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Abstract: Periprosthetic osteolysis (PPO) induced by wear particles is the most severe complication
of total joint replacement; however, the mechanism behind PPO remains elusive. Previous studies
have shown that osteocytes play important roles in wear-particle-induced osteolysis. In this study,
we investigated the effects of connexin 43 (Cx43) on the regulation of osteocyte-to-osteoblast dif-
ferentiation. We established an in vivo murine model of calvarial osteolysis induced by titanium
(Ti) particles. The osteolysis characteristic and osteogenesis markers in the osteocyte-selective Cx43
(CKO)-deficient and wild-type (WT) mice were observed. The calvarial osteolysis induced by Ti particles
was partially attenuated in CKO mice. The expression of β-catenin and osteogenesis markers increased
significantly in CKO mice. In vitro, the osteocytic cell line MLO-Y4 was treated with Ti particles.
The co-culturing of MLO-Y4 cells with MC3T3-E1 osteoblastic cells was used to observe the effects
of Ti-treated osteocytes on osteoblast differentiation. When Cx43 of MLO-Y4 cells was silenced or
overexpressed, β-catenin was detected. Additionally, co-immunoprecipitation detection of Cx43 and
β-catenin binding in MLO-Y4 cells and MC3T3-E1 cells was performed. Finally, β-catenin expression
in MC3T3-E1 cells and osteoblast differentiation were evaluated after 18α-glycyrrhetinic acid (18α-
GA) was used to block the intercellular communication of Cx43 between MLO-Y4 and MC3T3-E1
cells. Ti particles increased Cx43 expression and decreased β-catenin expression in MLO-Y4 cells. The
silencing of Cx43 increased the β-catenin expression, and the over-expression of Cx43 decreased the
β-catenin expression. In the co-culture model, Ti treatment of MLO-Y4 cells inhibited the osteoblastic
differentiation of MC3T3-E1 cells and Cx43 silencing in MLO-Y4 cells attenuated the inhibitory
effects on osteoblastic differentiation. With Cx43 silencing in the MLO-Y4 cells, the MC3T3-E1 cells,
co-cultured alongside MLO-Y4, displayed decreased Cx43 expression, increased β-catenin expression,
activation of Runx2, and promotion of osteoblastic differentiation in vitro co-culture. Finally, Cx43
expression was found to be negatively correlated to the activity of the Wnt signaling pathway, mostly
through the Cx43 binding of β-catenin from its translocation to the nucleus. The results of our study
suggest that Ti particles increased Cx43 expression in osteocytes and that osteocytes may participate
in the regulation of osteoblast function via the Cx43 during PPO.

Keywords: periprosthetic osteolysis; osteocyte; connexin 43; β-catenin

1. Introduction

Joint arthroplasty can relieve joint pain and enhance the quality of life of patients with
severe osteoarthritis. The aseptic loosening of the prosthesis is the main postoperative
complication of joint arthroplasty, and periprosthetic osteolysis (PPO)is the most important
factor in aseptic loosening [1,2]. However, the precise mechanism underlying PPO remains
unknown. The existing literature shows that friction during the movement of artificial joints
induces the production of implant-derived particles, including titanium (Ti), chromium,
and polyethylene, which exist at the interface between the prosthesis and host bone. The
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production of these particles triggers chronic inflammation and activates osteoclasts, lead-
ing to bone resorption. Meanwhile, these particles inhibit osteoblast function, decrease bone
formation, and stimulate the expression of mediators that participate in the communication
between osteoblasts and osteoclasts, thus increasing the ratio of nuclear factor-kappa B
ligand (RANKL)/ osteoprotegerin (OPG)and further promoting bone resorption [3–6]. The
delicate balance between bone formation and bone resorption is disturbed by wear debris,
which results in unbalanced remodeling in favor of resorption [7].

Osteocytes are terminally differentiated osteoblasts that are deeply buried in the bone
matrix and comprise 90% of all bone cells [8]. Accumulating evidence indicates that os-
teocytes play an important role in regulating bone formation and resorption. Osteocytes
release RANKL to stimulate osteoclast differentiation and maturation and produce inflam-
matory cytokines to inhibit osteoblast differentiation [9,10]. The apoptosis of osteocytes
increases the number of osteoclasts and promotes osteoclastic bone resorption [11,12]. Os-
teocytes also regulate osteoblastic bone formation through the canonical Wnt signaling
pathway [13–15]. Some studies have shown that osteocytes also play an important role in
PPO induced by wear debris. Lohmann [16] demonstrated that the addition of ultra-high-
molecular-weight polyethylene (UHMWPE)to MLO-Y4 osteocytes in vitro significantly
increased prostaglandin E2 and nitric oxide levels. Wang et al. demonstrated that a con-
ditioned medium from osteocytes challenged with Ti-alloy particles promotes osteoclast
formation [17]. Our study showed that osteolysis on the skull surface of mice increased in
response to a high level of sclerostin, which is a characteristic product of osteocytes [18]. We
further found that the treatment of MLO-Y4 cells with Ti particles inhibited MC3T3-E1 os-
teoblastic differentiation when the two types of cells were co-cultured via direct cell-to-cell
contact [19]. Therefore, we speculated that connexin 43 (Cx43), which helps to perform gap
junctional intercellular communication (GJIC), might play a certain role in the regulation of
osteocyte-to-osteoblast differentiation.

Cx43 is the predominant connexin in skeletal tissues. A growing amount of research
has focused on the role of Cx43 in the activity of osteocytes and osteoblasts [20]. Cx43 is
closely associated with bone cell differentiation, skeletal metabolism, and bone remodeling,
especially in mechanical environments [21–23]. However, the role of Cx43 in the regulation
of osteocyte-to-osteoblast differentiation during PPO has not been conclusively determined.

In the current study, we built Ti-particle-induced osteolysis models in vivo and in vitro
to investigate the effects of Cx43 on PPO. We found that Cx43 silencing attenuated particle-
induced osteolysis. Additionally, Cx43 played an important role in the regulation of
osteocyte over osteoblast during the osteolysis induced by wear debris.

2. Results
2.1. The Calvarial-Particle-Induced Osteolysis Was Partially Attenuated in Osteocyte-Selective
Cx43-Deficient (CKO) Mice

To investigate the effects of Cx43 and osteocytes on PPO, we obtained transgenic mice
with a conditional deletion of Cx43, specifically in osteocytes. We established a murine
calvarial osteolysis model and found that the skull surfaces of mice from the WT group
were smoother than those in the Ti group, indicating a higher degree of osteolysis in the Ti
group. In contrast, the degree of osteolysis in the CKO + Ti group was significantly lower
than that in the Ti group (Figure 1). Quantitative analysis revealed that, in comparison
to the WT and Ti group, the Ti particles led to extensive lytic pores and decreased bone
mineral density (BMD), bone volume/tissue volume (BV/TV), and trabecular number
(Tb.N). In addition, trabecular separation (Tb.sp)was significantly higher in the Ti group
than in the WT group in mice calvariae. Compared with the Ti group, the CKO + Ti group
showed a reduction in the number of pores, an increase in BMD, BV/TV, and Tb.N, and a
significant decrease in Tb.SP (Figure 1A).
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Figure 1. Partial attenuation of the calvarial-Ti-particle-induced osteolysis in CKO mice. (A) Mouse
calvarial osteolysis samples were scanned using micro-CT. The dashed black circle indicated the ROI for
data analysis. Three-dimensional images were generated and some parameters such as BMD, BV/TV,
Tb.N, trabecular thickness (Tb.Th), and Tb.SP were obtained and analyzed using software CTVol
(Version 3.1, Bruker)based on micro-CT scanning data. (WT: wild-type mice treated with phosphate-
buffered saline (PBS); Ti: wild-type mice treated with 40 mg/mL of Ti particles; CKO: Cx43-deficient mice
treated with PBS; CKO + Ti: Cx43-deficient mice treated with 40 mg/mL of Ti particles). Three micro-CT
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scan results of cranial specimens were selected for data analysis for each group. (B) Immunohis-
tochemical stain of Osterix. Representative sections were chosen from the sagittal exploration of
mouse calvaria. The black boxed regions were viewed at a higher magnification level. The areas
within the curves indicate the sagittal suture. Red arrows represent Osterix-positive cells (brown),
and black arrows represent Osterix-negative cells (blue) in the sagittal suture. The scale bar is 50 µm.
Statistic results are displayed on the right on the basis of the statistical results quantification of the
Osterix-positive cell proportion in the sagittal of mouse calvarial. Three slides were selected from
each group for quantitative analysis. The numbers of Osterix-positive cells and total cells within the
sagittal suture were counted using the Image J software (Image J 1.8.0; National Institutes of Health,
USA). The proportion of positive cells (brown) was calculated as follows: the proportion of positive
cells = (the number of positive cells in sagittal/the number of total cells in sagittal) × 100%. Data are
expressed as mean ± SD, n = 3, * p < 0.05, NS: no significant.

2.2. The Inhibition of Osteoblastic Differentiation in Calvarial-Particle-Induced Osteolysis Was
Partially Reversed in CKO Mice

To assess whether the alleviation of particle-induced osteolysis in the calvarial osteoly-
sis model was associated with osteogenic differentiation, immunohistochemical staining
was performed for osteogenic marker Osterix. The quantity of results that revealed the
presence of Osterix-positive cells within the sagittal suture in the Ti group decreased sig-
nificantly compared with the WT group. However, in the CKO + Ti group, the presence
of Osterix-positive cells increased significantly in comparison with the Ti group (p < 0.05,
Figure 1B).

2.3. The Protein Expression of β-Catenin, Runx2, Osterix, Alkaline Phosphatase (ALP), and
Osteocalcin (OCN) Was Elevated in the Femur of CKO Mice

Immunohistochemical staining of femur bone sections from CKO mice showed that,
compared with the WT group, the proportion of Cx43-positive cells in bone trabecula
decreased significantly in the CKO group, whereas the proportion of β-catenin-positive
cells increased significantly (p < 0.05, Figure 2A), which meant that β-catenin increased
primarily in the osteocyte of CKO mice. Furthermore, we extracted proteins from the femurs
of CKO and WT mice, and the results showed that the protein expression of β-catenin,
Runx2, Osterix, ALP, and OCN increased in CKO mice compared to WT mice (p < 0.05,
Figure 2B). The results of in vivo experiments showed that Cx43 deficiency in osteocytes
activated the Wnt/β-catenin signaling pathway and promoted osteoblast differentiation.
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Figure 2. Increased protein expression of β-catenin, Runx2, Osterix, ALP, and OCN in the femurs
of CKO mice. (A) Representative sections of HE and immunohistochemical staining showed were
chosen from femoral trochlear groove. Osteocytes were located in cortical bones of femurs of WT
and CKO mice (black arrows). Immunohistochemical staining of β-catenin and quantification of Cx43
and β-catenin-positive cells. Red arrows indicate Cx43 and β-catenin immunopositive cells (brown).
Bar graph shows the proportion of Cx43 and β-catenin-positive cells. (The images were magnified
20 times in gray boxes and 40 times in black boxes separately. The scale bar is 5 µm). Three slides
were selected from each group for quantitative analysis. Numbers of immunopositive cells and total
cells in cortical bone were counted using the Image J software (Image J 1.8.0; National Institutes of
Health, USA). In femur specimens, the proportion of immunopositive cells (brown) was calculated
as follows: proportion of positive cells = (the number of positive cells in cortical bone/ the number
of total cells in cortical bone) × 100%. (B) The proteins from the femurs of mice were extracted and
the protein expression levels of β-catenin, Runx2, Osterix, ALP and OCN were determined. (CKO:
Cx43-deficient mice, WT: wild type mice). Data are expressed as mean ± SD, n = 3, * p < 0.05.
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2.4. Ti Particles Increased Cx43 Expression and Decreased β-catenin Expression in MLO-Y4 Cells

We examined the expression of Cx43 in MLO-Y4 cells exposed to various concentra-
tions of Ti particles. Through immunofluorescent staining, we found that Cx43 expression
increased alongside an increase in Ti particle concentration, which appeared green and
was distributed along the cytomembrane of osteocytic cells (Figure 3A). The Western blot
data further showed that Ti particles in the 0.1 and 0.2 mg/mL group at 24 h significantly
increased the protein expression of Cx43 compared to the control (p < 0.05). The protein
expression of β-catenin decreased significantly with an increase in Ti particle concentration
compared with the level in the control group at 24 h (p < 0.05) (Figure 3B). The amount
of β-catenin translocated into the nucleus decreased significantly with an increase in Ti
particle concentration compared to the control (p < 0.05) (Figure 3C).
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Figure 3. Ti particles increased Cx43 expression and decreased β-catenin expression in MLO-Y4 cells.
(A) Immunofluorescence showed the distribution of Cx43 in MLO-Y4 cells treated with different
concentrations of Ti particles for 24 h (Cx43: green; DAPI: Blue Scale: 20 µm). (B) Western blot analysis
of the protein expression of β-catenin and Cx43 in MLO-Y4 cells exposed to different concentrations
of Ti particles for 24 h. (C) Western blot analysis of the β-catenin in the nucleus of MLO-Y4 cells
exposed to different concentrations of Ti particles for 24 h. Lamin-B1 was selected as an internal
reference for nuclear protein. (NC group; 0.1 mg/mL, 0.2 mg/mL: the concentrations of Ti particles).
Data are expressed as mean ± SD, n = 3, * p < 0.05.

2.5. Cx43 Expression in MLO-Y4 Cells Reduced β-Catenin Expression

To verify the relationship between Cx43 and β-catenin found in vivo, β-catenin
changes were detected after Cx43 silencing or overexpression in vitro. For Cx43 silencing,
three interference sequences of Cx43–shRNA were designed and transfected into MLO-Y4
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cells using a lentivirus vector. The Cx43–shRNA sequences were screened and identified.
The first short hairpin RNA (shRNA-1) sequence significantly reduced the expression of
Cx43, and therefore we chose shRNA-1 for subsequent experiments. Likewise, the overex-
pression of Cx43 was identified via Western blotting (Figure 4A). Free β-catenin must be
translocated into the nucleus to activate the Wnt signaling pathway. To measure the level of
nuclear β-catenin, we extracted nuclear protein and detected the level of nuclear β-catenin
by Western blotting. Results showed that β-catenin levels in the MLO-Y4 nucleus increased
significantly after Cx43 silencing (p < 0.05), and β-catenin levels decreased significantly
when Cx43 was overexpressed (p < 0.05) (Figure 4B). These results suggested that Cx43
may negatively regulate the Wnt signaling pathway in osteocytic MLO-Y4 cell.
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Figure 4. Cx43 reduced β-catenin expression in MLO-Y4 cells. (A) Cx43 silencing or overexpression
was detected by Western blotting. (B) The β-catenin in the nucleus of MLO-Y4 cell was detected by
Western blotting and Lamin-B1 was selected as an internal reference for nuclear protein. (Cx43-L:
the group with low Cx43 expression; Cx43-H: the group with overexpression of Cx43; NC: negative
control group). Data are expressed as mean ± SD, n = 3, * p < 0.05.

2.6. In the Trans-Well Co-Culture System, Cx43 Silencing of MLO-Y4 Reversed the Inhibition of
Osteoblastic Differentiation of MC3T3-E1 Cells Induced by Exposure of the Co-Cultured MLO-Y4
Cells to Ti Particles

To ascertain the effects of MLO-Y4 cells exposed to Ti particles on MC3T3-E1 cells, a
Millicell culture insert plate (Millipore, Billerica, MA, USA), which comprises a membrane
perforated with multiple pores, was used to achieve the co-culturing of two kinds of cells,
and two cells were easily separated for detection. MC3T3-E1 and MLO-Y4 cells were seeded
on the basal and apical side of the membrane separately. After 7 and 14 days of osteo-
induction, total protein of MC3T3-E1 was collected and the osteoblastic differentiation of
MC3T3-E1 cells was evaluated. In the co-culture model, Ti particles, which only interacted
with MLO-Y4, indirectly decreased the protein expression of β-catenin, Runx2, Osterix,
ALP, and OCN in the MC3T3-E1 cells (p < 0.05, Figure 5A). Compared with the NC group,
the ratio of the positive staining area to the total area of ALP and alizarin red staining in
the Ti-treated group decreased significantly (p < 0.05, Figure 5B).

After Cx43 silencing of MLO-Y4, the levels of some osteoblastic differentiation markers
of MC3T3-E1 cells, such as β-catenin, Runx2, Osterix, ALP, and OCN, increased even when
MLO-Y4 cells were treated with Ti particles. Likewise, the number of ALP-positive cells
and mineralized nodules increased significantly after Cx43 silencing compared to the group
treated with Ti particles (p < 0.05) (Figure 5A,B).
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Figure 5. MLO-Y4 cells exposed to Ti particles inhibited the osteoblastic differentiation of MC3T3-E1
cells in the co-culture model, and Cx43 silencing attenuated the inhibition effects of Ti-induced
MLO-Y4 on osteoblastic differentiation of MC3T3-E1. In the co-culture model, MLO-Y4 cells were
treated with 0.2 mg/mL of Ti particles. (A) Protein expression of β-catenin, Runx2, Osterix, ALP,
and OCN in MC3T3-E1 cells was detected by Western blotting. (B) ALP and alizarin red staining
of MC3T3-E1 cells on days 7 and 14 were evaluated separately. ALP active site was dark blue or
blue-purple and calcium nodules were stained as red. (NC: negative control group; Ti: group of
MLO-Y4 cells exposed to Ti particles; Cx43-L+Ti: group of MLO-Y4 cells with low expression of Cx43
exposed to Ti particles) The particle analysis tool of Image J was used to calculate the ratio of the
stained area. Data are expressed as mean ± SD, n = 3, * p < 0.05.

2.7. In the Co-Culture Model, Cx43 Silencing in the MLO-Y4 Cells Reduced the Expression of
Cx43, Increased the Expression of β-Catenin Expression in MC3T3-E1 Cells, and Promoted
Osteoblastic Differentiation

In the co-culture model, MLO-Y4 and MC3T3-E1 cells were in direct contact through
the pores in the membrane of the insert plate. To explore expression changes of Cx43 on the
interface of two kinds of cells, cells were seeded in a confocal small dish to form cell-to-cell
contact randomly, and we induced osteogenic differentiation for seven days. Cx43 and
F-actin were labelled green and red by immunofluorescence staining. Cx43 silencing in
MLO-Y4 cells reduced the expression of Cx43 in MC3T3-E1 cells, whereas overexpression
of Cx43 in MLO-Y4 cells increased the expression of Cx43 in MC3T3-E1 cells (Figure 6A).

To explore the effects of Cx43 expression changes on MC3T3-E1 cells in the co-culture
model, osteoblastic differentiation of MC3T3-E1 cells was performed. The results showed
that, when Cx43 was silenced in the MLO-Y4 cells, the protein expression of Cx43 in the
MC3T3-E1 cells decreased and the protein expression of β-catenin, Runx2, Osterix, ALP, and
OCN in the MC3T3-E1 cells increased significantly compared with the NC group (p < 0.05,
Figure 6B). Colorimetric quantitative analysis of ALP staining and mineralized nodule
staining showed that when Cx43 was silenced in the MLO-Y4 cells, more ALP-positive cells
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and more mineralized nodules were observed in the MC3T3-E1 cells than in the NC group
(p < 0.05, Figure 6C). In contrast, the protein expression of Cx43 in MC3T3-E1 cells increased
and the protein expression of β-catenin, Runx2, Osterix, ALP, and OCN in MC3T3-E1 cells
decreased significantly compared with the NC group upon Cx43 overexpression in the
MLO-Y4 cells (p < 0.05, Figure 6B). Fewer ALP-positive cells and mineralized nodules were
observed in MC3T3-E1 cells than in the NC group when Cx43 was overexpressed in the
MLO-Y4 cells (p < 0.05, Figure 6C).
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Figure 6. Cx43 silencing in MLO-Y4 cells reduced the expression of Cx43 in MC3T3-E1 cells, increased
β-catenin expression in MC3T3-E1 cells and promoted osteoblastic differentiation in the co-culture
model. (A) Immunofluorescent staining results after 7 days of co-culture (MLO-Y4-Cx43-L + MC3T3-
E1: MLO-Y4 cells with low Cx43 expression co-cultured with MC3T3-E1 cells; NC+ MC3T3-E1:
MLO-Y4 cell control group co-cultured with MC3T3-E1 cells; MLO-Y4-Cx43-H + MC3T3-E1: MLO-Y4
cells with high Cx43 expression co-cultured with MC3T3-E1 cells. Cx43: green; F-actin: red; DAPI:
blue. MLO-Y4 cells and MC3T3-E1 cells are labeled with white arrows). (B) The effects of Cx43
expression changes in MLO-Y4 cells on the protein expression of Cx43, β-catenin, Runx2, Osterix,
ALP, and OCN in MC3T3-E1 cells in the co-culture model. Data are expressed as mean ± SD, n = 3,
* p < 0.05. (C) The effects of Cx43 expression changes in MLO-Y4 cells on ALP and alizarin red
staining in MC3T3-E1 cells in the co-culture model. ALP active site was dark blue or blue-purple and
calcium nodules were stained as red. (Cx43-L: MLO-Y4 cells with low Cx43 expression co-cultured
with MC3T3-E1 cells; NC: MLO-Y4 cell control group co-cultured with MC3T3-E1 cells; Cx43-H:
MLO-Y4 cells with high Cx43 expression co-cultured with MC3T3-E1 cells). The particle analysis tool
of Image J was used to calculate the ratio of the stained area, n = 3, * p < 0.05.
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2.8. Cx43 Negatively Regulated Osteoblastic Differentiation through the Inhibition of the
Wnt/β-catenin Pathway in MC3T3-E1 Cells

As mentioned above, Cx43 silencing in MLO-Y4 cells induced low levels of Cx43
expression in MC3T3-E1 cells, increased β-catenin expression in MC3T3-E1 cells, and
promoted osteoblastic differentiation in the co-culture model. To determine whether the
effects of Cx43 expression change in MLO-Y4 cells on osteoblastic differentiation were
associated with alterations in Cx43 expression in MC3T3-E1 cells, we evaluated the effects
of Cx43 expression changes in MC3T3-E1 cells on osteoblastic differentiation. The results
of immunofluorescent staining showed that, compared with the NC group, the expression
of β-catenin and Runx2 increased when Cx43 was silenced in MC3T3-E1 cells. Conversely,
the expression of β-catenin and Runx2 decreased when Cx43 was overexpressed in MC3T3-
E1 cells (Figure 7A). When Cx43 was silenced in MC3T3-E1 cells, the protein expression
of β-catenin, Runx2, Osterix, ALP, and OCN in MC3T3-E1 cells increased significantly
compared with the NC group (p < 0.05, Figure 7B). When Cx43 was silenced in MC3T3-E1
cells, the protein expression of β-catenin in the nucleus increased significantly compared
with the NC group (p < 0.05, Figure 7C). Likewise, when Cx43 expression was low, a
higher number of ALP-positive cells and mineralized nodules were observed compared
with the NC group (p < 0.05, Figure 7D). In contrast, the protein expression of β-catenin,
Runx2, Osterix, ALP, and OCN decreased significantly compared with the NC group when
Cx43 was overexpressed in MC3T3-E1 cells (p < 0.05, Figure 7B). The protein expression
of β-catenin in the nucleus decreased significantly compared to the NC group when Cx43
was overexpressed in MC3T3-E1 cells (p < 0.05, Figure 7C). Fewer positive cells (cytosol
blue coloration) and mineralized nodules were observed in MC3T3-E1 cells than in the NC
group when Cx43 was overexpressed in the MLO-Y4 cells (p < 0.05, Figure 7D).
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Figure 7. Cx43 reduced osteoblastic differentiation through the inhibition of the Wnt/β-catenin
pathway in MC3T3-E1 cells. (A) Immunofluorescent staining showing the expression of β-catenin
and Runx2 in MC3T3-E1 cells (β-catenin: green; Runx2: red; DAPI: blue. MC3T3-E1-Cx43-L: the
group of MC3T3-E1 cells with low Cx43 expression; MC3T3-E1-Cx43-H: the group of MC3T3-E1 cells
with high Cx43 expression; NC: negative control group). (B) Western blot analysis of the expression
of β-catenin, Runx2, Osterix, ALP, and OCN in MC3T3-E1 cells. Data are expressed as mean ± SD,
n = 3, * p < 0.05. (C) Western blot analysis of the β-catenin in the nucleus of MC3T3-E1 cells. Data
are expressed as mean ± SD, n = 3, * p < 0.05. (D) ALP and alizarin red staining and colorimetrical
quantitative analysis. ALP active site was dark blue or blue-purple and calcium nodules were stained
as red. (Cx43-L: the group of MC3T3-E1 cells with low Cx43 expression; Cx43-H: the group of
MC3T3-E1 cells with high Cx43 expression; NC: negative control group). The particle analysis tool of
Image J was used to calculate the ratio of the stained area, n = 3, * p < 0.05.

2.9. Cx43 Binding with β-Catenin Takes Part in Regulating the Wnt Signaling Pathway in
MLO-Y4 and MC3T3-E1 Cells

Based on these results, we further investigated the association between Cx43 and
β-catenin. We found that Cx43 (green) and β-catenin (red) could be co-located by labeling
these two proteins using an immunofluorescence assay (Figure 8A). We further performed
co-immunoprecipitation to demonstrate the binding of Cx43 and β-catenin, and the results
showed that β-catenin was precipitated from the protein supernatant of MLO-Y4 and
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MC3T3-E1 cells using rabbit-anti-mouse Cx43 antibodies and magnetic beads (Figure 8B).
Furthermore, Cx43 could also be precipitated from the protein supernatant of these 2 kinds
of cell using rabbit-anti-mouse β-catenin antibodies and magnetic beads (Figure 8C). Sub-
sequently, β-catenin and Cx43 were detected in the Cx43–/β-catenin–bead complex by
Western blot analysis (Figure 8B,C).

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW  13  of  25 
 

 

 

Figure 8. Binding of Cx43 and β-catenin in MLO-Y4 and MC3T3-E1 cells. (A) Fluorescence staining 

showed the co-location of Cx43 and β-catenin in MLO-Y4 and MC3T3-E1 cells mainly along the cell 

membrane  (Cx43: green; β-catenin:  red; DAPI: blue).  (B,C)  Immunoprecipitation of Cx43 and β-

catenin in MLO-Y4 and MC3T3-E1 cells. (Input: total protein supernatant without treatment; IgG: 

Total protein supernatant supplemented with 10 µg of rabbit IgG; Anti-Cx43: Total protein super-

natant supplemented with 10 µg of rabbit-anti-mouse Cx43 antibody; Anti-β-catenin: total protein 

supernatant supplemented with 10 µg of rabbit-anti-mouse β-catenin antibody). 

2.10. In the Co-Culture Model, the Presence of Cx43–GJIC between MLO-Y4 Cells and MC3T3-

E1 Cells Slightly Decreased the β-Catenin Expression of MC3T3-E1 Cells and Inhibited ALP 

Expression 

In addition to being associated with the route by which signaling molecules lead to 

the regulation of intracellular signaling, Cx43 also participated in the constitution of gap 

junction and played an important role in cell-to-cell communication. We further investi-

gated the role played by GJIC between these two kinds of cells. MLO-Y4 and MC3T3-E1 

Figure 8. Binding of Cx43 and β-catenin in MLO-Y4 and MC3T3-E1 cells. (A) Fluorescence staining
showed the co-location of Cx43 and β-catenin in MLO-Y4 and MC3T3-E1 cells mainly along the
cell membrane (Cx43: green; β-catenin: red; DAPI: blue). (B,C) Immunoprecipitation of Cx43 and
β-catenin in MLO-Y4 and MC3T3-E1 cells. (Input: total protein supernatant without treatment;
IgG: Total protein supernatant supplemented with 10 µg of rabbit IgG; Anti-Cx43: Total protein
supernatant supplemented with 10 µg of rabbit-anti-mouse Cx43 antibody; Anti-β-catenin: total
protein supernatant supplemented with 10 µg of rabbit-anti-mouse β-catenin antibody).

2.10. In the Co-Culture Model, the Presence of Cx43–GJIC between MLO-Y4 Cells and MC3T3-E1
Cells Slightly Decreased the β-Catenin Expression of MC3T3-E1 Cells and Inhibited
ALP Expression

In addition to being associated with the route by which signaling molecules lead
to the regulation of intracellular signaling, Cx43 also participated in the constitution of
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gap junction and played an important role in cell-to-cell communication. We further
investigated the role played by GJIC between these two kinds of cells. MLO-Y4 and
MC3T3-E1 cells were co-cultured in confocal small dishes, as mentioned above, and 18-
α glycyrrhetinic acid (18α-GA) was used to block Cx43–gap junctions between these
two cells. β-catenin and F-actin were labelled green and red via immunofluorescence
staining. Fluorescent staining results shows that both in the NC + 18α-GA group and
Cx43-H + 18α-GA group, blocking Cx43–gap junctions slightly increased the expression
of β-catenin in MC3T3-E1 cells. On the condition of 18α-GA intervention, β-catenin of
MC3T3-E1 cells in Cx43-H group is always lower than that of the NC group (Figure 9A).
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Figure 9. Cx43–GJIC between MLO-Y4 cells and MC3T3-E1 cells decreased β-catenin expression of
MC3T3-E1 cells and inhibited early osteoblast differentiation in co-culture models. (A) Immunoflu-
orescent staining results after 7 days of co-culture. MLO-Y4 cells and MC3T3-E1 cells are labeled
by white arrows. (β-catenin: green; F-actin: red; DAPI: blue). (B) ALP and alizarin red staining
and colorimetrical quantitative analysis. ALP active site was dark blue or blue-purple and calcium
nodules were stained as red. (DMSO: dimethyl sulfoxide; NC+DMSO: MLO-Y4 cells co-cultured
with MC3T3-E1 cells with equivalent concentration of DMSO (0.1%); NC+18α-GA: MLO-Y4 cells
co-cultured with MC3T3-E1 cells supplementing α-MEM with 10 µM 18α-GA; Cx43-H+DMSO:
MLO-Y4 cells with high Cx43 expression co-cultured with MC3T3-E1 cells with equivalent concentra-
tion of DMSO (0.1%). Cx43-H+18α-GA: MLO-Y4 cells with high Cx43 expression co-cultured with
MC3T3-E1 cells supplementing α-MEM with 10 µM 18α-GA). The particle analysis tool of Image J
was used to calculate the ratio of the stained area, n = 3, * p < 0.05.
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To explore the effects of blocking Cx43–gap junctions between these two cells on
osteoblastic differentiation of MC3T3-E1, we performed ALP and alizarin red staining
of osteoblasts in a direct cell-to-cell contact model. Colorimetric quantitative analysis
of ALP staining indicated that blocking Cx43–gap junctions enhanced early osteoblast
differentiation slightly. For mineralized nodule staining, blocking Cx43–gap junctions had
no significant effect on the formation of calcium nodules (Figure 9B).

3. Discussion

As has been established, osteocyte bodies reside in the bone matrix of the lacuna,
and their dendritic processes extend through tiny tunnels called canaliculi to adjacent
osteocytes and other cells on the bone surface, directly or indirectly mediating intercellular
communication [9]. This process plays an important role in bone remodeling [9–14]. PPO
induced by wear particles causes an imbalance in bone remodeling. The balance between
bone formation and bone resorption is disrupted, and the level of osteolysis is elevated.
Emerging studies have shown that osteocytes play important roles in PPO by regulating
bone formation and resorption [10,24]. Ormsby et al. [25] reported that human primary
osteocyte-like cells displayed an upregulated expression of matrix metallopeptidase-13
(MMP13), carbonic anhydrase 2, and cathepsin K after exposure to both polyethylene and
metal-wear particles. Our previous study showed that the inhibition of osteocytes by Ti
particles further decreased osteoblast differentiation via direct cell-to-cell contact [19]. We
speculated that direct intercellular communication played a certain role. It should be noted
Cx43 is the most abundant gap junction protein expressed in bone cells and makes up gap
junction and hemichannels. This plays an important role in cell-to-cell communication
and the communication between bone cells and their extracellular microenvironment in
the skeleton. In addition, Cx43 also serves as a scaffolding protein that is associated with
signaling molecules, leading to the regulation of intracellular signaling independent of
channel activity [26]. Therefore, the present study aimed to explore the effect of Cx43 on
the regulation of osteocyte-to-osteoblast differentiation.

In order to investigate the effect of Cx43, we established conditioned Cx43 knockout mice.
Under the action of a mouse dentine matrix protein 1(Dmp1) (14.1 kb) promoter, the strain
specifically expressed Cre recombinase in osteocytes but did so weakly in osteoblasts. To
demonstrate the specificity of Cx43 knockout in osteocytes, we detected Cx43 expression
in the samples of brain and muscle tissue by Western blotting. We found that there was
no significant difference in Cx43 expression in these samples between WT and CKO mice
(Supplementary Figure S1). The mouse calvarial osteolysis model induced by Ti particles
showed fewer lytic pores on the skulls of the CKO mice with selective Cx43 silencing
than WT mice. Compared with the Ti group, the fewer lytic pores and increased BMD
in the CKO + Tigroup may be associated with the enhanced osteogenic differentiation.
The result of immunohistochemical staining for osteogenic marker Osterix supports this
conjecture, namely, that the presence of Osterix-positive cells increased significantly in the
CKO + Ti group compared with that in the Ti group. Likewise, Runx-2 and ALP increased
significantly in the CKO + Ti group compared with that in the Ti group (Supplementary
Figure S2). The micro-CT results showed that we detected increased BMD, BV/TV, and
Tb.Th, as well as decreased Tb.sp, in the distal femur of CKO mice compared with WT
mice (Supplementary Figure S3). The further results showed the protein expression of
β-catenin, Runx2, Osterix, ALP, and OCN also increased in CKO mice. Runx2, a target
protein of the Wnt signaling pathway, is an important transcription factor that promotes
osteoblast differentiation [27]. Osterix, a downstream transcription factor of Runx2, reflects
the ability of osteoblasts to differentiate early [28]. ALP, OCN, and mineralized nodules are
markers of differentiation [27,28]. These results proved that Cx43 knockout activated the
Wnt signaling pathway and promoted bone formation.

In the in vitro study, MLO-Y4 osteocytic cells and MC3T3-E1 osteoblastic cells were co-
cultured using a Millicell culture insert plate, which comprises a membrane perforated with
pores and allows dendritic processes of osteocytes to extend into contact with osteoblasts
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through the pores on the membrane. First, we found that Ti particles decreased β-catenin
expression and nuclear translocation, and Ti particles increased Cx43 expression in MLO-Y4
cells. Cx43 silencing in MLO-Y4 promoted the osteoblastic differentiation of MC3T3-E1
cells and attenuated the inhibitory effects on the osteoblastic differentiation of MC3T3-E1
cells that were induced by the application of Ti treatment to the co-cultured MLO-Y4
cells. This finding corroborated the results of the in vivo study. Emerging evidence has
ascribed unanticipated biological roles to connexins that go beyond direct intercellular
communication, pointing towards broader functions of these membrane proteins, such as
transcription, metabolism, autophagy, and ion channel trafficking [29–31]. Our study found
low expressions of Cx43 in MLO-Y4 and MC3T3-E1 cells increased β-catenin expression
and nuclear translocation, whereas overexpression of Cx43 decreased β-catenin expression;
Cx43 negatively regulated β-catenin expression and inhibited the Wnt signaling pathway.
Some studies have shown that the intracellular C-terminus of Cx43 is long and variable, and
can bind to proteins in the cytoplasm. For example, some scholars observed that the binding
of Cx43 and β-catenin influenced osteoblast differentiation [32]. However, the association
between Cx43 and β-catenin in osteocyte has rarely been studied and it has not been
determined as to whether this association is operative in wear-particle-induced osteolysis.
Our study demonstrated that Cx43 and β-catenin co-located and bound together between
osteocyte and osteoblast through immunofluorescence assay and co-immunoprecipitation.
Increased Cx43 binding to β-catenin prevented β-catenin translocation to the nucleus, thus
inhibiting the Wnt signaling pathway [33], which might explain why the inhibition of Cx43
attenuates the osteolysis induced by wear particles.

Additionally, we found that Ti particles increased Cx43 expression in osteocytes, and
a Cx43 expression change in osteocytes induced synchronous changes in Cx43 levels in
osteoblasts. When Cx43 was silenced in the MLO-Y4 cells, the level of Cx43 in the MC3T3-
E1 cells was reduced. Conversely, Cx43 expression in the MC3T3-E1 cells increased with
its overexpression in the MLO-Y4 cells. Some studies have shown that, on the surface of
two adjacent membranes, only paired complete channels exist, whereas unpaired hemi-
channels are digested by autophagy [30,31]. We speculated that MC3T3-E1 cells might
correspondingly express more Cx43 to meet the increased level of Cx43 expression in
the MLO-Y4 cells. During the challenging of osteocytes with Ti particles, the increase in
Cx43 expression in both osteocytes and osteoblasts could mean that more gap junctions
formed. In osteoblasts, increased Cx43 bound β-catenin and restricted β-catenin nuclear
translocation. Therefore, there was limited free β-catenin nuclear translocation into the
nucleus to activate Runx-2. In this way, the increased Cx43 of osteocytes indirectly leads to
the inhibition of osteoblastic differentiation (Figure 10).

Cx43 silence affects the function of both the gap junction and hemichannels. Our
previous study showed that osteocyte regulated osteoblast differentiation mostly via direct
cell-to-cell contact, which meant gap junction was more important. To further study the
effects of Cx43–gap junctional intercellular communication, we used 18α-GA to block the
exchange of small molecules between MLO-Y4 and MC3T3-E1 cells with/without the
overexpression of Cx43 in MLO-Y4 cells in vitro co-culturing. Blocking Cx43–GJIC slightly
increased the expression of β-catenin and ALP stain in MC3T3-E1 cells. However, blocking
Cx43–GJIC had no significant effect on the formation of calcium nodules. It might be
that the side effects of 18α-GA affected the results, inhibiting the formation of calcium
nodules [34]. Other possible reasons for the discrepancy may be differences in experimental
conditions and different species of cells. For all this, the results showed that blocking
Cx43–GJIC between MLO-Y4 and MC3T3-E1 cells partially promoted the Wnt/β-catenin
signaling pathway and early osteoblast differentiation of MC3T3-E1 cells. Therefore, Cx43
acted as a docking platform, binding with β-catenin in MLO-Y4 and MC3T3-E1 cells to play
a more significant role in osteoblast differentiation in comparison with Cx43–gap junctional
intercellular communication.
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into the nucleus. Osteogenic differentiation was inhibited. Upward and downward red arrows
represent increased and decreased expression levels, respectively.

Some studies have also shown that Cx43 is a selective inhibitor of the Wnt signaling
pathway. Xie et al. reported that Cx43 inhibited the canonical Wnt signaling pathway and
the proliferation of osteosarcoma cells [35]. Bivi et al. reported that osteocytic MLO-Y4
cells with Cx43 knockdown exhibited higher β-catenin protein expression and enhanced
response to mechanical stimulation [36]. Grimston reported that periosteal bone formation
was activated in Cx43-deficient mice at a lower strain level compared to the WT mice, and
also highlighted that trabecular bone mass was increased upon the addition of a load
compared to the WT mice [37]. However, the results of studies focusing on Cx43 have been
controversial. Loiselle et al. showed that Cx43 deficiency resulted in delayed osteoblastic
differentiation and impaired restoration of biomechanical properties due to attenuated
β-catenin expression relative to wild-type littermates [38]. The inhibition of Cx43 expres-
sion in osteoblastic cells results in the decreased expression of phenotypic characteristics
of differentiated osteoblasts, including alkaline phosphatase, osteocalcin, and bone sialo-
protein [39,40]. We speculated that the reasons behind these inconsistent findings might
be due to different roles played by Cx43 in bone homeostasis, such as bone growth and
development, fracture healing, and response to mechanical stress changes. Abnormal
increases or decreases in Cx43 might not be good for the maintenance of bone homeostasis.
In addition, the results of studies focusing on Cx43 might be different under different study
and experimental conditions. For example, in terms of Cx43 regulating bone formation
through the Wnt/β-catenin signaling axis [36,40,41], the resultant effects differ markedly
between fracture healing and responses to mechanical loading. Furthermore, this might be
associated with the kind of cell types used in a study [38–40].
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Overall, our present study demonstrated that the exposure of osteocytes to Ti particles
partially inhibited osteoblastic cell differentiation via Cx43. Additionally, the inhibition of
osteocytic Cx43 attenuated the osteolysis induced by wear particles.

There are some limitations to this study. We studied the interaction between osteocytes
and osteoblasts in vitro by using cell lines. Cell lines may not fully mimic the in vivo
metabolism of cells. With the exception of Ti particles, other materials were not involved in
our study, and the relevance of Cx43 and wear debris made up of other materials maybe
need further study. We focused on exploring the interaction between Cx43 and β-catenin.
The adenomatosis polyposis coli (APC)/Axin/ glycogen synthase kinase (GSK)/β-catenin
complex has been called a “destruction complex” in Wnt signaling, while the role of
the complex turnover on Cx43/β-catenin needs to be studied in the future. In addition
to regulating bone formation, osteocytes also play a role in controlling bone resorption.
Further studies on the regulation of osteocytes induced by wear debris on osteoclasts
are needed.

4. Materials and Methods
4.1. Detection and Preparation of Ti Particle

Ti particles were obtained from the Nanjing Emperor Nano Materials Company. The
sizes of the Ti particles ranged from 24.51 to 233.58 nm. These particles proved to be
effective in our previous study [42].

The particles were prepared as previously described [18]. Endotoxin-free detection of
Ti particles was performed and confirmed using a QCL-1000 kit (Biowhittaker, Walkersville,
MD, USA). Ti particles were mixed with PBS at a concentration of 100 mg/mL, the stock
solution was sonicated, and a concentration of 40 mg/mL was used to establish the calvarial
osteolysis model. After being sonicated, the stock solution was diluted with a medium to
0.1 mg/mL or 0.2 mg/mL for the in vitro study.

4.2. Preparation of Conditioned Cx43 Knockout Mice

The global knockout of Cx43 is embryonically lethal. We utilized mice with the con-
ditional deletion of the Cx43 encoding gene Gap Junction Protein Alpha 1 (Gja1) in the
osteocytes. To obtain this kind of mice, Dmp-1-cre mice were used. Dmp1 is a marker of os-
teocytes. Driven by the DMP-1 promoter, the strain specifically expressed Cre-recombinase
in odontoblasts and osteocyte, but weakly in osteoblasts. The mouse Dmp1 promoter we
used is from reference, the length is about 14.1 kb. H11, located on mouse chromosome 11,
is a safe site for foreign gene insertion. The foreign gene integrated into this site can be
expressed stably and efficiently without destroying the function of endogenous genes. In
this study, the Dmp1-iCre-PolyA gene fragment was inserted into the H11 site of mice
using Clustered Regularly Interspaced Short Palindromic Repeats-associated protein 9
(CRISPR/Cas9) technology. The brief process was as follows: the donor vector and sgRNA
were constructed in vitro. Cas9, donor, and sgRNA (small guide RNA) were microin-
jected into the fertilized eggs of C57BL/6J mice, and F0 generation mice were obtained. The
F0-positive mice were mated with C57BL/6J mice by PCR, sequencing, and Southern blot.
Subsequently, the stable inheritance of F1 positive mice model was obtained. The strategy for
generating transgenic mice is the conditional knockout of osteocytes. Knockout mice were
provided by GemPharmatech Co. Ltd. Briefly, Dmp1-cre mice were mated with Cx43 flox/wt
mice to obtain Cx43 flox/wt (WT) and Dmp1-cre-Cx43 flox/wt mice. The Dmp1-cre-Cx43 flox/wt
mice were mated with Cx43 flox/wt mice to obtain Dmp1-cre and Cx43flox/flox target mice.
Genotyping was performed by PCR using genomic DNA isolated from mouse earpieces
and appropriate primers.

4.3. Establishment of a Ti-Particle-Induced Mouse Calvarial Osteolysis Model and
Micro-CT Analysis

All animal experiments were approved by the Ethics Committee of the Soochow
University (SUDA20210320A05, March 2021). Twenty male C57BL/6 WT mice and condi-
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tioned Cx43 knockout mice (CKO) at 6 weeks of age with an average weight between 20
and 25 g were used as subjects. The WT mice were divided into the NC group and the
Ti-particle-treated (Ti) group, with 10 mice in both groups. Similarly, 20 conditioned Cx43
knockout mice (CKO) were divided equally into the CKO and CKO + Ti groups. All mice
were anesthetized by intraperitoneal injection of pentobarbital sodium. The skin was
incised and the periosteum was completely removed to expose the skull surface. In the
Ti and CKO + Ti group, 40 µL of Ti particles (40 mg/mL) diluted with PBS was injected
subcutaneously around the middle suture. Ti particles for injection were used as mentioned
above in method Section 4.1. The mice in the NC and CKO groups were injected with
40 µL of PBS. Two weeks later, the mice were sacrificed for subsequent analysis using CO2.
The cranial specimens (n = 5 per group) fixed with paraformaldehyde were analyzed with
micro-CT (Scanoco) using 10 µm layers. Three micro-CT scan results of cranial specimens
were selected for data analysis for each group (n = 3). The X-ray parameters were set to
70 kV and 114 µA. Micro-CT images were taken from a circular region of interest (ROI of
3 mm in radius) located at the middle of each calvaria, and data of BMD, BV/TV, Tb.N,
Tb.Th, and Tb.Sp were collected. All the calvariae were collected for further analysis.

4.4. Hematoxylin and Eosin (HE) Staining and Immunohistochemical Staining

After incubation in formalin for two days, the calvariae of osteolysis model and femur
specimens of CKO and WT mice (n = 5 per group) were decalcified in ethylenediaminete-
traacetic acid (EDTA, Sigma-Aldrich, Burlington, MA, USA) for one month. The specimens
were then trimmed and selected. Following dehydration and paraffin embedding, the
calvariae were cut into 2 µm and the femur samples were cut into 5 µm sections for HE and
immunohistochemical staining according to routine protocols. For immunohistochemical
staining of Osterix of calvariaes and the Cx43 and β-catenin of femur specimens, paraffin
sections were dewaxed with xylene and then hydrated with gradient ethanol. The cal-
variae tissues were incubated with the Osterix primary antibody (Abcam, Shanghai, China,
209484, 1:200 dilution). Femur specimens were incubated with Cx43 primary antibody
(Abcam, 11039, 1:500 dilution) and β-catenin primary antibody (Proteintech, 66379, 1:200
dilution), which was followed by incubation with secondary antibodies. Diaminobenzi-
dine (DAB) (Abcam, 64238) was used for staining the sections, along with counterstaining
with hematoxylin, differentiation with hydrochloric acid ethanol, bluing with ammonia,
and washing with double distilled water (DDW). Finally, the sections were dehydrated,
cleared, and sealed separately. The sections were observed under a light microscope (Zeiss,
Oberkochen, Germany). Three slides were selected from each group for quantitative analy-
sis. In calvariae, Image J was used to count the proportion of positive cells (brown), which
was calculated as follows: proportion of positive cells = (the number of positive cells in
sagittal/the number of total cells in sagittal) × 100%. In femur specimens, the proportion
of positive cells (brown) was calculated as follows:

proportion of positive cells = (the number of positive cells in cortical
bone/the number of total cells in cortical bone) × 100%.

4.5. Extraction and Detection of Bone Tissue Protein from Cx43 Gene Knockout Mice

Femur specimens of CKO and WT mice (n = 5 per group) were soaked in 75% ethanol.
Femurs were obtained from the mice by removing the soft tissue. The femur was pulverized
and incubated with a lysis buffer. Protein samples were centrifuged, and the supernatants
were used for subsequent analyses. The used protein separation, detection, and analysis
methods are described below in the section describing the Western blot analysis. The
expression of Cx43, β-catenin, Runx2, Osterix, ALP, and OCN proteins in the bone tissue
was determined.
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4.6. Cell Culture and Treatments

The osteocytic cell line MLO-Y4 and osteoblastic cell line MC3T3-E1 were obtained
from the Chinese Academy of Sciences Cell Bank (Shanghai, China). MLO-Y4 cells were
cultured in a modified essential medium (α-MEM) containing 10% fetal bovine serum (FBS,
Gibco, Gaithersburg, MD, USA), as well as 1% penicillin and streptomycin. MC3T3-E1
cells were cultured in α-MEM with 10% Fetal bovine serum (FBS), 1% penicillin, and 1%
streptomycin and in osteogenic differentiation medium consisting of 10% FBS, 10 mM
β-glycerophosphate, and 50 µg/mL ascorbic acid (Sigma-Aldrich, St. Louis, MO, USA) for
three days. The MLO-Y4 cells were separately incubated with Ti particles at concentrations
of 0 (control), 0.1 mg/mL, and 0.2 mg/mL after 24 h of seeding, and fresh medium was
supplied every three days.

The model for co-culturing MLO-Y4 and MC3T3-E1 in vitro was constructed to eval-
uate the effects of Ti-treated osteocytes on osteoblastic differentiation using a Millicell
culture insert plate (Millipore, Billerica, MA, USA), which comprises a membrane perfo-
rated with 1 µm pores, as previously described [18]. In the co-culture model, the insert
plate was inverted, and the basal surface of the membrane was seeded with MC3T3-E1
cells at a density of 1 × 104 cells/cm2 in a 500 µL basal medium and incubated for 2 h.
The insert was then inserted into a Millicell 6-well tissue culture plate containing 1 mL of
basal medium. The MLO-Y4 cells were seeded at a density of 2 × 103 cells/cm2 on the
apical side of the membrane (top side of the insert) containing 1 mL of basal medium and
incubated overnight. After 24 h, the MLO-Y4 cells on the upper side were treated with
a pure basal medium or Ti particles diluted with basal medium (Figure 11). The basal
medium for the co-culture experiments consisted of α-MEM supplemented with 10% FBS,
1% penicillin, and 1% streptomycin. An osteogenic differentiation medium was used as
described above after three days. In the co-culture model, the MC3T3-E1 cells were on the
lower surface of the membrane to prevent them from contacting the Ti particles, thereby
avoiding the potential direct effects of Ti particles on osteoblastic cells, and the cells were
easily separated for the detection of osteoblast and osteocyte changes. The inhibition of gap
junction function was accomplished by supplementing basal and osteogenic differentiation
medium with 10 µM 18α-GA for the coculture period. Control groups were incubated with
equivalent concentration of DMSO (0.1%).
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4.7. Transfection for Cx43 Silencing or Overexpression

Cx43 was silenced using short-hairpin shRNA lentiviral particles. Briefly, after finding
the sequence of the Cx43-encoding gene GJA-1 in the GenBank database, the interference
sequence GJA-1-shRNA was designed by Jima Gene Co., Ltd. (Suzhou, China). The shRNA
sequence was as follows: 5′-GGTGTCTCTCGCTCTGAATAT-3′. The cells were infected with
lentiviral particles carrying either scrambled or GJA-1-specific shRNA. The efficiency of the
deletion was determined by Western blotting. Similarly, Cx43 overexpression lentivirus
was obtained from Jima Gene Co., Ltd. The Cx43 overexpression cell line was established
in the same manner as GJA-1 silencing.
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4.8. Western Blot Analysis for Protein Expression

The protein expression of Cx43 and β-catenin in MLO-Y4 osteocytes is described
in the following section. MLO-Y4 cells were seeded in 6-well plates and treated with
different concentrations of Ti particles for 24 h. The cells were washed twice with PBS,
treated with lysis buffer, placed on ice, and centrifuged. The supernatant was collected
and the protein concentration was measured using a BCA protein assay kit (Beyotime,
Shanghai, China, P0010). Approximately 30 µg of protein samples were separated by 10%
SDS-PAGE and electro-blotted onto nitrocellulose membranes. After blocking with 5%
bovine serum albumin (Sangon Biotech, Shanghai, China, 4240GR100), the membranes were
incubated with a 1:1000 dilution of primary monoclonal antibodies against Cx43 (Abcam,
Cambridge, UK, ab11370) and β-catenin (dephosphorylated form, CST, MA, USA, 8480T)
overnight. After washing them four times with TBST (Tris-buffered saline with Tween),
the membranes were incubated with horseradish peroxide (HRP)-conjugated goat anti-rat
IgG (Multisciences, Hangzhou, China, GRT007) and goat anti-rabbit IgG (Multisciences,
GAR007), and subsequently washed with TBST. Protein signals were illuminated with
electrochemiluminescence (ECL) and analyzed using a GIS image analysis system.

The nucleoplasmic protein isolation kit (Thermo, Waltham, MA, USA, 89881) was used
to detect β-catenin expression in the nucleus. Briefly, ice-cold CER I and CER II were added
to the cells. After centrifugation, the supernatant was removed and the precipitate was
centrifuged again, followed by ice lysis, which was repeated four times. Nuclear proteins
in the supernatant were obtained, and β-catenin was detected using lamin-B1 as an internal
reference. Protein analysis was performed as described above.

In the co-culture models using the Millicell Culture Insert Plate, the MC3T3-E1 cells
were collected on day 7 for the detection of Cx43, β-catenin, ALP, Runx2, and Osterix, and
on day 14 for the detection of OCN. MC3T3-E1 cells were collected using cell scrapers.
Membranes were incubated with a 1:1000 dilution of primary antibodies against Cx43
(Abcam, ab11370), β-catenin, ALP (Abcam, 95462), Runx2 (Abcam, 76956), Osterix (Abcam,
209484), and OCN (Santa Cruz, CA, USA, 365797). Protein analysis was performed as
previously described.

4.9. Immunofluorescence Staining
4.9.1. Detection of Cx43 in MLO-Y4 Cells

MLO-Y4 cells were washed with PBS, fixed with 4% paraformaldehyde, permeabilized
with 0.1% Triton X-100, sealed with 5% goat serum, and incubated with the Cx43 primary
antibody diluted 1:500 with 2% goat serum. Then, goat anti-rabbit IgG H&L (Alexa Fluor
488) (ABCam, AB150077) was incubated and washed with phosphate-buffered saline tween
(PBST)three times. The cells were then washed in PBST, and the nuclei were stained with
DAPI (Beyotime, C1002). The stained cells were observed under a laser scanning confocal
microscope LSM880 (Zeiss, Oberkochen, Germany) using an excitation wavelength of
488 nm.

4.9.2. Simultaneous Detection of Cx43 and β-Catenin in MLO-Y4 and MC3T3-E1 Cells

MLO-Y4 cells were detected on day 2. To evaluate osteoblastic differentiation, MC3T3-
E1 cells were examined after seven days of osteogenic induction. Cells were incubated
with a mixture of β-catenin (Proteintech, Rosemont, IL, USA, 66379) and Cx43 antibodies
overnight and then incubated with a mixture of donkey anti-mouse IgG H&L (Alexa
Fluor® 594) (Abcam, 150108) and goat anti-rabbit IgG H&L secondary antibodies. Finally,
autofluorescence was quenched using the Auto Fluo Quencher C1212 kit. The cells were
observed at excitation wavelengths of 488 and 594 nm.

4.9.3. Detection of Cx43, β-Catenin in MC3T3-E1 Cells in the Co-Culture Models

For co-culture analysis, 2 × 103 MLO-Y4 cells and 1.0 × 104 MC3T3-E1 cells were
co-inoculated in a confocal small dish and osteogenic differentiation was induced for seven
days. The cells were first incubated with the Cx43 or β-catenin antibody overnight and
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then with the goat anti-rabbit IgG H&L (Alexa Fluor® 647) (Abcam, 150083) secondary
antibody. In order to establish a clear distinction in the morphological characteristics of
these two types of cells, FITC phalloidin (Abcam, 176753) was added to stain the F-actin of
these two kinds of cells. After quenching autofluorescence using the Auto Fluo Quencher
C1212 kit, the cells were observed at an excitation wavelength of 647 and 488 nm. Images
were collected as z-series and Z-series were performed with a z-step of 1.0µm. (Zeiss,
Oberkochen, Germany).

4.9.4. Simultaneous Detection of β-Catenin and Runx2 in MC3T3-E1 Cells

MC3T3-E1 cells were detected after seven days of osteogenic induction. Cells were
incubated with a mixture of β-catenin (CST, 8480T) and Runx2 (Abcam, 76956) primary
antibodies and then incubated with a mixture of goat anti-rabbit IgG H&L (Alexa Fluor 488)
and donkey anti-mouse IgG H&L (Alexa Fluor® 594) secondary antibodies. After quenching
autofluorescence using the Auto Fluo Quencher C1212 kit, the cells were observed at
excitation wavelengths of 488 and 594 nm.

4.10. Co-Immunoprecipitation Detection of Cx43 and β-Catenin Binding in MLO-Y4 Cells and
MC3T3-E1 Cells

MLO-Y4 and MC3T3-E1 cells were collected using a cell scraper, treated with Np-40
cell lysis buffer (Beyotime, Shanghai, China), and placed on ice, followed by centrifugation
and collection of the supernatant. The protein concentration was detected and was adjusted
to 1 µg/µL using Np-40 cell lysis buffer (Beyotime, Shanghai, China). Subsequently, 25 µL
of protein G magnetic beads (Thermo, 01108614) were added for pre-cleaning. After
incubation with gentle shaking, the magnetic beads were separated using a magnetic rack
and the supernatant was collected for protein analysis. Rabbit IgG and anti-Cx43/β-catenin
primary antibodies were then added to the protein followed by incubation. After this, 35 µL
of magnetic beads were added with gentle shaking. The magnetic beads were collected
using a magnetic rack and transferred to a new tube. Bound proteins were eluted with
2× protein-loading buffer after boiling. Cx43 and β-catenin were detected by Western
blotting, as previously described.

4.11. ALP Staining and Mineralized Nodule Staining of MC3T3-E1 Cells

ALP staining was performed on day 7 and ALP levels were assessed by the 5-bromo-
4-chloro-3-indoylphosphate and nitroblue tetrozolium (BCIP/NBT) color reaction using a
BCIP/NBT ALP color development kit (Beyotime, C3206). Briefly, cells were fixed with 4%
paraformaldehyde, and after washing three times, BCIP/NBT was added. In the co-culture
models, the contralateral MLO-Y4 cells were removed and dried. The results were observed
and quantified. The particle analysis tool of Image J was used to calculate the ratio of the
stained area.

The mineralization of MC3T3-E1 cells was evaluated on day 14 after MLO-Y4 treatment
with or without Ti particles, visualized with alizarin red staining (Cyagen, Santa Clara,
CA, USA, S0141) and washed twice to remove the stain. In the co-culture models, the
contralateral MLO-Y4 cells were removed and dried at room temperature. The results were
observed and quantified. The particle analysis tool of Image J was used to calculate the
ratio of the stained area.

4.12. Statistical Analysis

The data were analyzed using SPSS version 17.0. All data were expressed as the mean
± standard deviation, and each assay was independently repeated three times. Differences
in statistical analyses were evaluated using one-way analysis of variance (ANOVA) and
post hoc multiple comparisons. Differences were considered statistically significant at
p < 0.05.
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5. Conclusions

Cx43 in osteocytes negatively regulated osteoblastic differentiation, which is related to
the suppression of the Wnt/β-catenin signal pathway in osteoblasts. Taken together, these
findings indicate that osteocytes may participate in the regulation of osteoblast function
via the Cx43 during PPO.
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