism behind these SEPs becomes an urgent issue for subsequent research.
MS and immunoprecipitation can be used to identify specific protein complexes. The
function or pathway of the co-purification protein can then be used to deduce the function
of the micro-peptides [132].

The functional verification of the SEPs encoded by UTR regions is relatively difficult.
To characterize the biological relevance of uORF-encoded micro-peptides, uORF perturba-
tions may affect the stability of the main ORF, further confusing the process for revealing the
uORF function. In a previous study, antisense oligonucleotides (ASOs) against uORF were
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used to up-regulate the CDS expression, which was a more novel strategy [144]. Although
the underlying regulatory mechanism is unclear, uORF-targeted ASO has been used to restore
downstream gene expression by regulating the efficiency of ribosome initiation [145]. Thus,
ASO is suitable as a functional tool to assess the effect of a given uORF on the CDS expression.

6. Biological Functions of sORF-Encoded Peptides: Relevant Examples

To date, many SEPs have been identified and characterized, and they are involved
in a variety of physiological processes, such as calcium homeostasis, metabolism, muscle
development, substance degradation, gene transcription and translation regulation, and
cancer development.

For example, the lncRNA MIR155HG was the subject of extensive research for its con-
tribution of miRNA products (miR-155) in inflammation and adaptive immune responses.
It was reported that the human lncRNA MIR155HG encoded the 17-amino acid micro-
peptide miPEP155 (P155). MIR155HG is highly expressed by inflamed antigen-presenting
cells, leading to the discovery that P155 interacts with the adenosine 5′-triphosphate bind-
ing domain of heat shock cognate protein 70 (HSC70), a chaperone required for antigen
trafficking and presentation in dendritic cells (DCs). P155 modulates major histocompat-
ibility complex class II-mediated antigen presentation and T cell priming by disrupting
the HSC70-HSP90 machinery [21]. Here, a summary of more SEPs and their biological
functions is provided (Table 4 and Figure 4).
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Table 4. Association between SEP expression and diverse biological function.

Species Symbol Micro-Peptide Length
(aa) Function Category Ref.

Human LINC00948 MLN 46

Inhibits SERCA and regulates Ca2+

transport

Micro-peptide
related muscle

[15]

Human 110017F19Rik
/SMIM6 ELN 56 [146]

Human 1810037I17Rik ALN 65 [146]

Human LOC100507537 DWORF 34 Activates SERCA and regulates Ca2+

transport [131]

Mouse LOC101929726 Minion 84 Promotes myoblast fusion and muscle
development

[147]

Mouse LOC101929726 Myomixer 84 [16,148]

Fruit Fly Scl SclB <30 Regulates Ca2+ transport [149]

Chicken Six ORF2 SIX1 74 Promotes cell proliferation and is
involved in muscle growth [142]

Mouse/
Zerbrefih

MyolncR4/
1500011K16RIK LEMP 56 Promotes muscle formation and

regeneration in mice [150]

Human SPAR LINC00961 75 Promotes muscle development [17]

Human miR-155HG miPEP155
(P155) 17 Modulates antigen transport and

presentation of antigen presenting cells

Micro-peptide
related

inflammation and
immunity

[21]

Mouse lncRNA
1810058I24Rik Mm47 47 Controls innate immunity [20]

Mouse lncRNA
Aw112010 Aw112010

Drives IL-12p40 production and
mediates innate immune

response
[22]

Human IMP _ Regulates inflammatory gene expression [151]

Human
/Mouse

LINC00116/
1500011K16Rik

MOXI
/Mitoregulin 56 Enhances mitochondrial β-oxidation

Micro-peptide
related metabolism

[19]

Mouse LINC00116 Mtln 56 Supports mitochondrial super-complexes
and respiratory efficiency [18]

Human LINC-PINT PINT87aa 87 Tumor suppressor in glioblastoma

Micro-peptides
related tumors

[152]

Human LINC00278 YY1BM 21
Promotes apoptosis and downregulates

the survival rate of
ESCC cells

[153]

Human circFNDC3B cirFND3B-
218aa 218 Inhibits the expression of

oncogene Snail and promotes CRC [154]

Human circPPP1R12A PPP1R12A-C 73 Activates Hippo-YAP signaling
pathway and inhibits CRC [155]

Human Meloe MELOE-1 46 Involved in T cell immune surveillance;
optimal T cell target

for melanoma immunotherapy

[156]

Human MELOE-2 39 [157]

Human LINC00665 CIP2A-BP 52 Inhibits tumor invasion and metastasis [158]

Human LINC00998 SMIM30 59 Promotes cell proliferation and migration [139]

Human NCBP2-AS2 KRASIM 99
Inhibits carcinogenic signaling in

hepatocellular carcinoma
cells

[159]

Human UBAP1-AST6 BAP1-AST6
(aa) - Promotes cell proliferation [160]

Human HOXB-AS3 HOXB-AS3 53 Inhibits cell proliferation, invasion,
and metastasis [161]

Human CTD-
2256P15.2 PACMP 44

Regulates cancer progression and drug
resistance by modulating DNA

damage response
[26]

Human Rps41 RPS4XL _
Inhibition of hypoxia-induced

proliferation of pulmonary artery smooth
muscle cells

Other diseases [162]
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7. Conclusions and Future Perspectives

Tradition dictates that genes encode only one protein and that transcripts without
a main ORF are non-coding. In this review, we revealed a new research area: ncRNAs
that can encode peptides or small proteins. We elaborated on the location of sORFs
in the genome, the identification of encoded peptides, and the analytical procedures
and subsequent methods for the validation of biological function mechanisms, revealing
previously unrecognized complexity in the proteome. In recent years, SEPs have been
found to exist and play important biological regulatory roles in most species, including
humans, mice, rats, zebrafish, flies, yeast, and Escherichia coli. In addition, with a relatively
small size, a tissue-specific expression pattern, and a low cytotoxicity, SEPs will be a
new resource pool for screening anti-tumor peptides or protein drugs, and they will play
an important role in accurate diagnoses, precise classifications, precise treatments and
tumor prognoses. So far, SEPs have been found to have significant antitumor functions by
inhibiting cancer metabolic reprogramming, oncogenic protein stability, and oncogenic-
related pathways, making them new therapeutic targets for clinical applications. However,
SEPs are characterized by short peptide fragments, a small molecular weight, and a low
expression abundance, which may cause difficulties in the extraction and synthesis of micro-
peptide drugs and inaccurate identification of relevant detection technologies. Therefore,
continued advancements in the field will depend on clever experimental designs and
further optimization of the relevant technology.

Although many SEPs with coding potential have been characterized in the last few
years, the following crucial and urgent questions still need to be answered: (1) How can
a sufficient number of SEP samples be obtained for a more thorough investigation? The
small molecular weight and low expression abundance of SEPs make it difficult to obtain
active samples via genetic engineering; (2) The annotation of SEPs is primarily based on
phylogenetically conserved analyses, but how else can new peptides be validated in the
absence of sequence conservation? How do the different SEPs work? (3) Given the growing
evidence that not all peptides initiate translation by AUG, how do we begin to validate
the true translation initiation codons with the current genome annotations of uORFs and
main ORFs? Do initiation codons other than AUG codons employ a different mechanism?
(4) Only the human and a few animal models are included in the current database of
species annotated for SEPs. The inter-species differences have led to many databases
being insufficient to meet the requirements of micro-peptide research at this stage, so the
establishment of functional annotation databases is particularly important. There is no
doubt that the mechanism of sORF-encoded micro-peptides will spark a new research
boom and advance the life sciences; they will provide new insights for future investigations
to unravel intricate physiological processes and diagnose diseases in living organisms.
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