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Abstract: Cucumber (Cucumis sativus L.) is an important vegetable worldwide, but its yield is affected
by a wide range of pathogens and pests. As the major subunit of the exocyst complex, the roles
of Exo70 members have been shown in Arabidopsis and rice, but their function are unknown in
cucumber. Here, we identified 18 CsExo70 members in cucumber, which were divided into three
groups (Exo70.1–Exo70.3) and nine subgroups (Exo70A–Exo70I) based on the phylogenetic tree.
Subsequently, systematical analyses were performed, including collinearity, gene structure, cis-acting
elements, conserved motifs, expression patterns, and subcellular localization. Our results showed
that CsExo70 genes were generally expressed in all tissues, and CsExo70C1 and CsExo70C2 were
highly expressed in the stamen. Moreover, the expression levels of most CsExo70 genes were induced
by Pseudomonas syringae pv. lachrymans (Psl) and Fusarium oxysporum f. sp. cucumerinum Owen (Foc),
especially CsExo70E2 and CsExo70H3. In addition, these CsExo70s displayed similar location patterns
with discrete and punctate signals in the cytoplasm. Together, our results indicate that CsExo70
members may be involved in plant development and resistance, and provide a reference for future
in-depth studies of Exo70 genes in cucumber.

Keywords: cucumber; Exo70; systematical analyses; expression analyses

1. Introduction

Secretion is a vital cellular process and is responsible for the transport of newly
synthesized materials, ending with the exocytosis event at the plasma membrane (PM)
in eukaryotes [1]. De novo cargoes of a vast array of proteins, including PM proteins,
signaling peptides, or small RNAs, are transported to the PM or extracellular space by
vesicles [2–4]. Prior to soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein
receptor (SNARE)-mediated membrane fusion, the first attachment of secretory vesicles
to the target PM is mediated by the exocyst complex [1,5], which was firstly identified in
budding yeast (Saccharomyces cerevisiae). The exocyst complex consists of eight subunits:
SEC3, SEC5, SEC6, SEC8, SEC10, SEC15, Exo70, and Exo84 [6]. Of note, it has been
suggested that SEC3 and Exo70 are activated by Rho GTPases and create the initial contact
points between vesicle and PM as the major tethers [7–9].

Although only one copy of the Exo70 exists in Saccharomyces, Drosophila, and Caenorhab-
ditis, there are multiple copies of Exo70 in plants [10], such as 13 paralogs in moss
(Physcomitrella patens), 23 paralogs in Arabidopsis thaliana, 41 paralogs in rice (Oryza sativa),
and 23 paralogs in poplar (Populus trichocarpa). These Exo70 members are divided into
three clades (Exo70.1 to Exo70.3) and are broadly involved in multiple biological processes
in plants [11–13]. For instance, Arabidopsis Exo70A1 is required for polar auxin transport
in a PIN1/2-dependent pathway. The mutation of Exo70A1 leads to altered auxin distri-
bution, loss of apical dominance, and shorter root hairs [14,15]. Additionally, Exo70A1/2
and Exo70C1/2 function as regulators in sexual reproduction; the exo70a1 mutant exhibits
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fertility defects, and Exo70A2 mutation results in impaired pollen germination and pollen
tube growth [14,16], while Exo70C1/2 are involved in the regulation of optimal tip growth
of pollen tubes [17]. Furthermore, the Arabidopsis Exo70H4 is involved in trichome cell
wall maturation, and its paralog is also highly expressed in cucumber fruit trichomes,
suggesting a conserved function of Exo70H in trichome development [18,19]. The Exo70
members also participate in plant immunity. For instance, the expression of Exo70H1 and
Exo70B2 was up-regulated after pathogen incubation in Arabidopsis [20]. Exo70B2 and its
homolog Exo70B1 are both required for pattern-triggered immunity (PTI). Accordingly,
exo70B1-3 and exo70B2-1 mutants both display enhanced susceptibility to Pseudomonas
syringae pv tomato (Pst) DC3000 [21–23]. Interestingly, the loss function of Exo70B1 also
leads to an activation of TIR-NBS2 (TN2), thus enhancing resistance to multiple pathogens
in TN2-dependent autoimmunity [24]. Recent studies showed that Exo70B1/2 regulated
FLAGELLIN SENSING 2 (FLS2) accumulation at the PM, which is required for the outcome
of immune responses in Arabidopsis [25]. Moreover, OsExo70B1 interacted with Chitin
Elicitor Receptor Kinase 1 (CERK1) and was involved in resistance to rice blast fungus
Magnaporthe oryzae (M. oryzae) [26], but the mechanism is still largely unknown.

Cucumber (Cucumis sativus L.) is an important vegetable crop of high economic and
biological value [27,28]. Along its evolution, the cucumber has diverse sex patterns and has
become a model plant for studying plant sex determination [29,30]. Moreover, cucumber
usually bears fruits of various sizes, shapes, and colors [31–34], covered with tubercules,
trichomes, and a thick cuticle [35,36]. However, its production is substantially affected
by the frequent incidence of multiple diseases. For instance, cucumber bacterial angular
leaf spot disease (ALS) is caused by Pseudomonas syringae pv. lachrymans (Psl), which
mainly infects the leaves and results in limited vein and necrotic tissues [37,38]. In addition,
cucumber fusarium wilt, one of the major fungal diseases, is a soil-borne disease caused by
Fusarium oxysporum f. sp. cucumerinum Owen (Foc), which usually leads to a decrease in
photosynthesis capacity and loss of yield [39,40]. The Exo70s have been studied in multiple
plant species [41–44], but not cucumber.

At present, genome-wide identification and gene expression analysis are effective
approaches to study the classification and potential functions of gene family members,
which provides a foundation for further gene function identification [43]. In this study, we
aim to identify the CsExo70 members in cucumber. A genome-wide analysis of CsExo70
members was performed, including the system evolution, collinearity, gene structure, cis-
acting elements, conserved motifs, subcellular localization, expression patterns in different
tissues, and treatment with pathogens. This study will provide a reference for further
investigating the functions of the CsExo70 gene family in the future.

2. Results
2.1. Identification and Characterization of CsExo70 Family in Cucumber

In this study, 18 CsExo70 members were identified, which have conserved Exo70
domains (Figure S1). To explore the evolutionary relationships of Exo70s among different
species, the full-length sequences of Exo70s of cucumber, Arabidopsis, rice, and moss were
used to generate a phylogenetic tree. As shown in Figure 1, all CsExo70 members were
divided into three groups (Exo70.1 to Exo70.3) and nine subgroups (Exo70A to Exo70I), and
named according to the phylogenetic tree. Except for CsExo70B, CsExo70D, and CsExo70I,
other members have several homologs in cucumber.

Additionally, the physical and chemical characteristics of CsExo70s were predicted
in Table 1, including the length of the coding sequence (CDS) and amino acid (AA) se-
quence, molecular weight (MW), and isoelectric point (PI) values. In detail, the protein
length ranged from 582 (CsExo70H4) to 704 (CsExo70C2) amino acids, MW varied from
66,156.59 Da (CsExo70H4) to 81346.62 Da (CsExo70C2), and the PI value varied from 4.94
(CsExo70E1) to 8.87 (CsExo70G1).
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CsExo70G1 CsaV3_2G031330.1 2049 682 77109.98 8.87 Exo70.1 
CsExo70G2 CsaV3_7G033810.1 2025 674 76901.53 6.67 Exo70.1 
CsExo70H1 CsaV3_5G006610.1 1860 619 69563.75 5.75 Exo70.2 
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Figure 1. Phylogenetic analysis of Exo70 family. The circle, triangle, square, and star represent
Exo70s in Oryza sativa (O. sativa), Arabidopsis thaliana (A. thaliana), Physcomitrella patens (P. patens), and
Cucumis sativus (C. sativus), respectively.

Table 1. Information of the Exo70 family in cucumber.

Gene Name Gene ID CDS 1 AA 2 MW (Da) 3 PI 4 Group

CsExo70A1 CsaV3_5G035240.1 1956 651 73573.72 8.37 Exo70.3
CsExo70A2 CsaV3_6G041070.1 1917 638 72857.09 6.95 Exo70.3
CsExo70B CsaV3_1G036490.1 1905 634 72173.20 5.13 Exo70.2

CsExo70C1 CsaV3_4G002930.1 2025 674 76816.14 5.97 Exo70.2
CsExo70C2 CsaV3_5G024390.1 2115 704 81346.62 4.95 Exo70.2
CsExo70D CsaV3_3G030800.1 1833 610 69471.55 5.38 Exo70.2
CsExo70E1 CsaV3_4G009180.1 1980 659 75539.35 4.94 Exo70.2
CsExo70E2 CsaV3_1G005990.1 1908 635 72952.51 6.17 Exo70.2
CsExo70F1 CsaV3_1G045240.1 1959 652 74088.89 5.00 Exo70.2
CsExo70F2 CsaV3_1G009630.1 1914 637 72342.77 5.16 Exo70.2
CsExo70G1 CsaV3_2G031330.1 2049 682 77109.98 8.87 Exo70.1
CsExo70G2 CsaV3_7G033810.1 2025 674 76901.53 6.67 Exo70.1
CsExo70H1 CsaV3_5G006610.1 1860 619 69563.75 5.75 Exo70.2

CsExo70H2a CsaV3_6G022100.1 1896 631 71359.32 6.71 Exo70.2
CsExo70H2b CsaV3_1G033630.1 1860 619 70481.59 5.83 Exo70.2
CsExo70H3 CsaV3_3G035190.1 1926 641 72726.64 5.95 Exo70.2
CsExo70H4 CsaV3_4G024610.1 1749 582 66156.59 6.14 Exo70.2
CsExo70I1 CsaV3_2G026060.1 2109 702 80192.32 5.69 Exo70.1

Note: 1: Coding sequence; 2: Length of the amino acid sequence; 3: Molecular weight; 4: Isoelectric point.
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2.2. Chromosomal Localization and Collinearity Analysis of CsExo70 Genes in Cucumber

According to the physical location of all CsExo70 genes in the C. sativus genome, the
gene chromosomal distribution was drawn. As shown in Figure 2A, 18 CsExo70 genes
were distributed over the seven cucumber chromosomes. There were five genes located
on chromosome 1, three genes on chromosomes 4 and 5, two genes on chromosomes 2, 3,
and 6, and only one gene on chromosome 7. Moreover, some CsExo70 genes had adjacent
locations, such as CsExo70E2 and CsExo70F2, CsExo70B and CsExo70H2b, and CsExo70G1
and CsExo70I, but no tandem-duplicated CsExo70 genes were found.
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Figure 2. Chromosomal location and collinearity analysis of Exo70s in cucumber. (A) Locations of
CsExo70 genes in seven chromosomes of cucumber. (B) Genome-wide synteny analysis of Exo70s in
C. sativus genome. Red lines indicate the paralogous genes. (C) Genome-wide synteny analysis of
Exo70s between C. sativus and A. thaliana, and C. sativus and O. sativa genomes. Blue lines represent
the orthologous genes, the red triangles represent different gene pairs.

We further explored the segmental duplication events of CsExo70 genes via collinearity
analysis in the C. sativus genome. As shown in Figure 2B, six pairs of segmentally duplicated
genes were identified in the C. sativus genome: CsExo70H1/CsExo70H4, CsExo70H1/CsExo70H2a,
CsExo70H1/CsExo70H3, CsExo70H2a/CsExo70H4, CsExo70H3/CsExo70H4, and CsExo70H4/
CsExo70H2b, indicating that CsExo70H members were amplified via segmental duplication
events. Furthermore, to better understand the gene amplification pattern during evolution,
collinearity analysis among cucumber, Arabidopsis, and rice was performed (Figure 2C). In
total, 23 gene pairs were identified. There were 19 pairs between C. sativus and A. thaliana, and
4 pairs between C. sativus and O. sativa, suggesting the Exo70 genes of C. sativus had higher
synteny with A. thaliana than O. sativa during the evolution.

2.3. Gene Structure and Conserved Motif Analysis of CsExo70 Genes

The gene structure and sequence characteristics of Exo70 genes were further investi-
gated in cucumber. Gene structure analysis showed that most genes had 5′Untranslated
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Region (UTR) or 3′UTR. Among them, genes in Exo70.2 and Exo70.3 clades displayed
a similar structure with 1–2 exons and 0–2 introns, while the genes in the Exo70.1 clade
consisted of 11–12 exons and 11 introns (Figure 3B). These results suggest that genes in the
same clade have a similar structure and that functional differentiation may exist between
different clades.
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coding sequence (CDS) and untranslated region (UTR), respectively. The black lines indicated introns.
(C) Conserved motifs of CsExo70 proteins; the ten motifs are displayed in different colors.

Moreover, the conserved motifs in CsExo70s were analyzed via MEME. A total of
10 conserved motifs were identified in all CsExo70 members. Except for Exo70H4, Exo70D,
and Exo70A1, the members in Exo70.1 and Exo70.2 clades had all of these motifs, while
Exo70I, Exo70G1, and Exo70G2 in the Exo70.3 clade lacked three, one, and two motifs,
respectively. Although the functions of motifs 1–10 have not been revealed, these motifs
were mainly located on the C-terminal, which contains the conserved Exo70 domain that
determines the function of these proteins. Thus, it speculated that these members of the
Exo70.3 clade may have different functions from that in other clades.

2.4. Analysis of Cis-Acting Elements on CsExo70 Promotors

To study the CsExo70 gene expression regulation, the promoter sequences (2000 bp
upstream of the start codon) of 18 CsExo70s were analyzed. The major cis-acting elements
were identified (Figure 4). The most cis-acting elements were relevant to phytohormones,
including related to responses of methyl jasmonate (TGACG motif/CGTCA motif), abscisic
acid (ABRE motif), gibberellin (P-box/GARE motif/TATC box), auxin (AuxRE/AuxRR/
TGA motif), and salicylic acid (TCA motif). Among these, the abscisic acid-response el-
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ement (ABRE) could be found on all CsExo70 promoters, except CsExo70G1. Moreover,
these CsExo70 promoters contain stress-responsive elements, including anaerobic-induction
elements (ARE), defense-responsive elements (TC-rich repeats), low-temperature respon-
sive (LTR) elements, drought-induction elements (MBS), and wound-responsive elements
(WUN motif). Cis-acting elements relevant to growth and development were also found,
including circadian control, meristem expression (CAT box), endosperm-specific expression
(AACA motif/GCN4 motif), zein metabolism regulation (O2 site), mesophyll cell differenti-
ation (HD-Zip), and cell cycle regulation (MSA-like). These results suggest that CsExo70
genes may be involved in multiple biological processes.
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2.5. Expression Patterns of CsExo70 Genes in Cucumber

To investigate tissue-specific expression, the expression patterns of all 18 CsExo70
genes were examined by quantitative RT-PCR (qRT-PCR) in different cucumber tissues
during the reproductive growth stage, including tendril, root, stem, leaf, male-flower petal,
stamen, female-flower petal, stigma, and ovary (Figure 5). Among 18 CsExo70s, seven genes
(CsExo70A1, CsExo70A2, CsExo70G2, CsExo70H1, CsExo70H2a, CsExo70H2b, and CsExo70H4)
have lower transcript levels and were almost not detected in all tissues. Alternatively, these
genes were expressed in other development stages. Interestingly, most of the remaining
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11 genes displayed a similar tissue expression pattern with the highest transcripts in the
stamen, especially for CsExo70C1 and CsExo70C2 (Figure 5B,C), consistent with Exo70C
homologous in Arabidopsis, rice, and cotton [13,17,41], indicating that Exo70C members
may have a conserved function in the regulation of stamen fertility. Moreover, CsExo70F1,
CsExo70G1, and CsExo70H3 were highly expressed in stigma (Figure 5G,I,J), the transcript
of CsExo70E2 was higher in root and stem, and CsExo70H3 was highly expressed in the leaf
(Figure 5F,J). These results suggest that CsExo70 members may regulate the growth and
development of multiple tissues.
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Figure 5. Expression patterns of CsExo70B (A), CsExo70C1 (B), CsExo70C2 (C), CsExo70D (D),
CsExo70E1 (E), CsExo70E2 (F), CsExo70F1 (G), CsExo70F2 (H), CsExo70G1 (I), CsExo70H3 (J), and
CsExo70I (K) in cucumber tissues. The cucumber UBQ gene was used as an internal standard.
m, male; f, female.

2.6. CsExo70 Gene Expression in Response to Different Pathogens

Previous studies have demonstrated that the transcripts of Exo70B2 and Exo70H1 were
induced by bacterial elongation factor-TU epitope elf18 in Arabidopsis [20]. In rice, the
transcript of OsExo70B1 was increased after the pathogen-associated molecular pattern
(PAMP) and M. oryzae treatment [26]. To investigate pathogen-triggered CsExo70 expression
in cucumber, the expression levels of these genes at different time points after Psl treatment



Int. J. Mol. Sci. 2023, 24, 10929 8 of 15

were detected. We observed that the expression of CsExo70E2 was about 40-fold higher at
2 days post inoculation (dpi) than that at 0 dpi (Figure 6F). The expression of CsExo70H3
was also significantly increased to 7–8-fold at 2–3 dpi (Figure 6J), while the expression of
CsExo70B, CsExo70C2, and CsExo70F2 was slightly up-regulated at 2 dpi (Figure 6A,C,H).
In contrast, CsExo70C1, CsExo70G1, and CsExo70I were down-regulated after Psl infection
(Figure 6B,I,K), and the expression levels of CsExo70D, CsExo70E1, and CsExo70F1 were
unaffected after Psl treatment (Figure 6D,E,G). These results indicate that some CsExo70
genes may play essential roles in resistance to Psl in cucumber.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 8 of 15 
 

 

CsExo70I (K) in cucumber tissues. The cucumber UBQ gene was used as an internal standard. m, 
male; f, female. 

2.6. CsExo70 Gene Expression in Response to Different Pathogens. 
Previous studies have demonstrated that the transcripts of Exo70B2 and Exo70H1 

were induced by bacterial elongation factor-TU epitope elf18 in Arabidopsis [20]. In rice, 
the transcript of OsExo70B1 was increased after the pathogen-associated molecular pat-
tern (PAMP) and M. oryzae treatment [26]. To investigate pathogen-triggered CsExo70 ex-
pression in cucumber, the expression levels of these genes at different time points after 
Psl treatment were detected. We observed that the expression of CsExo70E2 was about 40-
fold higher at 2 days post inoculation (dpi) than that at 0 dpi (Figure 6F). The expression 
of CsExo70H3 was also significantly increased to 7–8-fold at 2–3 dpi (Figure 6J), while the 
expression of CsExo70B, CsExo70C2, and CsExo70F2 was slightly up-regulated at 2 dpi 
(Figure 6A,C,H). In contrast, CsExo70C1, CsExo70G1, and CsExo70I were down-regulated 
after Psl infection (Figure 6B,I,K), and the expression levels of CsExo70D, CsExo70E1, and 
CsExo70F1 were unaffected after Psl treatment (Figure 6D,E,G). These results indicate that 
some CsExo70 genes may play essential roles in resistance to Psl in cucumber. 

 
Figure 6.  Pseudomonas syringae pv. lachrymans (Psl)-triggered CsExo70 expression in cucumber. (A-
K) The transcript levels of CsExo70B (A), CsExo70C1 (B), CsExo70C2 (C), CsExo70D (D), CsExo70E1 
(E), CsExo70E2 (F), CsExo70F1 (G), CsExo70F2 (H), CsExo70G1 (I), CsExo70H3 (J), and CsExo70I (K) 
were detected after Psl infection. Leaves of four-week-old cucumber seedlings were treated with 
Psl, and harvested at 0, 1, 2, 3 days after inoculation (dpi) for expression analysis. CsExo70 transcripts 

Figure 6. Pseudomonas syringae pv. lachrymans (Psl)-triggered CsExo70 expression in cucumber.
(A–K) The transcript levels of CsExo70B (A), CsExo70C1 (B), CsExo70C2 (C), CsExo70D (D), CsExo70E1 (E),
CsExo70E2 (F), CsExo70F1 (G), CsExo70F2 (H), CsExo70G1 (I), CsExo70H3 (J), and CsExo70I (K) were
detected after Psl infection. Leaves of four-week-old cucumber seedlings were treated with Psl, and
harvested at 0, 1, 2, 3 days after inoculation (dpi) for expression analysis. CsExo70 transcripts were
quantified by qRT-PCR using UBQ as the internal standard. Significant differences are indicated by
asterisks (** p < 0.01, *** p < 0.001, Student’s t test). Blue and yellow lines represent increased or decreased
genes, respectively; the black line indicates genes without a significant change.

To verify whether CsExo70 genes are also responsive to fungal pathogen, Foc-triggered
CsExo70 expression was examined. Similar to Psl treatment, the expressions of CsExo70E2
and CsExo70H3 were also significantly increased in response to Foc (Figure 7F,J). The same
results were also observed for CsExo70B, CsExo70C2, and CsExo70F2 expression levels at
2 dpi or 4 dpi after Foc treatment (Figure 7A,C,H). Unlike that after Psl inoculation, the
expression of CsExo70C1 and CsExo70I was up-regulated at 6 and 2 dpi, respectively
(Figure 7B,K), while the expression of CsExo70G1 was unchanged in response to Foc
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(Figure 7I). Furthermore, the expression levels of CsExo70D and CsExo70F1 were instan-
taneously increased at 2 dpi, then decreased to normal levels at 4 dpi, and increased at
6 dpi (Figure 7D,G). CsExo70E1 was weakly up-regulated after Foc infection, and CsExo70G1
expression was unchanged by Foc treatment (Figure 7E,I). These results indicate that the ex-
pression of most CsExo70 genes was induced by pathogen treatment, especially CsExo70E2
and CsExo70H3, which may play important roles in plant defense against both fungal and
bacterial diseases in cucumber.

Figure 7. Expression analysis of CsExo70B (A), CsExo70C1 (B), CsExo70C2 (C), CsExo70D (D),
CsExo70E1 (E), CsExo70E2 (F), CsExo70F1 (G), CsExo70F2 (H), CsExo70G1 (I), CsExo70H3 (J), and
CsExo70I (K) after Fusarium oxysporum f. sp. cucumerinum Owen (Foc) treatment. One-week-old
cucumber seedlings were treated with Foc and roots were collected at 0, 2, 4, and 6 days after inocula-
tion (dpi). Values are means ± sd of three biological replicates. Significant differences between 0 dpi
and other time points are indicated by asterisks (* p < 0.05, ** p < 0.01, *** p < 0.001, Student’s t test).
The blue lines represent up-regulated genes, and the black line indicates genes without a significant
change at any time point.

2.7. Subcellular Localization Analysis

To examine the subcellular location of CsExo70 members, we randomly selected
one member from each clade for analysis. CsExo70A1, CsExo70B, and CsExo70G1 were
fused with the GFP (green fluorescent protein) and transiently expressed in Nicotiana
benthamiana (N. benthamiana) leaves. CsExo70A1 and CsExo70G1 were mainly localized in
the cytoplasm and nucleus, and CsExo70B was widely distributed in PM, cytoplasm, and
nucleus. Furthermore, the fluorescence signals in the cytoplasm of CsExo70A1, CsExo70B,
and CsExo70G1 were discrete and punctate (Figure 8), consistent with the localization of
Exo70B1 and Exo70H3 in Arabidopsis and rice [26,45–47], indicating a similar localization of
Exo70s in different species.
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3. Discussion

Previous studies have shown that the Exo70 subunit has expanded to a larger family
in plants compared to that in yeast and animals [13,14,41], indicating the amplification of
the Exo70 gene in plants. In this study, 18 cucumber Exo70 members were identified by
sequence BLASTp search and phylogenetic analysis (Figure 1), and divided into three clades
(Exo70.1 to Exo70.3) and nine subclades (Exo70A to Exo70I) based on the different gene
structures (Figure 3), which was consistent with previous studies in other species [13,42–44],
suggesting the conservation and similarity of Exo70 gene family in the evolution among
different species. Moreover, previous studies have shown that the Exo70I subclade is
commonly found in monocotyledonous plants (rice and wheat) but not dicotyledonous
plants (Arabidopsis, cotton, and grape) [13,42–44]. However, CsExo70I was also identified
in this study, more similar to rice but not Arabidopsis, suggesting that the Exo70I branch
also exists in dicotyledonous plants.

Tandem and segmental duplication are the main types of gene replication events [48].
Through collinear analysis, we found six segmental duplication events in the CsExo70H
subclade (Figure 2B), which contained the largest numbers among the CsExo70 subclades,
meaning segmental duplication was the dominant driver of duplication of CsExo70H genes.
On the other hand, CsExo70 genes in Exo70.1 clade contained 11–12 exons, while only one
or two exons were found in Exo70.2 and Exo70.3 clade genes (Figure 3B). Moreover, it is
noteworthy to observe that all ten conserved motifs were generally distributed members in
Exo70.1 and Exo70.2 clades, but not in Exo70.3 clade (Figure 3C). As mentioned above, the
differences in gene structures and conserved motifs may result in function differentiation.

Moreover, the cis-acting elements on the CsExo70 promoters are related to phyto-
hormones, stress, and growth and development (Figure 4). Consistent with a previous
report that Exo70A1 is involved in auxin transport and PIN recycling in Arabidopsis [15],
more auxin-related elements (AuxRE, AuxRR, TGA elements) were observed on the pro-
moters of CsExo70A1 and CsExo70A2. In addition, when plants are subjected to stresses,
some transcription factors will bind the cis-elements to promote the expression of related
genes [49–51]. Notably, methyl jasmonate (MeJA) is one of the vital regulatory factors
in plant resistance signal transduction pathways, and the elements of MeJA-responsive
(CGTCA-motif and TGACG-motif) were mainly presented in CsExo70D promotor; abscisic
acid (ABA) is broadly involved in drought stress and salt stress [52,53]. ABRE as the major
element regulated ABA-responsive gene expression [53], was distributed on almost every
promoter of CsExo70s, with a maximum of CsExo70E2, suggesting the significant roles of
CsExo70D and CsExo70E2 in MeJA and ABA signaling pathways, respectively. Furthermore,
a total of 43 AREs were found on the promotors of CsExo70s, implying the potential func-
tion of CsExo70s in oxidative responsive, especially for CsExo70A1, CsExo70B, CsExo70E1,
CsExo70G2, and CsExo70H2. It is speculated that CsExo70s may play essential roles in plant
development and stress responses.
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A previous study has reported that Exo70C1/2 is involved in the regulation of optimal
tip growth of pollen tubes [17]; the expression pattern analysis in cucumber showed that
CsExo70C1 and CsExo70C2 were highly expressed in the stamen, which further provided
support for the involvement of Exo70C1/2 in sexual reproduction [13,17,41,54], suggesting
the conservative function of Exo70 members in different plant species. On the other hand,
pathogens affect cucumber growth and development and cause a variety of diseases, resulting
in a decrease in cucumber yield [55]. qRT-PCR results showed that most CsExo70 genes were
induced by pathogens (Figures 6 and 7). Consistent with the exo70H1 mutant being susceptible
to Pseudomonas syringae pv. maculicola (Psm) [20], Psl-induced expression of CsExo70H3 was
about 10-fold higher at 2 dpi than that at 0 dpi, indicating that CsExo70H3 may be also involved
in Psl resistance in cucumber. Cucumber fusarium wilt is a soil-borne vascular disease, which
usually infects cucumber roots [56]. Our data showed that the expression of CsExo70E2 was
about 30-fold higher at 6 dpi than 0 dpi after Foc treatment. These results suggested that
CsExo70E2 may play an essential role in resistance to Foc in cucumber.

The feature of subcellular compartments is related to their specialized biological
functions [57]. In this study, CsExo70A1, CsExo70B, and CsExo70G1 all showed fluorescent
signals in the cytoplasm and nucleus, and the signals were discrete and punctate, similar to
previous studies [26,45–47]. Moreover, previous studies showed that Exo70B interacts with
PM-localization receptor kinases (RKs) to regulate plant immunity [25,26]. This can explain
why CsExo70B also displayed the PM signals. Given that the transcripts of CsExo70B are
also induced by Psl and Foc infection, it is worth exploring whether Exo70B interacts with
immune-related RKs to regulate pathogen resistance in cucumber.

4. Material and Methods
4.1. Plant Materials

Cucumber (Cucumis sativus L.) inbred line XTMC was used in this study. The cucumber
seedlings at the two-true leaf stage were transplanted to a greenhouse under standard
management at the China Agricultural University, Beijing. The N. bethamiana plants used
for CsExo70 subcellular localization analysis were grown in a chamber at 24 ◦C with 16 h
light/8 h dark.

4.2. Identification and Phylogenetic Tree Construction of Exo70 Family

To identify the predicted Exo70 genes in the C. sativus genome, the amino acid se-
quences of 23 AtExo70 members were downloaded from the TAIR database (https://www.
arabidopsis.org, accessed on 3 March 2023), and used as queries to BLASTp against the
cucumber version 3 genome database (http://www.cucurbitgenomics.org/organism/20,
accessed on 4 March 2023). All predicted CsExo70s were further verified by the Exo70
conserved domain by SMART (http://smart.emblheidelberg.de, accessed on 4 March 2023)
and CDD-research (https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi, ac-
cessed on 4 March 2023). The characteristics of CsExo70s, including the protein molecular
weight (MW) and isoelectric point (pI), were analyzed via ExPaSy (http://web.expasy.org/
protparam/, accessed on 5 March 2023).

The Exo70 protein sequences of O. sativa and P. patens were obtained from Phyto-
zome13 website (https://phytozome-next.jgi.doe.gov/, accessed on 6 March 2023). Multi-
ple sequence alignment analysis of Exo70s in cucumber, Arabidopsis, rice, and moss were
performed in MEGA V7.0 software according to the Clustalw algorithm. Subsequently, the
alignment was used to generate a phylogenetic tree using the neighbor-joining (NJ) method
(bootstrap = 1000 repetitions).

4.3. Chromosomal Location and Synteny Analysis

The chromosomal locations of CsExo70 genes were obtained through the Cucurbit
Genomics Database. The CsExo70 genes were mapped on different chromosomes and
ultimately plotted using the TBtools [58] according to their physical positions. The syntenic

https://www.arabidopsis.org
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http://www.cucurbitgenomics.org/organism/20
http://smart.emblheidelberg.de
https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi
http://web.expasy.org/protparam/
http://web.expasy.org/protparam/
https://phytozome-next.jgi.doe.gov/
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maps of Exo70 genes were generated and analyzed by TBtools [58] and displayed by
Advanced Circos and Multiple Synteny Plot.

4.4. Gene Structures, Conserved Motifs, and Cis-Element Analysis

Gene structure analysis was performed by TBtools [58], and the conserved motifs of
CsExo70 proteins were analyzed using Multiple Expectation Maximization for Motif Elici-
tation (MEME) (https://meme-suite.org/meme/tools/meme, accessed on 12 March 2023).
The promoter sequences (2000 bp upstream of the start codon) were extracted using
NCBI (https://www.ncbi.nlm.nih.gov/, accessed on 18 March 2023), and the transcrip-
tional response cis-elements in promoters were predicted using the PlantCARE database
(https://bioinformatics.psb.ugent.be/webtools/plantcare/html/, accessed on 20 March 2023)
and drawn by TBtools [58].

4.5. RNA Extraction and Gene Expression Analysis

To determine the expression patterns of these CsExo70 genes in different tissues,
samples of roots, stems, leaves, male flowers, female flowers, stigmas, stamens, ovaries,
and tendrils were collected during the reproductive growth stage for RNA extraction.

The total RNA was extracted using an Eastep® Super Total RNA Extraction Kit
(Promega, Madison, WI, USA) according to the manufacturer’s instructions, and then
reverse-transcribed to complementary DNA (cDNA) using a FastKing gDNA Dispelling RT
SuperMix Kit (Tiangen, Beijing, China). Subsequently, qRT-PCR was performed with Taq
Pro Universal SYBR qPCR Master Mix (Vazyme, Nanjing, China) in a CFX384 Real-Time
PCR System (BIO-RAD, Hercules, CA, USA). Three biological replicates and three technical
replicates were performed for every CsExo70 gene and UBQ gene (CsaV3_5G031430, an
internal standard). The data were analyzed using the 2−∆∆Ct method [59]. All primers used
for qRT-PCR are listed in Table S1.

4.6. Plant Pathogen Treatment

For analysis of Psl-inducible gene expression, a pathogen infection assay was per-
formed as described previously in cucumber [60]. Briefly, the second true leaves of four-
week-old cucumber seedlings were sprayed with 106 cfu/mL of Psl, samples were collected
at pre-inoculation (0 day) as control, and 1, 2, 3 dpi for expression analysis.

For analysis of Foc-inducible gene expression, the roots of one-week-old cucumber
seedlings were dipped in Foc spore suspension (1 × 106 spores/mL) as described previ-
ously [56]. Similarly, root samples were harvested on 0 (as control), and 2, 4, and 6 dpi for
further expression analysis.

4.7. Subcellular Localization Analysis

The full-length coding sequences without stop codon of CsExo70A1, CsExo70B, and
CsExo70G1 were amplified and cloned into pSuper-1300-eGFP vector. Then the resul-
tant vectors were transformed into agrobacterium strain GV3101 and infiltrated into
N. benthamiana leaves as previously described [61]. After 72 h infiltration, the fluorescence
signals of GFP were observed using a confocal microscope (Zeiss LSM880,
Jena, Germany) at an excitation wavelength of 488 nm and an emission wavelength of
510 nm. All primers used for subcellular localization analysis are listed in Table S1.

5. Conclusions

A total of 18 CsExo70 members were identified in this study. Tissue expression
analyses showed that most CsExo70 genes (except for CsExo70E2 and CsExo70H3) exhibited
a similar expression pattern, and CsExo70C1 and CsExo70C2 were highly expressed in
the stamen. In addition, the expression levels of most CsExo70 genes were induced by
pathogens, especially CsExo70E2 and CsExo70H3. Together, our results provide the basis
for studying the functions of Exo70 members in cucumber.

https://meme-suite.org/meme/tools/meme
https://www.ncbi.nlm.nih.gov/
https://bioinformatics.psb.ugent.be/webtools/plantcare/html/
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