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Abstract: Inflammatory bowel disease (IBD) is a complex multifactorial chronic inflammatory disease,
that includes Crohn’s disease (CD) and ulcerative colitis (UC), having progressively increasing global
incidence. Disturbed intestinal flora has been highlighted as an important feature of IBD and offers
promising strategies for IBD remedies. A brief overview of the variations occurring in intestinal
flora during IBD is presented, and the role of the gut microbiota in intestinal barrier maintenance,
immune and metabolic regulation, and the absorption and supply of nutrients is reviewed. More
importantly, we review drug research on gut microbiota in the past ten years, including research on
clinical and natural drugs, as well as adjuvant therapies, such as Fecal Microbiota Transplantation
and probiotic supplements. We also summarize the interventions and mechanisms of these drugs on
gut microbiota.

Keywords: inflammatory bowel disease; gut microbiome; immunity; metabolites; synthetic drugs;
natural products

1. Introduction

Inflammatory bowel disease (IBD), increasingly incident worldwide, is a chronic in-
flammatory disorder of the gastrointestinal tract, mainly including Crohn’s disease (CD)
and ulcerative colitis (UC) [1]. IBD patients commonly suffer from various intestinal
symptoms, such as abdominal pain, diarrhea, haematochezia and vomiting, which lead
to malnutrition and weight loss [2]. IBD can induce other complications, such as arthritis,
cholangitis, urinary tract infections [3], and prostatitis [4]. In addition, IBD can cause
stress and psychological problems in patients, resulting in decreased libido, sexual dys-
function [5], anxiety, fatigue, and even depression [6], severely impacting the quality of life
of IBD patients. It is worth noting that the incidence and prevalence of IBD is escalating
globally year-on-year [1]. Unfortunately, the pathogenesis of IBD remains unclear, and its
etiology is believed to be triggered by multifactorial factors, such as genetics, immunity;,
gut microbiota, and environment, amongst others [7]. Over recent years, the gut microbiota
has been recognized as a cause and consequence of IBD and has attracted much attention
in IBD pathogenesis research and biological therapies. As part of the intestinal physico-
chemical barrier, the gut microbiota has co-evolved with the host’s intestinal environment
and is involved in intestinal maintenance, immune homeostasis, metabolism balance and
nutrient supplementation [8]. Alterations in the composition of the gut microbiota may
contribute to a healthy or pathological gut environment, although many findings on the
intestinal flora of patients with and without IBD are not uniform or standardized. Stud-
ies have indicated differences in the compositions of the gut microbiota between healthy
individuals and patients with IBD, specifically in regard to the richness and diversity of
specific bacterial taxa [9]. The expansion of pro-inflammatory microorganisms, including
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Ruminococcus gnavus and Escherichia coli, and the reduction in anti-inflammatory microor-
ganisms, such as Bacteroidetes, Lachnospiraceae, and Faecalibacterium prausnitzii, are associated
with the progression of IBD [10].

In the past decade, there has been an explosive increase in the number of articles
published on the microbiome in IBD [11], However, there is a lack of review on these gut
microbiota and drug effects in IBD. In this review, we summarize the role of gut microbiota
in the occurrence and development of IBD and provide the latest information on the
treatment of IBD by means of altering the structure of gut microbiota.

2. Gut Microbiota Participate in the Progression of IBD
2.1. Interactions between Gut Microbes and Barrier

The intestinal mucosal barrier, which is the main defensive barrier against potentially
harmful substances and infectious agents for the host, has been shown to closely interact
with the gut microbiota [12]. The mucus provides nutrient and attachment sites for mi-
croorganisms and is associated with the production of antimicrobial mediators, including
antimicrobial peptides (APMs), immunoglobulins (Ig), macrophages, etc. (Figure 1) [13].
The intestinal mucosal barrier also accommodates microbiota-derived enterotoxins, barriers,
and microbial pathogen-associated molecular patterns (PAMPs), including lipopolysaccha-
rides (LPS), peptidoglycan, muramic acid, flagellin, bacterial DNA, and double-stranded
RNA of viruses (Figure 1) [14]. Meanwhile, commensal microbes can increase the concen-
tration of mucus by promoting bacteriocin production and inhibiting pathogenic bacterial
survival. For instance, the increased growth of Akkermansia muciniphila (A. muciniphil), a
myxophilic bacterium in abundant mucus, can become a dominant bacterium [15]. Mean-
while, A. muciniphil can also upregulate the numbers of goblet cells and mucin families of
the intestinal epithelium against IBD [16]. However, the defective colonic mucus layer can
aggravate the invasion of pathogens and commensal-induced inflammation in IBD [17].
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Figure 1. Gut microbiota and the epithelial barrier. The healthy gut (D) is full of abundant mucus
and gut microbes, with commensal bacteria producing antibiotics to defend against harmful bacteria
and to spatially crowd out harmful bacteria. In the inner layer of the barrier, the intestinal epithelium
is tightly interconnected, and the production of antimicrobial peptides by Paneth cells as well as Ig
secreted by immune cells protects the safety of the intestinal epithelium. When harmful bacteria
become dominant bacteria, they consume mucus and release PAMPs, leading to impaired intestinal
epithelial tightness and inflammation ().
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The continuity of the intestinal physical barrier depends on the presence of tight
junctions (TJs) in intestinal epithelial cells. The expression of TJs (claudin, occludin, zonula
occludes 1 (ZO-1) and cingulin) [12] is decreased in IBD and influenced by modulation of
the gut microbiota. Bifidobacteria, a typical phylum of beneficial bacteria, has been used
as an indicator species of IBD exacerbation or recovery for drug effectiveness tests [18],
and can increase the secretion TJs from intestinal cells [19,20], subsequently improving
the symptoms of shortened intestines in IBD mice [21]. In contrast to beneficial bacteria,
enterotoxins produced by invading bacteria can severely damage the epithelial structure of
the host. Most of the studies jointly indicate that the abundances of adherent Escherichia coli
(AIEC), Proteobacteria, Escherichia coli (E. coli), etc., were often increased in IBD, indicating
that these bacteria are possible causative agents of IBD [22]. E. coli at a high level in both
CD and UC patients [23] can be detected in intestinal epithelial cells (IECs) [24]. AIEC,
in particular, has been found to be involved in the early stages of IBD development [25].
Meanwhile, E. coli releases colibactin to damage DNA in IECs, which might be a possible
reason that IBD patients are more likely to suffer from colorectal cancer (CRC) [26]. Toxin-
bearing strains, or enterotoxigenic B. fragilis, cause acute and chronic intestinal disease in
children and adults. For example, Enterotoxigenic B. fragilis damages the colonic epithelial
barrier by inducing cleavage of the zonula adherent protein E-cadherin and initiating
cellular signaling responses characterized by inflammation and c-Myc-dependent pro-
oncogenic hyperproliferation [27]. In conclusion, the intestinal barrier function of IBD is
tightly associated with the microbiota.

2.2. Interactions between Gut Microbes and Immune Cells

Typically, pathogens follow mucus to be captured and digested by dendritic cells and
subsequently mediate more immune responses [13] (Figure 2). The gut mucosa harbors
a substantial population of macrophages [28], which serve as key players in preserving
gut homeostasis by responding to signals originating from the microbiota [29]. They exert
significant effects on IBD by modulating pro-inflammatory (M1) or anti-inflammatory
(M2) phenotypic polarization, depending on different environmental cues [30] (Figure 2).
Macrophages are a double-edged sword, as their excessive activation can lead to inflam-
matory activation mediated by microbiota through the secretion of LPS [31]. Studies have
shown that changes in gut microbiota mediated by macrophage dysfunction result in higher
susceptibility to IBD [32,33]. The components of the local tissue microenvironment, such as
cytokines, microbiota, microbial products, and other immune and stromal cells, more or
less determine the macrophage response [28]. The damaged intestinal epithelium in IBD
increases invasion of pathogenic and harmful bacteria, namely, “translocation” [34], recruit-
ing a large number of macrophages, secreting Interleukin-1 (IL-1), IL-6, IL-12, IL-23 and
tumor necrosis factor (TNF), and producing reactive oxygen species (ROS) (Figure 2) [35].
The release of cytokines and chemokines from macrophages stimulates the adaptive im-
mune response (Figure 2), which forms many classical inflammatory pathways, including
the PIBK-Akt, JAK-STAT [36] and NF-«B pathways (Figure 2).

B cells and T cells are also involved in the response to signals from microbe-induced
immunity activities (Figure 2) [37]. B cells can secrete immunoglobulins (Ig) to bind in-
testinal Proteobacteria, subsequently limiting bacterial translocation to reduce inflammatory
symptoms [38]. Anti-inflammatory regulatory T cells (Tregs) and pro-inflammatory helper
T cells 17 (Th17) functionally antagonize each other [39], but their balance is impaired in
IBD, as shown by abundant Th17 cells in the mucosa [40]. The function of Th17/Treg cells is
considered a bridge linking gut microbiota with host metabolic disorders and a dependent
manner for gut microbiota to ameliorate IBD [41]. Lactobacillus can mediate the activity of
regulatory T cells to ameliorate the inflammation of IBD [42,43]. The exacerbation of IBD is
always accompanied by a decreased abundance of lactic acid bacteria (LAB), which may
cause intestinal acid-base disturbance [44]. Lactobacillus can digest host carbohydrates to
produce lactate, which plays an important role in regulating intestinal Ph and the release of
inflammatory factors [45].
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Figure 2. Gut microbes and immune cells. In a healthy intestinal environment, antigen-presenting
cells transmit antigenic signals to T cells, stimulating immune responses. The following processes
are engaged, and assisted, by beneficial bacteria: Th2 cell-mediated anti-inflammatory response,
B-cell to plasma cell differentiation to produce antibodies, Th cells differentiating into Treg cells, and
macrophage evolution into M2 type immune system. When the intestinal barrier is broken, harmful
bacteria and their metabolites invade the intestine, which, in turn, induces the release of a large
number of pro-inflammatory factors, leading to oxidative stress and damage to epithelial cell DNA.
M1 macrophages and the inflammatory pathways they mediate are activated and contribute to the
progression of IBD.

2.3. The Microbiota-Derived Metabolites Involved in IBD
2.3.1. Short-Chain Fatty Acids (SCFAs)

Dietary fiber or other nondigestible carbohydrates are digested by intestinal com-
mensal bacteria into SCFAs [46], which are essential for intestinal integrity, by regulating
luminal pH, promoting mucus production, providing fuel for epithelial cells and enhancing
mucosal immune function [47]. The three most abundant microbiota-derived SCFAs are
acetate, propionate and butyrate (at a ratio of approximately 3:1:1) [48]. Studies have noted
that sodium acetate and sodium propionate have been demonstrated to exert inhibitory
effects on the pathogenicity of enterohemorrhagic Escherichia coli [49]. A higher concentra-
tion of butyrate salts in the intestinal lumen can effectively counteract the adhesion and
colonization of Listeria monocytogenes, resulting in a significant reduction in infection [50].
Butyrate has the ability to promote MUC2 (mucin 2) expression, leading to the restoration
of the mucus barrier. Additionally, it can facilitate M2 macrophage polarization, further
contributing to the repair process [51]. Sodium butyrate is a potent inhibitor of LPS-induced
NF-«kB, p65 and AKT signaling, inhibiting inflammation in vitro. When necessary, butyric
acid can also be used as a carbon source to provide energy for the host through the (3-
oxidation of hydroxymethylglutaryl CoA [52]. Thus, SCFA-producing bacteria play a vital
role in intestinal metabolism. Unfortunately, in the intestinal tract of patients with inflam-
matory bowel disease (IBD), there is consistently reduced abundance of SCFA-producing
bacteria, including Roseburia, Faecalibacterium, Prevotella 9 and Coprococcus, according to
Jun Hu, and the decrease in SCFA-producing bacteria is accompanied by an increase in
the Escherichia-Shigella, which is a characteristic of IBD [53]. This is consistent with the
trend of serum inflammatory markers in IBD patients. They may be attributed to the
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phenomenon of “microbial cross-feeding”, where one microbe utilizes the end products of
another microbe’s metabolism [54]. The pathogenic bacteria in IBD, such as AIEC, degrade
SCFAs to counteract their anti-inflammatory effects [55], ultimately leading to immune
dysregulation in the intestinal tract of IBD.

2.3.2. Bile Acids (BAs)

A small fraction of free bile acids is reabsorbed directly in the gut, and a large fraction
of conjugated bile acids (~95%) is absorbed in the terminal ileum [56]. During the course of
circulation, primary BAs undergo various bio-transformations in the gut. Bound BAs can
be hydrolyzed by bile salt hydrolase (BSH), releasing glycine or taurine and leaving free Bas.
Microbiota, including Firmicutes, Clostridia, Enterococci, Listeria and Lactobacilli, as well as
Actinobacteria and Bifidobacteria, can generate BSH to participate in BA metabolism [57]. Bile
acids have direct toxic effects on bacteria through membrane damage and other effects to
modulate the structure of the gut microbial community [58]. Among IBD patients, dysbiosis
leads to a lack of secondary bile acids (SBAs) in the gut, and the beneficial effects of SBA
supplementation on intestinal inflammation have been validated in animal models [59],
perhaps as a result of SBAs inhibiting Th17 cell function [60].

2.3.3. Bacterial Self-Metabolites

Histamine, which is responsible for abdominal pain in IBD patients, is mainly pro-
duced by Klebsiella aerogenes with high abundance in the faecal microbiota of IBD pa-
tients [61]. Increased abundance of histamine inhibits the expression of tight junction and
MUC2 proteins, reduces the level of intestinal autophagy and disrupts the function of
colonic goblet cells in secreting mucus, leading to defects in the intestinal mucosal bar-
rier [15]. Desulfovibrio, a major type of sulfate-reducing bacteria (SRB), can trigger sulfide
action resulting in frequent defecation, weight loss and increased intestinal permeabil-
ity [62]. Therefore, UC patients usually have high hydrogen sulfide concentrations in the
intestines. Self-metabolites of bacteria, such as colibactin and indoleamine, have DNA-
damaging effects on epithelial cells and confer an increased risk of CRC [63]. The lack of
tryptophan (or the increase in tryptophan metabolites in serum) has been found to worsen
IBD [64]. In summary, metabolites following microbial disorders undergo a number of
changes that are detrimental to IBD.

2.3.4. Vitamins

Vitamin synthesis is an important metabolic function provided by the gut microbiome:
Clostridium is implicated in the synthesis of folate, cobalamin, niacin, and thiamine [65].
Bifidobacteria has been implicated in folate synthesis [66], and Bacteroides has been implicated
in the production of riboflavin, niacin, pantothenate, and pyridoxine [65]. Some intestinal
bacteria are highly dependent on host-supplied vitamins [67], suggesting that vitamin
deficiency can affect the growth of some bacteria or that the presence of some microbes can
affect the use of host vitamins [68,69]. When dietary vitamin K is deficient, the microbial
community is disordered [70], resulting in to impaired blood clotting [71]. Does this
mean that vitamin K deficiency is associated with intestinal bleeding symptoms in IBD?
Vitamin K1 is mainly obtained from food, and vitamin K2 is mainly synthesized by gut
bacteria. For neonates or healthy people, E. coli can deplete the oxygen in the intestine to
help other anaerobes colonize the intestine and produce vitamin K to help the intestine
resist the invasion of pathogenic bacteria [72]. Moreover, Vitamin K2 can promote the
abundance of short-chain fatty acids (SCFAs) in the colon and SCFA-producing genera,
such as Eubacterium_ruminantium_group and Faecalibaculum [73]. In conclusion, the gut
microbial host provides multiple services, including the production of important nutrients,
such as amino acids, fatty acids, and vitamins [74]. Many metabolites associated with
lipids, amino acids and the tricarboxylic acid cycle are significantly altered in IBD patients,
demonstrating the importance of the gut microbiota [75].
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3. Pharmacological Interventions for IBD and Their Effects on Gut Microbiota
3.1. Clinical Drugs
3.1.1. 5-ASA

For the majority of patients with mild to severe colitis, 5-aminosalicylic acid (5-ASA)
is the preferred medication, whether applied topically or orally [76]. Both oral and rectal
administration of 5-ASA can alleviate symptoms, such as abdominal pain, rectal spasms,
and urinary urgency in patients with inflammatory bowel disease (IBD) [77]. Furthermore,
enema use of 5-ASA has a better inhibitory effect on inflammatory infiltration of intestinal
epithelium [78]. Interestingly, 5-ASA did not alleviate the symptoms of dextran sulfate
sodium (DSS) -induced colitis in mice with antibiotic-depleted intestinal flora, suggesting
that the efficacy of 5-ASA is dependent on the intestinal flora [79] (Table 1). The importance
of intestinal flora is underscored by the superiority of local action. Although 5-ASA
treatment did not appear to completely reverse the disturbance of dominant bacteria in DSS-
treated mice (the decrease in Firmicutes and the increase in Proteobacteria and Bacteroidetes), 5-
ASA significantly promoted the abundance of Bifidobacterium, Lachnoclostridium, Romboutsia
and Anaerotruncus and reduced the content of Alloprevotella and Desulfovibrio [79]. In
addition, the concentration of 5-ASA in the mucosa is significantly correlated with the
abundance of beneficial bacteria in the mucosa, but not well correlated with the abundance
of bacteria in the feces [80], and it significantly inhibits E. coli [81]. Moreover, 5-ASA
contributes to restricting the colonization of some fungi, such as ascomycetes, in the
intestine, which is increased among IBD patients [82]. Although 5-ASA significantly
alters the fecal metabolites of IBD patients, microbial acetyltransferases can inactivate
5-ASA [83]. Furthermore, studies found significant differences in the composition of the
intestinal microbiota between a 5-ASA intolerant group and a 5-ASA tolerant group [84].
This suggests a correlation between dysbiosis and 5-ASA intolerance, so studying the
relationship between gut microbiota and 5-ASA could help patients with 5-ASA tolerance.

Table 1. Synthetic drugs for IBD and their effects on the gut microbiota.

Therapy

Type

Representative Drugs Effects on Microbes Refs

Synthetic
drugs

Aminosalicylates

e  Remolding the disturbed gut microbial

community structure;

Increasing the number of Ascomycetes;

Inhibiting the number of E. coli; [79,81,82,85]
Reducing fungal colonization in the gut;

Improving abnormal metabolism of SBAs

and indole.

5-ASA

e  Remodeling the abundances of intestinal
microorganisms;
Mesalazine e Suppressing the abundance of [86,87]
Methanobacter spp.;
e  Reducing the accumulation of polyPs.

Increasing the Firmicutes / Bacteroides ratio.
Increasing abundance of
SCFAs-producing bacteria and lactic
acid-producing bacteria.

Sulfasalazine

Glucocorticoids

e  Upregulating some metabolites and

Predni : .
rednisone altercating the structure of metabolites.

e Increasing the abundances of Bacillus and
Clostridium;
TAT-GILC e  Improving biodiversity; [90]
Modulacing bacterial community
composition.
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Table 1. Cont.
Therapy Type Representative Drugs Effects on Microbes Refs
Cyclosporine e Increasing the production of butyrate and [91]
acetate.
Immunodepressants
S e  Promoting butyrate production;
Azathioprine Reducing Proteobacteria. 921
Vedolizumab e Increasing the production of butyrate. [93]
. . Stabilizing the intestinal flora;
Biologic agents . Increasing the abundance of beneficial

Infliximab . [94]

bacteria;

e  Reducing the number of C. albicans.

Metronidazole e  Increased lactic acid bacteria. [95]

Antibiotics

e  Increasing the proportion of A.
OPS-2071 Muciniphila; [96]
e Increasing SCFAs.

Mesalamine (MES) is the representative drug of 5-ASA, and it is a first-line drug
for the treatment and remission of moderately mild UC [97]. MES treatment reduces the
relative abundance of DSS-induced Methanobacterium and Vibrio families. In particular,
MES treatment reduces the abnormal abundance of DSS-induced Methanobacteria which
characterize dysbiosis in the colitis gut flora and lead to inflammation [86]. Moreover,
MES treatment can inhibit polyphosphate kinase and reduce the production of polyphos-
phates, which, in turn, reduces bacterial susceptibility to oxidative stress and bacterial
colonization [87]. Sulfasalazine (SASP) is a precursor drug that requires bacterial azo
reductase to decompose and release 5-ASA; thus, bacteria are required for its efficacy [98].
SASP, unlike 5-ASA, reversed the reduction in thick-walled bacteria and the increased
abundance of Proteobacteria and Bacteroidetes in mice with colitis. SCFA-producing bacteria,
such as Lachnospiraceae (including Lactobacillus) and Rumenococci, increased after SASP
treatment. Additionally, there was an increase in lactic acid-producing bacteria, such as
Lactobacillariidae and Streptococcaceae [88] (Table 1).

3.1.2. Glucocorticoids

Glucocorticoids (GCs) are a powerful class of anti-inflammatory agents, but their
long-term usage is associated with various side effects [99]. GC can improve the intestinal
barrier in the presence of TNF, which may also be related to the regulation of intestinal
flora [100]. Long-term prednisone therapy recovers a-diversity to normal levels but down-
regulates the relative abundance of numerous bacteria, including Eissenbacterium spp.,
Alistites spp., and Clostridium spp. Simultaneously, associated SCFAs are downregulated
(such as valeric, propionic, isobutyric, and isovaleric acids), and some metabolites, such
as phenyllactic acid, hydroxyphenyllactic acid, homovanillic acid and others, are upregu-
lated [89] (Table 1). GC-induced leucine zipper (GILZ), an inducer of the anti-inflammatory
effects of GC, is overexpressed in mild colonic inflammation. The fusion protein TAT-GILZ
was applied with great success in preclinical models and improved the intestinal flora
changes induced by DSS. Following the use of TAT-GILZ, the abundance of Bacillus and
Clostridium was re-established, biodiversity increased, and the community composition
more closely resembled that of non-IBD [90].

3.1.3. Immunodepressants

Cyclosporine can be used to salvage or rescue refractory colitis when glucocorticoids
are already out of effect or when colitis flares acutely [101]. Cyclosporine has a fairly weak
effect on the composition and abundance of gut flora, but increased butyrate and acetate
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can be observed following cyclosporine use in healthy individuals [91] (Table 1). Azidopine
significantly increased the abundance of Bacteroidetes, decreased the number of Proteobac-
teria, and significantly increased butyrate production during the treatment of IBD [92]
(Table 1). Emerging biologic agents, represented by anti-TNF-« biologic agents, are used in
the clinical management of IBD [102]. Anti-TNF-« agents not only reduce the expression of
proinflammatory cytokines (such as IL-6, IL-12a, IL-17A and TNF) in the intestinal mucosa
of IBD, but also alter the release of antimicrobial peptides by the intestinal flora. In addition,
the abundance of Prausnitzii increased significantly after anti-TNF-o treatment, along with
the upregulation of SCFAs [103]. The use of vedolizumab increased butyrate production but
had little effect on microbial diversity [93]. Infliximab (IFX) treatment differed in microbial
composition across treatment times, but the differences were small, indicating more stable
bacterial and fungal compositions after IFX conditioning. Ruminal coccus, Mycobacterium
avium, Mycobacterium spp. and Desulfovibrio spp. significantly increased after IFX treatment,
while Candida albicans spp., which induce intestinal inflammation in IBD, decreased [94]
(Table 1).

3.1.4. Antibiotics

Long-term use of combinations of antibiotics (amoxicillin, tetracycline, and metronida-
zole) result in remission rates of up to 30% in severe colitis without significant toxicity [104].
However, antibiotic use alone increases the risk of IBD recurrence, possibly due to the
development of resistance [105]. The stereotype of antibiotics is to kill microorganisms,
and they are therefore commonly used to deplete gut microbes and thereby perform fecal
microbial transplantation (FMT), preventing infection following surgery for colitis and
against recurrent Clostridium difficile infection [106-108]. After streptomycin or vancomycin
treatment prior to FMT of mice with experimental colitis, enrichment of Bacteroides, Parabac-
terium, and Streptococcus spp., which included Bifidobacterium, Mucispirillum, unclassified
Clostridiaceae 1, and Clostridium XI, was observed. Mice subjected to FMT after metron-
idazole pretreatment showed a significant increase in the genus Lactobacillus and better
ability to resist inflammation, than with streptomycin and vancomycin [95]. Ops-2071, a
novel quinolone, showed low antibacterial activity against Akkermansia muciniphila and
high antibacterial activity against other intestinal bacteria. Therefore, ops-2071 rapidly and
significantly increased the proportion of Akkermansia muciniphila in the feces of normal rats
and the production of SCFA [96] (Table 1).

3.2. Natural Products

Surveys have shown that natural products are more often prescribed as complementary
medicine (CAM) and that patient acceptance is rising (most surveys are from China).
Among CAM therapies, the most attention has been paid to medical cannabis and curcumin
in treating IBD. Both of these herbal treatments have anti-inflammatory effects. Cannabis
has also been shown to increase appetite and to have potent analgesic effects that may
further relieve symptoms in patients with IBD [11]. A growing number of studies have
found that natural products, specifically some with low bioavailability, can be present in
the gastrointestinal tract for a long time and can be metabolized by gut microbiota, and,
thus, direct interaction between natural products and the intestinal flora may occur. Herbal
products, as potential prebiotics, have shown their effectiveness in the regulation of gut
microbiota composition and the metabolism of disease-related metabolites, such as amino
acids and cholesterol in IBD [109]. The active ingredients from natural plants that can treat
IBD through intestinal flora, such as polysaccharides, alkaloids and flavonoids, are listed in
Table 2. These findings offer new possibilities for the innovation of drugs for the treatment
of IBD and are expected to lead to the development of prebiotics or new drugs.
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Table 2. The Regulatory Effects of Natural Products on the Intestinal Microbes of IBD.
Effective Name From Effects on Microbiota Refs
Compounds
e  Enhancing overall richness and diversity;
Atractylodes . Reducing abundance of Proteobacteria;
\ macrocephalae e  Reducing abundance of LPS-producing Bacteroides; [110]
Koidz. e  Increasing abundance of Bifidobacterial, Lactobacillus and
etal.
\ Scutellaria barbata D. e Reducing the abundance of IFN-y-, IL-1 (3, IL-6- and [111]
Don IL-18-associated gut flora.
e  Increasing the levels of acetate, propionate and butyrate;
. e Increasing the abundances of Firmicutes, Bifidobacteria,
Scutellaria .2 )
\ . . . Lactobacilli, and Roseburia spp.; [112]
baicalensis Georgi . . .
Polysaccharides e Suppressing the levels of Bacteroidetes, Proteobacteria, and
Staphylococci.
) e  Increasing the abundances of Akkermansia and
\ Lycium barbarum L. Bifidobacterium. [113]
e  Modulating gut microbiota structure to a healthy level;
\ Poria cocos (Schw.) ° Increasing SCFAs; [114,115]
Wolf e Increasing amino acid metabolism (tryptophan); !
e  Being utilized by the gut flora (producing SCFAs).
Dendrobium e Increasing the abundances of Bacteroides spp.,
\ officinale Kimura et Ruminococcus spp., Akkermansia spp, and etc.; [116]
Migo e  Increasing the levels of SCFAs.
° Increasing the ratio of Ruminococcaceae,
Curcumin Curcuma lonea L Lachnospiraceae, Muribaculaceae, and Prevotellaceae; [117]
8a L. . Decreasing the relative abundance of Helicobacteraceae,
Desulfouvibrionaceae and Marinifilaceae.
Glucyrthiza uralensis Decreasing hypoxanthine and uric acid;
\ yey Fisch e  Increasing abundance of Lactobacillus and [118]
butyrate-producing bacteria.
Licoflavone  Glycyrrhiza uralensis Increasing abundance of the gut microbiota; [119]
B Fisch Altering structure of gut microbiota.
Polyphenol Alpinia officinarum Increasing levels of SCFAs;
Galangin P Restoring the abundance of Lactobacillus and increased [120]
Hance o
the number of Butyrimidomonas.
e  Increasing the proportion of Firmicutes and Bacteroides;
Juglone Juglans regia Linn. e Increasing the abundance of Actinomycetes; [121]
Reducing the abundance of Verruca flora.
Increasing Lactobacillus;
Increasing the production of uricase by bacteria and
Rhein Rheum palmatum L. then reducing uric acid; [122,123]
e  Decreasing pathogenic bacteria (e.g., Enterobacteriaceae
and Turicibacter).
Increasing levels of SCFAs;
Berberine Berberine Increasing abundance of lactate-producing bacteria; [124-126]
Alkaloid Increasing metabolism of amino acids.
Evodiamine Evodiamine * IncreaS}ng L. acidop h ilus levels; [127]
e  Increasing production of acetate.
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Table 2. Cont.
Cfrflf;f)t:::ds Name From Effects on Microbiota Refs
Oxymatrine/ Sophora alopecuroides o  Reversing of gut microbiota structure;
total . . . . [128]
matrine L. e  Adjusting bile acid metabolism.
Ginsenoside Panax ginseng C. A. Increasing the levels of SCFAs;
Rgl Mey. e  Restoring the abundance of Lactobacillus and increased ~ [129,130]
the number of Butyrimidomonas.
Glycosides
Scutellaria e  Increasing the abundance of butyrate-producing
Baicalin bacteria (e.g., Butyricimonas spp., Roseburia spp., [131]

baicalensis Georgi Subdoligranulum spp., and Eubacterium spp.).

Abbreviations: IFN-y: Interferon-y.

3.2.1. Polysaccharides

Polysaccharides are poorly absorbed directly by the gut, and they require assistance
from gut microbes for digestion, which confirms interactions between polysaccharides
and gut microbes [132]. In fact, they can serve as a carbon source and be fermented by
gut microbes to produce SCFAs [133]. Natural plant polysaccharides are potent in alleviat-
ing symptoms in mice with enteritis by modulating inflammatory factors and intestinal
barrier proteins. Polysaccharides derived from Atractylodes macrocephala, Scutellaria, and
Lycium barbarum have shown potential in inhibiting the excessive production of TNF, IL-1j3,
and IL-6, while also promoting the expression of mucin 2, claudin 1, ZO-1, and other
relevant markers [110,111,113] (Table 2). There was an upregulation of the relative bene-
ficial bacteria abundance after administration of the Atractylodes polysaccharide, such as
Lactobacillus, Bifidobacterium, Bifidobacterium, Lachnospiraceae, Ruminococcus, Lachnospiraceae
and Faecalibacterium (SCFA-producing bacteria), as well as a decrease in the abundance of
LPS-producing Bacteroides [110]. Polysaccharide from Scutellaria barbata D. Don improved
DSS-induced gut microbiota dysbiosis and downregulated the abundance of harmful bac-
teria closely associated with cytokines such as IL-18, IL-13, and IL-1 [111]. Polysaccharides
derived from Scutellaria baicalensis significantly increased the SCFA levels (e.g., acetic,
propionic, and butyric acids) in DSS-treated mice, markedly increased the abundances
of Firmicutes, Bifidobacterium, Lactobacillus and Roseburia and significantly suppressed the
levels of Bacteroidetes, Proteobacteria, and Staphylococci [112]. Surprisingly, Lycium barbarum
polysaccharides not only increased the relative abundance of Akkermansia and Bifidobac-
terium in the intestinal flora but also promoted the growth of Akkermansia muciniphila and
Bifidobacterium longum in vitro [113]. Futo brick tea polysaccharide (FBTP) can regulate the
composition and structure of intestinal flora in IBD, increasing the abundance of beneficial
bacteria, such as lactic acid bacteria and Akkermansia, as well as increasing the levels of
microbial metabolites, such as SCFAs and tryptophan [114]. FBTP is utilized by the gut
microbiota of IBD participants to generate SCFAs, and fermentation broth cocultured with
gut microbes exhibits anti-inflammatory activity in vitro [115]. With Dendrobium officinale
polysaccharide ingestion, Bacteroides, Lactobacillus, and Ruminococcus increased [116].

3.2.2. Polyphenols

Phenolic compounds exhibit potent anti-inflammatory and antioxidant activities
in vitro and in vivo and are a major class of agents against IBD, mainly flavonoids, cate-
chins, stilbenes, coumarins and phenolic acids [134]. Curcumin, a hydrophobic polyphenol
extracted from the roots of turmeric, can protect mice against DSS-induced colitis by en-
hancing the abundance and stability of intestinal flora, upregulating the proportion of
Ruminococcaceae, Lachnospiraceae, Muribaculaceae, and Prevotellaceae, and downregulating the
relative abundance of Helicobacteraceae, Desulfouvibrionaceae and Marinifilaceae [117]. The
beneficial effects of phytoflavonoids on the intestine are well established. As an example,



Int. . Mol. Sci. 2023, 24, 11004

11 0f 23

total flavonoids from Liquorice can inhibit the activation of the NLRP3 inflammasome
triggered by irinotecan (CPT-11) and regulate CPT-11-induced faecal metabolic disorder in
mice, mainly hypoxanthine and uric acid in purine metabolism. In addition, total flavonoids
from licorice increased the abundance of lactic acid bacteria and butyrate-producing bac-
teria such as Roseburia [118]. Licoflavone B remodels the intestinal microbial system by
inhibiting harmful bacteria (Escherichia coli, etc.) and increasing beneficial bacteria (Lacto-
bacillus, Eubacterium, etc.) [119]. Licochalcone A can not only repair intestinal TJs, but also
up regulate probiotics beneficial to IBD [135]. Some studies have found that chalcone has a
good inhibitory effect on bile salt hydrolases, which may be the reason why drugs change
the bacterial metabolic spectrum [136]. Galangin was shown to improve the diversity of the
gut microbiota, increase the levels of SCFA, and restore the abundance of Lactobacillus and
Butyricicoccus, potentially explaining its protective effect against colitis [120]. Cryptotanshi-
none can alleviate chemotherapy-induced colitis by reducing faecal flora-associated lipid
metabolism [137]. Natural polyphenols are excellent supplements for intestinal bacteria,
and more polyphenols are being found in medicinal plants.

3.2.3. Alkaloids

First among the alkaloids used in the treatment of IBD is berberine, while recent stud-
ies suggest that its therapeutic effects might be related to flora. Administration of berberine
to mice with colitis resulted in an increase in lactic acid-producing bacteria and a decrease
in carbohydrate-hydrolysing bacteria and conditional pathogenic bacteria, followed by
a reregulation of flora-mediated amino acid metabolism and biosynthesis. Furthermore,
carbohydrate metabolism and glucose metabolism were improved with berberine treat-
ment [124]. Increased serum amino acid and faecal tryptophan metabolism after berberine
treatment is believed to be highly correlated with the gut flora [124,125]. Additionally,
berberine may prevent IBD-associated cancer or tumorigenesis by reducing the abundance
of cancer-associated bacteria [126,138]. Evodiamine has a potential therapeutic effect on
IBD by modulating the Firmicutes/Bacteroidetes ratio, increasing the abundance of L. aci-
dophilus and the level of acetic acid, and promoting the increase in goblet cells and secretion
of antimicrobial peptides [127]. Alkaloids are also fermented by bacteria to produce SCFA,
and regulate the structure of gut microbiota in various ways, It is expected to become a
common pathway for this type of disease.

3.2.4. Glycosides

Ginsenosides are representative glycosides for the treatment of IBD [129]. Ginsenoside
RK?2 restored cellular function in human intestinal epithelial THP-1 cells by inactivating the
ERK/MEK pathway and reducing the release of inflammatory factors [139]. Ginsenoside
Rg1 can condition intestinal flora by inducing macrophage polarization, which reduces
the abundance of Bacteroides and Staphylococcus and increases the levels of flora-associated
metabolites [130]. Icariin significantly reduced the proportion and activity of Bacteroides,
the Helicobacter pylori family and Turicibacter and appreciably increased the proportion and
viability of beneficial flora (Lactobacillus, Lachnospiraceae, and Akkermansia), ameliorating
colon damage [140].

3.2.5. Traditional Chinese Medicine Compound Formulas

Traditional Chinese medicine (TCM) compound formulas have unique advantages
in the treatment of IBD due to their collocation of varied natural materials. For example,
Baitouweng decoction can enhance autophagy through the PI3K-Akt-mTORC1 signalling
pathway and regulate intestinal flora structure and metabolites through the IL-6/STAT3
signaling pathway and FXR and TGRS pathways [141-143]. Dahuang mudan decoction
ameliorated colitis in mice by restoring the Th17/Treg balance, recovering the «-diversity,
increasing the abundance of Firmicutes and Actinobacteria, decreasing the abundance of Pro-
teobacteria and Bacteroidetes, increasing the number of butyrate-producing bacteria (namely,
Butyricicoccus baumannii), and restoring intestinal SCFA content [144]. Gancao xiexin decoc-
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tion exerts therapeutic effects on IBD dependent on gut microbiota, which fails to reduce
DAI scores or alleviate either colonic shortening or colonic damage in germ-free mice [145].
Other formulas include Gegen Qinlian decoction, Lizhong decoction, etc., as shown in Table 3.

Table 3. The effects of TCM compound formulas on gut microbiota for IBD.

Name Compounds Mechanism Refs
Pulsatilla chinensis (Bge.) e  Promoting autophagy and anti-inflammation;
Regel, Coptis chinensis Franch., e Decreasing the abundance of Bacteroidetes and
Baitouweng Decoction p hell.odendronl chzrlzense' incr.easir.lg the ab.undance of Firmicutes and [141,143]
Schneid., COptlS chinensis lactic acid bacteria;
Franch., Fraxinus rhynchophylls e Increasing metabolites of bile acid and
Hance tryptophan;
Rheum palmatum L., Paconia e Upregulating the Firmicutes/Bacteroidetes ratio;
suffruticosa Andr., Prunus . ..
Dahuang Mudan ersica (L.) Batsch o  Increasing the number of Butyricicoccus [144]
Decoction P ) . pullicaecorum (a butyrate-producing bacterium);
NaySO4-10H,0, Benincasae .
e Restoring Th17/Treg balance;
semen
Glycyrrhiza uralensis Fisch.,
Scutellaria baicalensis Georgi, e  Decreasing the proportion of Proteobacteria;
o . Zingiber officinale Rosc., e Desulfovibrio and Deltaproteobacteria were
Gancao Xiexin Decoction Pinellia ternata (Thunb.) Breit., enriched; [145]
Ziziphus jujuba Mill., Coptis
chinensis Franch.
Scutellaria baicalensis Georgi, e  Reducing intestinal invasion by bacteria;
. . Paeonia lactiflora Pall., e  Upregulating amino acid metabolism;
Huanggin Decoction Glycyrrhiza uralensis Fisch., e  Inhibiting TLR4 pathways; [146,147]
Ziziphus jujuba Mill. e  Inhibiting the NOD2-dependent pathway;
Pueraria lobata (Willd.) Ohwi, ® Increasing‘n.umbers of Lactobacillus and
Gegen Qinlian Scutellaria baicalensis Georgi, Akkermansiza, ) o [148,149]
Decoction Coptis chinensis Franch., Augme.ntmg 1r.nmur}1ty, . ’
Glycyrrhiza uralensis Fisch. Protectmg the intestinal baI‘I'IEI" and
upregulating ZO-1 and occludin;
Panax ginseng C. A. Mey., e  Regulating metabolism (such as purine
Lizhong Decoction A.tmctylodes maqoeephala ‘ metabolism, second;flry bile acid biosynthesis, [150]
Koidz., Glycyrrhiza uralensis tryptophan metabolism, and
FiSCh., Zingiber oﬁ‘icinale Rosc. glycerophospholipid metabolism)
Coptis chinensis Franch.,
Qingchang Huashi Scutellar‘ia bai({alens.is Georgi, e  Restoring the.Firr.nicutes / Bgcteroidetes .ratio;
Formula Pulsatilla Ch17?€”515 (Bge.) e  Downregulating inflammation by blocking the [151]
Regel, Aucklandia lappa Decne., NLRP3/IL-1p signaling pathways;
and et al.
Dolichos lablab L., Atractylodes
i ; macrocephala Koidz., Poria e Increasing tryptophan metabolism;
Shenling Baizhu Powder cocos (Schw.) Wolf, Glycyrrhiza & tryptop [152]
uralensis Fisch., and et al.
Sophora japonica L., Platycladus
Huaihua Powder orientalis (L.) Franco, e  Restoring the abundance of Firmicutes; [153]

Schizonepeta tenuisfolia Brig. In
addition, et al.

Abbreviations: NLRP3: NOD-like receptor family pyrin domain-containing protein 3; TLR4: Toll-like receptor 4;
NOD2: Nucleotide-binding oligomerization domain-containing protein 2.
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3.3. Other Therapeutic Strategies
3.3.1. Diet and Nutrition

A Western diet, characterized by high protein, high fat, high sugar and low fiber
has been shown to predispose individuals to IBD, and it yields a reduction in microbial
diversity and damages colonic mucus, predisposing bacteria to expansion and activity
leading to the accumulation of specific immune cell populations and significantly altering
the nutrient absorption function of enterocytes [154]. After UC patients received a low-fat
high-fiber diet, the relative abundance of actinobacteria decreased, and the abundance
of Faecalibacterium prausnitzii increased, along with an increased relative abundance of
anti-inflammatory metabolites (such as acetate) in the feces [155]. Investigations have
found that the majority of IBD patients have low vitamin D levels, and vitamin D receptor
intestinal (VDR) expression is inversely correlated with the severity of inflammation in IBD
patients [156,157]. The VDR pathway is a promising target for the prevention of high-fat
diet-induced inflammatory bowel disease, according to O'Mahony, C. [158]. Vitamin D has
a positive regulatory effect on the gut microbiota structure in IBD, increasing beneficial
bacteria, such as Roseburia, Alistipes, Parabacteroides, and Faecalibacterium., while reducing
pathogenic bacteria, such as Ruminococcus gnavus. However, the effects are transient,
meaning that long-term supplementation of vitamin D alone cannot sustain this microbial
structure [159].

3.3.2. Fecal Microbiota Transplantation

Treatment of digestive diseases, such as severe diarrhea with juice of feces, also
called “Huanglong Tang”, has been documented as early as in Zhou Hou Bei Ji Fang over
1000 years ago. FMT is a direct means of reshaping the intestinal flora, with comparable
therapeutic efficacy to that of GCs and with a higher safety profile [160]. Fecal transplant
patients can inherit the donor’s glycoside hydrolase genes (increasing digestion of dietary
polysaccharides), butyrate biosynthesis genes, and mucin digestion genes, among others.
Unfortunately, depletion of donor Enterobacteria in recipients tends to occur more rapidly
than colonization [161]. In fact, whether drug treatment or probiotic supplementation is
administered, there is also the problem that any alteration may be temporary and that once
the medication is discontinued, the structure regarded as healthy may quickly be disrupted
again. Therefore, post stabilization with altered intestinal structure is an issue that should
also be considered when treating intestinal diseases based on gut microbes. FMT is also
commonly used as a test of whether a drug targets the gut flora. Usually, fecal bacteria of
mice after administration are used for FMT; for example, Wu, J. et al. transplanted the fecal
microbiota of Rhein-treated mice into colitis mice to verify whether rhein perturbed gut
flora and had a role in ameliorating colitis [122].

3.3.3. Probiotic Supplementation

In view of the benefits of probiotics in the intestinal tract, probiotic supplements have
been derived to compensate for the reduction in probiotics in IBD. A number of probiotic
supplements have been proven to be effective, although the European Medicines Agency
has not approved any probiotics to be marketed in pharmaceutical form. The major flora
deemed to be beneficial for IBD patients include lactic acid-producing bacteria, Bifidobacteria,
Bacillus and Enterobacter. Representative probiotic supplements of Bifidobacterium spp. con-
tain Bifidobacterium BLa80, Bifidobacterium longum CECT 7894, Bifidobacterium bifidum BD-1,
Bifidobacterium bifidum H3-R2, Bifidobacterium bifidum H3-R2, among others [162-166]. Rep-
resentative beneficial strains of Lactobacillaceae include Lactobacillus paracasei IJH-SONE68,
Lactobacillus paracasei L9, Lactobacillus casei strain Shirota, Bifidobacterium lactis BL-99 and
others [167-170] (shown in Table 4). Probiotic supplementation can not only supplement
the absence of flora in the intestine, but also improve the effective rate of drugs [171]. For
example, combining Bifidobacterium and mesalazine not only relieves IBD, but also reduces
adverse effects [171]. Therefore, rational use of the benefits of the gut flora may achieve a
1+ 1> 2 effect.
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Table 4. Probiotic supplementation for IBD.
Classification Name Mechanism Refs
" . " . Maintaining the intestinal barrier;
Bifidobacterium bifidum BGN4 o  Inhibiting NF-«B activates signaling molecules. [162]
o  Inhibiting of NF-«B pathways;
Bifidobacterium bifidum H3-R2 e  Regulating expression of TJs; [163]
. Reducing LPS-induced disruption of barrier in IEC.
o . Inhibiting inflammation;
Bifidobacteria Bifidobacterium BLa80 Promoting the growth of beneficial bacteria. [165]
Increasing ZO-1 and Occludin expression;
e Increasing relative abundances of the genera
Bifidobacterium longum CECT Blﬁdobacterlum,'Butyrzczcoccus and Clostridium and
decreased relative abundances of the genera [166]
7894
Enterococcus and Pseudomonas;
o  Upregulating the levels of SBAs such as a-mca,
$-MCA, LCA, CDCA, UDCA, etc.
e  Increasing numbers of butyrate-producing bacteria;
Lactobacillus paracasei L9 e  Inhibiting IL-6/STAT3 signaling and increasing IL-6 [168]
expression in colitis.
e  Increasing taurine conjugated bile acids;
Lactobacillus casei Strain e  Stabling IkBo; [169]
Lactobacillus

e  Inhibiting NF-«B signaling.

Lactobacillus salivarius

UCC118™ e  Modulating immune responses. [172]

Lactobacillus plantarum ZS62

° Regulating oxidative stress;

Modulating immune responses. [173]

Abbreviations: a-mca: Alpha-Muricholic Acid; 8-MCA: Beta-Muricholic Acid; LCA: Lithocholic Acid; CDCA:
Chenodeoxycholic Acid; UDCA: Ursodeoxycholic Acid; IkBeu: Inhibitor of kB alpha.

4. Conclusions

In conclusion, gut microbes possess great potential, and their contribution to the treat-
ment of IBD cannot be ignored. A stable gut microbial structure is a prerequisite for the gut
to perform intricate physiological processes. Gut microbes directly contact the intestinal
epithelium, influence mucus secretion and mucosal immunity, and mediate the differentia-
tion of intestinal stem cells. Structural and metabolite changes in the gut microbiota are
emerging as a new class of parameters for drug development and mechanistic studies. In
this review, we scrutinized the changes in, and functions of, gut microbes in IBD and sum-
marized the latest therapeutic approaches to IBD, including 5-ASA, immunosuppressants,
glucocorticoids, polyphenols, polysaccharides and herbal combinations, and their effects
on the gut microbiota. Most of these drugs reverse the changes in gut flora in IBD, which
specifically increase certain beneficial (Bifidobacteria, Lactobacillus) or metabolites (SCFA,
SBAS, amino acids, etc.), whilst decreasing harmful bacteria (Adherent Escherichia coli,
Proteobacteria, Escherichia coli). Interestingly, most of the drugs that are beneficial for IBD
allow beneficial microorganisms to dominate the gut and reduce harmful ones.

The complexity of gut microbiota has increased the challenge to the mechanism
research of drugs and gut microbiota, so the current mechanism research is not deep enough.
Nevertheless, the mechanism, or causal relationship, between IBD and gut microbiota is
also controversial. Reconstitution of the gut flora structure can reverse the exacerbation
of IBD, although it is unclear whether this change is the cause or the effect. However,
existing research lacks long-term tracking of gut microbiota and IBD. Since IBD is typically
a chronic condition, and patients” disease statuses and treatments can vary over time, it is
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challenging to establish a clear understanding of the relationship between gut microbiota
and IBD or its treatment. Fortunately, advanced metagenomic and metabolomic analyses
provide deep insights into the intricate relationships among gut microbes, metabolites,
and hosts. Ongoing analyses of microbial systems are propelling rational development of
targeted microbial drugs.

Gradual adverse reactions to IBD drugs are commonly exposed in clinics. This de-
fect seems to be compensated by regulating microbiota. The customized gut microbiota
structure can meet the individualized requirements of patients, that is, in combination with
FMT, and has been proven to be effective [160,174]. It is claimed that natural products are
free from contamination, and they are often further processed by gut microbiota. Therefore,
natural products possess tremendous potential in the treatment of IBD. However, many
studies on natural products mediating the gut microbiota seem to be limited to investigat-
ing the outcomes of improving the gut microbiota without delving deeper. Additionally,
the issue of the long-term stability of the newly established microbial structure resulting
from such interventions remains unclarified. Similar limitations are observed in the field
of FMT, where low rates of successful microbial engraftment and limited sustainability of
therapeutic effects are common. Furthermore, there is a lack of standardization in research
methods for studying gut microbiota. The complexity of the microbial community and
individual variations among patients contribute to diverse responses to therapeutic inter-
ventions, and there is often insufficient sample size support. Therefore, further efforts are
needed in the field of microbial therapeutics research.
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