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Abstract: Small RNAs (sRNAs) are epigenetic regulators of essential biological processes associated
with the development and progression of leukemias, including adult T-cell leukemia/lymphoma
(ATLL) caused by human T-cell lymphotropic virus type 1 (HTLV-1), an oncogenic human retrovirus
originally discovered in a patient with adult T-cell leukemia/lymphoma. Here, we describe the sRNA
profile of a 30-year-old woman with ATLL at the time of diagnosis and after maintenance therapy
with the aim of correlating expression levels with response to therapy.
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1. Introduction

Human T-cell lymphotropic virus type 1 (HTLV-1) is an oncogenic human retrovirus
that was originally discovered in a patient with adult T-cell leukemia/lymphoma (ATLL) [1].
It is estimated that 5–10 million people worldwide are infected with HTLV-1, but it is
important to note that this number is still largely unknown in countries such as India, China,
Russia, Australia, and several African countries [2]. HTLV-1 infection can cause a wide
range of clinical symptoms, from asymptomatic infection to malignant ATLL and HTLV-1-
associated myelopathy/tropical spastic paraparesis (HAM/TSP) [3]. Most HTLV-1 patients
remain asymptomatic for life, but others advance to a preleukemic phase characterized
by low numbers of circulating leukemic cells in peripheral blood and skin lesions but no
involvement of other organ systems [4]. Only 2.5–5% of virus carriers develop ATLL after a
long period of asymptomatic infection [5]. Molecular studies have shown that viral proteins
impair biological activities such as immortalization and IL-2-independent proliferation of T
cells induced by the Tax protein [6]. ATLL leukemogenesis can be influenced by genetic
and epigenetic alterations, including DNA methylation, and by the host immune system [7].
Despite T-cell immortalization, the long incubation period (>30 years) before ATLL suggests
that other genetic alterations besides viral infection contribute to pathogenesis [8].
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Certain findings support the transcription of nonprotein coding parts of the mam-
malian genome [9], which form a network of transcripts interwoven in intricate ways,
including noncoding RNAs (ncRNAs). These molecules play important roles in normal bio-
logical processes and human diseases such as diabetes [10], aging heart [11], and cancer [12].
In eukaryotes and prokaryotes, small RNAs (sRNAs) regulate posttranscriptional gene
expression [13]. The structural and functional complexity of sRNA allows the subdivision
of these molecules into regulatory and structural ncRNAs [14]. Examples of structural
noncoding RNAs include transfer RNA (tRNA), ribosomal RNA, small nuclear RNAs
(snoRNAs), small cytoplasmic RNAs (scRNAs), ribonuclease P (RNase P), mitochondrial
RNA processing RNA, signal recognition particle RNA, and telomerase RNA [15]. Mi-
croRNAs (miRNAs/miRs), P-element-induced wimpy testis-interacting RNAs (piRNAs),
and long ncRNAs are examples of regulatory ncRNAs [16]. MiRNAs are the most thor-
oughly studied small ncRNAs. miRNAs are single-stranded RNA molecules with 18 to
25 nucleotides. They have been shown to be important posttranscriptional regulators
of gene expression and are important for many cellular processes such as cell growth,
differentiation, and apoptosis [17]. HTLV-1 can alter ATLL through dysregulation of host
cell miRNAs [18,19]. Some studies suggest that cellular miRNAs play a role in the prolif-
eration and survival of HTLV-I-infected T cells. To date, HTLV-1-infected cell lines have
been studied using microarray- and PCR-based approaches to identify and characterize
cellular miRNAs [20]. In a recent article published by our group, we reported several sRNA
signatures for ATLL and suggested that these signatures could be used as biomarkers for
detecting ATLL at an early stage [21]. In a later study, we also found that miR-451-3p was
the most downregulated miRNA, suggesting that this miR may be a promising therapeutic
target in patients with active ATLL via the AMPK/Notch pathway.

2. Case Description
2.1. Clinical and Laboratory Materials

In August 2013, a 30-year-old Brazilian woman was admitted to a public hospital in
Bahia, northeastern Brazil, because she had been suffering from fever, arthralgia, vomiting,
and abdominal pain for two weeks. On physical examination, the patient had cervical,
submental, and inguinal lymphadenopathy. She stated that she had no history of swelling
of this type and was not taking intravenous drugs. There was evidence of leukemia in her
family history. During hospitalization at this time, laboratory findings revealed normal
complete blood cells, except for a leukocyte count of 51 × 103/mm3, with 2.5 × 103/mm3

banded neutrophils, 6.8 × 103/mm3 segmented neutrophils, 4.2 × 103/mm3 monocytes,
and 33 × 103/mm3 lymphocytes (Table 1). Laboratory tests also revealed marked hyper-
calcemia (ionized calcium 8.02 mg/dL). The patient was initially diagnosed with chronic
lymphoproliferative disease and was referred to our hospital for further evaluation in
September 2013. On admission to our institution, the patient had a leukocyte count of
67.41 × 103/mm3 with 60.67 × 103/mm3 lymphocytes, Hb 10.1 g/dL, and Hct 32.1%.
Morphological and immunophenotypic characteristics of neoplastic cells in peripheral
blood showed that 75% of lymphocytes had folded nuclei and condensed chromatin. Flow
cytometric analysis of surface markers of lymphocytes in peripheral blood revealed that
66% of pathological T cells expressed CD45 antigen, which expressed the T lymphoid
antigens CD3 in low intensity, CD2+, CD5+, and CD4+ with coexpression of CD25+ and
loss of CD7 expression. This population was negative for CD8 T-lymphoid antigen, CD13,
CD14, CD33, CD64 myelomonocytic antigen, CD19, CD20, CD22 B-lymphoid antigen, and
TdT precursor cell CD34. Other peripheral blood findings were as follows: aspartate amino-
transferase, 62 U/L; alanine aminotransferase, 40 U/L; alkaline phosphatase, 555 U/L; iron
saturation, 72%; lactate dehydrogenase, 2510 U/L; and calcium, 7.2 mg/dL. Symptoms
were described as consistent with peripheral T-cell lymphoma unless otherwise noted.
Contrast-enhanced computed tomography revealed bilateral pleural effusion and ascites
with lymphadenopathy. Serologic analysis revealed a positive reaction against HTLV-1
antibodies, and molecular analysis showed a high proviral load for HTLV-1 tax DNA
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(4.5 × 103 copies per 1000 cells). A clonal HTLV-1 expansion assay revealed strong evidence
of monoclonal T-cell expansion by DNA-based polymerase chain reaction (PCR) of the
rearranged γ-T-cell receptor gene (γTCR). Therefore, the patient was diagnosed with acute
ATLL with lymphadenopathy according to the Shimoyama classification criteria [22]. She
was immediately treated with eight cycles of cyclophosphamide, adriamycin, vincristine,
and prednisone (CHOP; 20 September 2013–10 March 2014), followed by maintenance
therapy with interferon-α (IFN-α) and zidovudine until June 2019. All drugs were ad-
ministered intravenously except prednisone, which was taken orally. Five administration
schedules for G-CSF were used, starting 24 h after the end of the seventh cycle. Another
three administrations of G-CSF, starting 24 h after the end of the eighth cycle, were given
because the patient had neutropenia. The selected induction chemotherapy was effective
and well tolerated. Bone marrow transplantation was the most challenging in our patient
because no matching donor was available. The patient was last seen in September 2022,
and she was still in remission with a good prognosis and performance status.

Table 1. Timeline of treatment course and clinical information.

Laboratory Tests
Diagnosis

Induction
Chemotherapy

Maintenance Therapy Follow UpSeptember
2013–March 2014

Aug/2013 Sep/2013 2014 2015 2016 2017 2018 2019 2022

HTLV-1/2 Reactive Reactive

T cell clonality test Monoclonal
population

Platelets
(Thousand/mm3) 360 218 370

MPV (fL) 9.1 12.3 10.7
Red Blood Cell Count

(million/mm3) 5.1 3.64 4.45 4.23 4.49 4.78 4.89 4.92 4.49

Hemoglobin (g/dL) 14.6 10.1 11.7 11.50 12.3 13.3 13.3 13.7 12.8
Hematocrit (%) 45.6 32.1 35.5 35.3 37.3 39.7 40.7 40.9 38.1

MCV (fL) 89.4 88.2 79.8 83.5 83.1 83.1 83.2 83.1 84.9
MCH (pg) 28.6 27.7 26.3 27.2 27.4 27.8 27.2 27.8 28.5

MCHC (g/dL) 32 31.5 33 32.6 33 33.5 32.7 33.5 33.6
RDW-VC (%) 15.8 13.5 14.5 13.7 13.9 13.3 13.2 13.3
RDW-SD (fL) 49.1 39.1 44.4 41.6 41.7 40.1 39.9 40.3
Leukocytes

(Thousand/mm3) 51 67.41 3.52 4.09 11.94 5.3 4.6 6.97 8.45

Banded neutrophils
(Thousand/mm3) 2.5

Segmented
neutrophils

(Thousand/mm3)
6.8 6.07 1.35 1.8 7.6 2.18 1.64 4.06 5.6

Eosinophils
(Thousand/mm3) 0.2 0 0.04 0.07 0 0.05 0.06 0.05 0.1

Basophils
(Thousand/mm3) 4 0 0.02 0.01 0.01 0.04 0.02 0.04 0

Lymphocytes
(Thousand/mm3) 33 60.67 1.8 1.76 3.4 2.33 2.47 2.39 2.2

Monocytes
(Thousand/mm3) 4.2 0.67 0.31 0.45 0.9 0.7 0.41 0.43 0.6

HTLV-1/2: Human T-lymphotropic viruses, type I/II, MPV: mean platelet volume, MCV: mean corpuscular
volume, MCH: mean corpuscular hemoglobin. MCHC: mean corpuscular hemoglobin concentration, RDW: red
cell distribution width.

2.2. Molecular Analysis

Several studies have shown that sRNA, particularly microRNAs (miRNAs), can have
a significant impact on the cellular response to chemotherapeutic agents and that profiling
of these entities in peripheral blood could serve as potential biomarkers of response to
therapy in certain cancers [23]. Therefore, we decided to generate triplicate sRNA profiles
from peripheral blood mononuclear cells (PBMCs) at the time of diagnosis (referred to as
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J1_1, J1_2, and J1_3) and shortly after maintenance therapy (referred to as J2_1, J2_2, and
J2_3) to determine if they were associated with response to therapy.

Extraction of sRNA, library preparation using the TruSeq sRNA Sample Preparation
Kit (Illumina, San Diego, CA, USA), and sequencing on the MiSeq platform were performed
according to the manufacturer’s instructions (Illumina, San Diego, CA, USA) and a previous
protocol [24,25]. Only high-quality sequencing reads with a Sanger score of 30 or higher
were considered for further analysis. Reads were aligned to the whole genome build hg19
using Strand NGS version 3.1 software (Strand Life Science, Bengaluru, India) according
to the sRNA alignment and analysis pipeline using default parameters. The distributions
of sRNA data in each sample were performed according to the quantile normalization
algorithm [26]. In addition, only sRNA sequences that met the minimum read coverage
criterion of >5 were considered novel or known sRNA and included in further analyses. The
initial analysis showed that the numbers of reads assigned to different gene regions for J1
and J2 were 3,416,083 and 14,018,875, respectively. The median number of reads that passed
quality control for J1 and J2 samples were 2,426,809 and 2,413,440, respectively. Before
expression analysis, the Shapiro–Wilk method was used to test the normal distribution
of the cleaned data (Shapiro–Wilk P > 1.0) in each sample to ensure that only normally
distributed data were considered for further analysis. Reads were then normalized using
the quantile normalization algorithm [26] with the baseline transformation set to the median
value for both samples. We obtained 15,062 of all entities after quantification. Among
them were 9945 known genes, 115 novel genes, and 5002 active miRNAs. To identify
differentially expressed sRNAs, the read count file of the J1 and J2 files was analyzed using
DESeq2, which is included in the Strand NGS version 3.1 package. This analysis identified
91 known sRNAs that were significantly dysregulated before therapy, of which 60 were
upregulated and 31 were downregulated, with fold-change values (FC) ≥ 2.0 (Figure 1A,
and Supplemental Table S1). The differential expression pattern of these genes in the
hierarchical clustering shown in the heatmap in Figure 2 revealed two large clusters in
which the J1 and J2 samples could be accurately distinguished.
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Figure 1. Volcano plots for expressed (A) known sRNA, (B) novel sRNA, and (C) mature miRNAs
in peripheral blood mononuclear cells (PBMCs) in J1 (before therapy) and J2 (after maintenance
therapy) samples. Red (upregulated) and blue (downregulated) circles indicate genes with significant
differences, whereas gray circles represent genes without significant differences.

Of the 115 predicted new sRNAs, 62 were significantly dysregulated between J2 and
J1, of which 21 were upregulated and 41 were downregulated with FC values of at least ≥ 2
(Figure 1B, Supplemental Table S2). Hierarchical cluster analysis of these novel sRNAs also
showed clear separation of J1 and J2 samples similar to the known sRNAs (Supplemental
Figure S1).

Five years after therapy, eleven mature miRNAs were differentially dysregulated. Six
of these were upregulated, while the other five were downregulated with a fold change
≥ 2. (Figure 1C and Supplemental Table S3). Among the increased miRNAs, miR-106b-
5p was 19-fold more altered in the J2 sample than in the J1 sample. On the other hand,
miR-150-5p was downregulated more than 150-fold in the J2 sample compared with J1.
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The nonredundant miRNAs (n = 10) were used to create the heatmap in Figure 3 for
unsupervised hierarchical clustering, which clearly distinguishes the two samples.
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Figure 2. Heatmap showing the results of a hierarchical cluster analysis for the two sample groups
and the 91 significantly dysregulated known sRNAs. The sample cluster tree is shown on the left,
with the sRNA cluster tree above, forming 2 clusters selected by light green and pink colors. The
color scale at the top indicates the relative expression level of sRNA in all samples. Red means that
the expression levels are higher than the mean, while blue means that the expression levels are lower
than the mean. Each column represents a known sRNA, and each row represents a sample.
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expression level of miRNAs in the J1 and J2 samples.

Principal component analysis (PCA) of significantly dysregulated known sRNAs
(Figure 4A) and mature miRNAs (Figure 4B) was consistent with the results of hierarchical
cluster analysis, which showed a clear separation between J1 and J2.

Gene set enrichment analysis implemented in mirWALK v.3 was used to analyze
dysregulated active miRNAs in response to therapy and identify biological networks
and functions enriched in the dataset. The analysis predicted 265 target genes for the
10 nonredundant differentially expressed miRNAs (Supplemental Table S4). The miRNA-
target gene interaction is shown in Figure 5. All target genes in each dataset were then
used to calculate the Reactome, KEGG pathway, and Gene Ontology annotations (GO).
The reactome pathways yielded 96 significantly enriched pathways (Corr p value ≤ 0.05).
Almost all of these pathways were relevant to the phenotype studied and had the highest
associated p values (Corr). For example, “R-HSA-162582_Signal transduction” was the
most strongly predicted pathway enriched with 88 target genes (Supplemental Table S5).
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KEGG pathway analysis revealed significant enrichment of 56 pathways (FDR < 0.05),
most of which were involved in cancer. Endocrine resistance, human T-cell leukemia
virus 1 infection, pathways in cancer, and microRNAs in cancer, were the most significant
KEGG pathways.
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As shown in Supplemental Table S5, annotation of GO revealed that 74 terms from
GO were significantly (FDR < 0.05) associated with biological processes (BP), three with
cellular components (CC), and 30 with molecular functions (MF). The top ten BP, MF, and
all 3 CC terms are shown in Figure 6A. Similarly, the top 20 KEGG pathways are shown
in Figure 6B. The results suggested that the differentially expressed genes were mainly
involved in human-disease-related pathways, mainly cancer (Figure 6C).
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3. Discussion

To our knowledge, this is the first case study investigating miRNAs in ATLL patients
who received CHOP chemotherapy followed by IFN-α and zidovudine as maintenance
therapy. Patients with aggressive forms of ATLL (acute and lymphoma) have the poorest
prognosis, with a median survival of only 6–10 months, even with intensive chemother-
apy [27]. The worst prognosis results from inherent chemoresistance, significant tumor
burden, hypercalcemia, and/or recurrent infectious problems due to significant immun-
odeficiency [28]. Another possible explanation is that miRNAs control the expression of
proteins that cause treatment failure. This allows the cancer cells to acquire the desired
properties [29]. In the present study, we examined the expression of sRNA in PBMCs from
HTLV-1-infected patients with acute ATLL treated with IFN-α and CHOP chemotherapy.
Comparison of sRNA levels after the maintenance phase of therapy and before chemother-
apy revealed 91 significantly dysregulated known sRNAs, 62 predicted new sRNAs, and
11 mature miRNAs. Most of the target genes predicted in this study were involved in
various BPs, of which the G1S transition of the mitotic cell cycle, DNA-templated tran-
scription, and the transforming growth factor beta receptor signaling pathway were the
most important. Five proteins, namely PPP6C, CDK6, CCNE1, E2F3, and CCND1, were
targeted by hsa-miR-15b-3p, miR-93-5p, and miR-106b-5p and are collectively known to
interact and regulate the G1 to S transition in mitotic cells by promoting the release of E2F
transcription factors and activating gene expression necessary for DNA replication and cell
cycle progression [30,31]. Available data from the literature suggest that overexpression
of p21WAF1/CIP1 is associated with G1 arrest and that this protein is regulated by both
p53-dependent and p53-independent pathways [32]. Thus, activation of p53 is an impor-
tant suppressor that ensures that cells are arrested in G1 after DNA damage so that repair
and replication can proceed normally. In ATLL, there are both Tax-dependent and Tax-
independent mechanisms for inactivation of p53 functions [33], and genetic inactivation of
p53 was found in 30% of acute cases [34]. Previous studies have shown that Tax inactivates
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p53 via either activation of the CREB [35] or NF-κB pathway [36]. Datta and colleagues [33]
demonstrated that the inactivation of p53 can be reversed through AZT treatment in T-cell
leukemia-virus-I-infected cells. This effect was observed both in laboratory experiments
(in vitro) and in patients with ATLL (in vivo). The treatment resulted in the inhibition of
telomerase activity, gradual shortening of telomeres, and an increase in p14ARF expression.
As a result, the transcription of tumor suppressor p53-dependent was stabilized and reac-
tivated, leading to enhanced expression of the cyclin-dependent kinase inhibitor p21Waf1

and accumulation of p27kip1. These changes ultimately induced cellular senescence and
caused the death of tumor cells. Based on these results, it is plausible to hypothesize that
IFNα/AZT therapy activates the p53 pathway in our patient. This activation of the p53
pathway upregulates the expression of miR-106b, which works together with the antitumor
effect of p53, potentially enhancing its effectiveness against leukemic cells.

In our current case study, among the five nonredundant miRNAs upregulated after
maintenance therapy, miR-106b-5p was shown to target tumor protein 53-induced nuclear
protein 1 (TP53INP1), whose activity determines cellular survival and proliferation. Of
note, miR-106b-5p was the most upregulated miRNA and was identified, together with
miR-93-5p, as the one targeting many target genes. In addition, miR-93-5p, together with
miR-130b, was reported to interact in a regulatory manner with TP53INP1 in HTLV-I-
transformed cells [19]. Another important BP in ATLL was the transforming growth factor
beta receptor (TGF-β) signaling pathway. In this study, hsa-miR-93-5p, miR-150-5p, miR-
106b-5p, and hsa-let-7g-5p were predicted to target TP53, SMAD2, TGFBR2, TGFBR3, and
ITGB8. These proteins collectively contribute to the TGF-β signaling pathway, which is
highly intricate and tightly regulated. Their interactions and functions within the pathway
are essential for proper cellular responses to TGF-β signaling [37–39]. Several studies have
shown that abnormal expression of miRNAs can affect TGF-β signaling [40], which plays
a critical role in ATLL development and progression [41,42]. For example, miR-26b was
shown to downregulate the expression of SMAD-4, a negative regulator of TGF-β signaling,
thereby promoting TGF-β signaling in affected cells [43] including leukemic cells [44].
One of the target genes involved in the regulation of TGF-β signaling is TGF-β R2 [45],
which was also targeted by miR-106b-5p in our study. Lee et al. [46] recently demonstrated
that the expression of miR-106b-5p can predict the progression and recurrence of breast
cancer in situ via the TGF-β pathway. Elevated levels of TGF-β-producing T cells and
regulatory T cells play a critical role as a risk factor in the onset of ATLL [41]. Yamagishi
et al. [47] conducted a study revealing a substantial increase in TGF-β-producing T cells
in both freshly isolated and long-term cultured T cells derived from ATLL patients. The
overexpression of TGF-β during ATLL pathogenesis is believed to be primarily attributed
to HBZ [48]. Based on the aforementioned findings, although not specifically examined in
this study, it can be speculated that the substantial upregulation of miR-106b-5p following
maintenance therapy may contribute to the inactivation of TGF-β signaling. This effect
could be achieved by miR-106b-5p directly targeting TβR II, which is responsible for
initiating multiple TGF-β signaling pathways [49]. If this hypothesis is confirmed in future
investigations, the dysregulation of miR-106b-5p may add an additional level of control
to suppress the functions of TGF-β signaling pathways, thereby mitigating the malignant
proliferation observed in ATLL.

Previous studies have shown that arsenic trioxide in combination with IFN-α induces
cell cycle arrest and apoptosis in HTLV-I-infected and freshly isolated leukemia cells from
ATLL patients [50] by rapidly silencing NF-κB signaling and delaying cell cycle-associated
gene silencing due to Tax degradation by the proteasome [51,52]. Our results support these
studies and suggest that the combination of chemotherapeutic agents and IFN-α likely
affects miRNA expression and promotes the expression of target genes that induce cell
cycle arrest and apoptosis.

After the maintenance phase of therapy, the most elevated miRNAs were miR-106-
5p and miR-15b-3p, and the most downregulated were miR-150-5p and miR-146a-5p.
Overexpression of miR-106b has been observed in numerous tumor types and regulates cell
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proliferation, migration, invasion, and metastasis. Breast cancer [53], prostate cancer [54],
lung cancer [55], gastric cancer [56], colorectal carcinoma [57], hepatocellular carcinoma [58],
and squamous cell carcinoma of the esophagus [59] have all been associated with abnormal
miR-106b expression. In the context of leukemia, in a recent study, Moussa Agha et al. [60]
investigated the circulating miRNA profile in 27 patients with bone marrow acute myeloid
leukemia (AML) at the time of diagnosis and at the first complete remission after treatment
compared with 11 healthy donors. The results showed that several miRNAs, including
miR-106b, were deregulated among the three groups and were associated with tumor
progression and immunosuppression. The miRNA expression profile data of B-cell acute
lymphoblastic leukemia (ALL) showed that miR-106b-5p was the most downregulated
miRNA (fold-change, 1509.5) [61]. Sampath et al. [62] revealed the involvement of miRNA-
106b in translational suppression of ITCH and demonstrated reactivation of p73-dependent
apoptosis in primary chronic lymphocytic leukemia (CLL) cells after expression of miR-
106b. MiR-106b expression has also been investigated in prognostic studies of leukemia.
High miR-106b expression has been associated with lower overall survival, disease-free
survival, and relapse [63]. For example, patients with AML who express more miR-106b
have poorer overall survival and are more resistant to therapy. Another study showed that
the expression of the miR-106b-25 cluster is increased in recurrent AML in pediatric patients
caused by mixed gene rearrangement, suggesting that miR-106b-25 is closely associated
with the recurrence of AML [64]. Available data from various studies suggest that miR-106b
may be a potential biomarker for tumor detection, prognosis assessment, and therapeutic
targets in various cancers [65–68]. However, such studies are rare in leukemia, except for
a single study by Zhang et al. [63] who investigated the biological role and underlying
mechanisms of miR-106b-25 in drug resistance in leukemia. Their results showed that
miR-106-25 was associated with drug resistance in AML and disease prognosis. Further
experimental investigation in the same study revealed that the biological effects of the miR-
106b-25 cluster on leukemic cell proliferation, chemoresistance, and apoptosis are mediated
through the regulation of the apoptotic pathway. Consistent with the existing evidence
linking miR-106b-5p to AML, ALL, CLL, and other cancers, our hypothesis suggests that
miR-106b-5p plays a role in the therapeutic mechanism of ATLL. Furthermore, we propose
that elevated expression of this miRNA is correlated with a favorable prognosis.

miR-15b was the second most expressed miR in our patient after completion of mainte-
nance therapy. It has been reported that the expression level of miR-15b in PBMCs correlates
with baseline blood glucose levels and may serve as a useful indicator of diabetes [69].
miR-15b-3p has also been extensively studied in the context of cancer and has shown both
oncogenic and tumor suppressive functions depending on the cancer type and cellular
context [70–72]. Lu et al. [73] showed that miR-15b inhibits the proliferation, migration,
and invasion of thyroid cancer cells by regulating Bcl-2. In contrast, miR-15b promotes
cancer growth in other malignancies. Thus, miR-15b overexpression increased sunitinib
resistance and promoted cell survival and invasion in renal cell cancer [73]. Therefore, it
was hypothesized that the function of miR-15b may vary depending on the type of cancer.
Recently, Sun et al. [74] demonstrated that overexpression of miR-15b promotes apoptosis
and disrupts the cell cycle of gliomas by targeting cyclin D1 (CCND1). They concluded
that CCND1 represents a novel therapeutic option for the treatment of gliomas. CCND1 is
associated with tumor malignancy and poor prognosis and has been shown to be involved
in miRNA regulatory networks and their downstream target genes [75]. Close inspection
of the interaction between miRNAs and target genes in our patient revealed that CCND1
was targeted by miR-106b-5p, miR-93-5p, and miR-15b. Thus, it is possible that the direct
influence of these miRs on CCND1 inhibits the proliferation of leukemic cells by stopping
their cycle progression and inducing apoptosis, suggesting that these miRs, including
miR-15b, may have a suppressive function in ATLL.

miR-150 has been found to be dysregulated in various types of solid cancers and
hematologic malignancies [76,77]. Several studies have shown that miR-150 affects onco-
genes and/or tumor suppressor genes and that this has both a curative and malignant
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effect on tumors [78,79]. In 2007, Fulci et al. [80] found that miR-150 was significantly
increased in CD19+ B cells from patients with CLL compared with healthy donors. In
contrast to CLL, miR-150 was downregulated in CD34+ or mononuclear cells from patients
with chronic myeloid leukemia (CML) compared with healthy donors [81]. Several studies
have found that miR-150 expression is significantly lower in pediatric acute lymphoblastic
leukemia (ALL) cells than the control cells [82,83]. These results suggest that downreg-
ulation of miR-150 is associated with a higher probability of disease recurrence in ALL
patients, suggesting a potential favorable prognostic effect of this miR in ALL. One of the
most predicted targets of miR-150 was the transcription factor MYB, which is critical for
lymphocyte development [84]. MYB plays a central role in regulating hematopoietic cell
development and turnover and is deregulated in cancer cells [85]. The HTLV-1 proteins Tax
and HBZ were shown to be responsible for alterations in MYB function and expression in
HTLV-1-infected cell lines [86]. Nakano et al. [87] reported that the expression of MYB is
significantly higher in ATLL samples than in CD4+ T-cell controls. Moreover, in the same
study, MYB and its splicing variant MYB-9A were found to be able to activate the NF-κB
signaling pathway, and knockdown of MYB or MYB-9A induced apoptosis of ATLL cells.
In another study, the oncogenic transcription factor c-Myc (Myc) was shown to inhibit the
expression of numerous miRNAs, including miR-150 [88]. Further investigation revealed
a regulatory loop in which Myc promotes the development of LIN28, an RNA-binding
protein that inhibits the maturation of multiple miRNAs, including miR-150 [78,88,89].
This consequently results in dysregulation of oncogenes such as MYB and FLT3, which
are normally targeted by miR-150 [90]. The above data clearly suggest that the downregu-
lation of miR-150 is associated with poor prognosis in ATL and other leukemic diseases.
However, this is not true for our patient, who had a good prognosis after completion of
therapy, although miR-150-5p was significantly downregulated and its target gene MYB
was predicted. One conceivable interpretation of the low miR-150-5p levels could be that
chemotherapy simply reduces the leukemic cells and extracellular vehicles (EVs) into which
miR-150-5p is actively exported [91], leading to an apparent reduction in its burden.

The dysregulation of miR-146a-5p has been implicated in the pathogenesis and pro-
gression of different types of cancer tissues. Overexpression of miR-146a has been found
in cervical cancer cells [92]) and in Burkitt’s lymphoma [93], whereas low expression has
been described in thyroid carcinomas [94] and prostate cancer [95]. It is known that miR-
146a plays an essential role in several viral infections, whereas its role in other infections,
especially oncoviruses, is complex [96]. For example, Tomita et al. [97] demonstrated that
miR-146a is highly expressed in HTLV-1-infected T-cell lines and is directly induced by
Tax via activation of NF-κB signaling. Pichler et al. [18] also reported upregulation of miR-
146a along with other 3 miRs in HTLV-1-transformed cells. In our patient, miR-146a was
markedly downregulated after maintenance therapy, likely due to the induction of apopto-
sis by IFNα/AZT treatment in the patient’s ATLL cells [98]. This downregulation leads
to suppression of NF-κB activation. However, the mechanism underlying the prognostic
therapeutic role of miR-146a in acute ATLL remains to be fully elucidated.

There were several limitations in our study. First, it was a single case study, which
limits the generalizability of the findings. Additionally, we did not conduct any additional
molecular biology experiments to validate the differentially expressed miRNAs, their po-
tential mechanisms in regulating target genes, and their functions. Last, these observations
need to be validated in larger ATLL cohorts to establish their prognostic significance.

Altered miRNA expression patterns have the potential to function as biomarkers for
leukemia diagnosis, prognosis prediction, and therapy response evaluation, as evidenced in
our patient. Therefore, therapies based on miRNAs hold promising prospects for leukemia
treatment. By overcoming the challenges related to specificity, delivery, and functional
complexity and by utilizing personalized medicine and combination therapies, we can
establish the groundwork for future treatment strategies in patients with leukemia.

In conclusion, we identified 11 miRNAs that may play a role in the therapeutic
mechanism of acute ATLL. These miRNAs might exert their effects by regulating various
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functions, especially the G1S transition of the mitotic cell cycle. Moreover, these 11 miRNAs
might be involved in various signaling pathways. On the one hand, PPP6C, CDK6, CCNE1,
E2F3, and CCND1 might serve as crucial regulators in the G1S transition, while TP53,
SMAD2, TGFBR2, TGFBR3, and ITGB8, on the other hand, might play a role in the TGF-β
signaling pathway. However, further studies are needed to fully understand the specific
functions of these miRNAs in HTLV-1-associated acute ATLL therapy and prognosis.
Moreover, experimental validation is needed to identify the target genes of these miRNAs.
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