
Citation: Yagi, M.; Yamanouchi, K.;

Fujita, N.; Funao, H.; Ebata, S.

Revolutionizing Spinal Care: Current

Applications and Future Directions of

Artificial Intelligence and Machine

Learning. J. Clin. Med. 2023, 12, 4188.

https://doi.org/10.3390/jcm12134188

Academic Editor: Misao Nishikawa

Received: 22 May 2023

Revised: 19 June 2023

Accepted: 20 June 2023

Published: 21 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Clinical Medicine

Review

Revolutionizing Spinal Care: Current Applications and Future
Directions of Artificial Intelligence and Machine Learning
Mitsuru Yagi 1,2,* , Kento Yamanouchi 1,2, Naruhito Fujita 1,2, Haruki Funao 1,2 and Shigeto Ebata 2

1 Department of Orthopaedic Surgery, School of Medicine, International University of Health and Welfare,
Narita 286-8686, Japan; yamaken0331@gmail.com (K.Y.); naruhito88@hotmail.com (N.F.);
hfunao@yahoo.co.jp (H.F.)

2 Department of Orthopaedic Surgery, International University of Health and Welfare and Narita Hospital,
Narita 286-8520, Japan; ebatas310@gmail.com

* Correspondence: yagiman@gmail.com; Tel.: +81-476-35-5600; Fax:+81-476-35-5586

Abstract: Artificial intelligence (AI) and machine learning (ML) are rapidly becoming integral
components of modern healthcare, offering new avenues for diagnosis, treatment, and outcome
prediction. This review explores their current applications and potential future in the field of
spinal care. From enhancing imaging techniques to predicting patient outcomes, AI and ML are
revolutionizing the way we approach spinal diseases. AI and ML have significantly improved
spinal imaging by augmenting detection and classification capabilities, thereby boosting diagnostic
accuracy. Predictive models have also been developed to guide treatment plans and foresee patient
outcomes, driving a shift towards more personalized care. Looking towards the future, we envision
AI and ML further ingraining themselves in spinal care with the development of algorithms capable
of deciphering complex spinal pathologies to aid decision making. Despite the promise these
technologies hold, their integration into clinical practice is not without challenges. Data quality,
integration hurdles, data security, and ethical considerations are some of the key areas that need to be
addressed for their successful and responsible implementation. In conclusion, AI and ML represent
potent tools for transforming spinal care. Thoughtful and balanced integration of these technologies,
guided by ethical considerations, can lead to significant advancements, ushering in an era of more
personalized, effective, and efficient healthcare.

Keywords: artificial intelligence; machine learning; predictive model

1. Introduction

The management of spinal diseases is on the cusp of a transformative shift precipitated
by the emergence and integration of artificial intelligence (AI) and machine learning (ML)
into the realm of standard medical care [1–6]. Rather than being a vision of the distant future,
this shift towards an intelligence-based spinal care model is well underway, promising
a host of potential applications, including diagnosis, treatment, and the anticipation of
adverse events [1–6].

The advent of AI and ML in healthcare is not an isolated phenomenon but rather the
logical outcome of decades of accumulated scientific and technological progress within
computational and healthcare disciplines. AI and ML have transcended mere theoretical
promise; they are already delivering tangible results in the present day [1–6]. One of the
most striking examples of their efficacy lies in the realm of spinal imaging [7]. Sophisticated
algorithms augment the creation and interpretation of spinal images, thereby enriching
the decision-making data available to clinicians [7]. It is plausible that future radiologists
will collaborate seamlessly with these AI-driven systems to deliver more precise and
personalized care.

This paper aims to provide a comprehensive review of the current state and projected
advancements in AI and ML applications in spinal disease management. It further en-
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deavors to elucidate the potential hurdles that may be encountered in the integration of
these avant-garde technologies into routine clinical practice. It will also address the critical
ethical and regulatory considerations tied to the deployment of AI and ML in healthcare.
As we traverse this path of rapid technological evolution, it becomes paramount to assess
our progress continually and to chart a course for the future that balances knowledge,
ethical responsibility, and, above all, the welfare of patients.

2. Historical Context and Evolution

The advent of AI has irrevocably changed numerous fields, and healthcare is no
exception [1–6]. AI—broadly defined as the ability of a computer or computer-controlled
robot to perform tasks commonly associated with intelligent beings—has introduced a level
of sophistication in data analysis and decision making that was previously unattainable.

The roots of AI in healthcare are intertwined with the history of AI itself (Table 1).
The initial AI wave in the mid-20th century saw promising applications in healthcare, but
many of these early attempts were hampered by the limited computational power and
data availability of the time [1–6,8]. However, the situation has drastically changed. The
past few decades have witnessed the exponential growth of computing power and data
generation, thanks to the advent of the digital era, leading to the explosive growth of AI
capabilities. This growth is encapsulated in the “scaling hypothesis”, which posits that
increases in the size of neural networks, the number of training data, and computation,
have led to astonishing advances in AI.

Table 1. Chronological Roots of AI in Healthcare.

Year Root Summary

1950s Expert Systems

Expert systems were among the earliest roots of AI in healthcare. These
systems aimed to capture the knowledge and expertise of human experts in
specific domains, including healthcare. By codifying expert knowledge into
rules and algorithms, expert systems could provide diagnostic and
decision-making support, aiding healthcare professionals in making accurate
and timely assessments and recommendations.

1960s Machine Learning

Machine learning emerged as a foundational root of AI in healthcare in the
1960s. Machine-learning algorithms enabled computers to learn from data and
improve their performance without explicit programming. In healthcare,
machine-learning techniques have been used for tasks, such as pattern
recognition, classification, and prediction. Machine-learning models can
analyze large volumes of patient data and extract valuable insights,
contributing to personalized medicine and clinical decision making.

1970s Natural Language Processing

Natural language processing (NLP) has its roots in the 1970s, focusing on
enabling computers to understand and interact with human language. In
healthcare, NLP techniques have been utilized to extract information from
clinical narratives, electronic health records (EHRs), medical literature, and
patient-generated data. NLP has facilitated information extraction, sentiment
analysis, clinical coding, and the development of conversational agents for
healthcare applications.

1980s Image Analysis

Image analysis became a significant root of AI in healthcare in the 1980s.
Computer vision and image processing techniques were applied to medical
imaging modalities, such as X-rays, CT scans, MRIs, and pathology slides,
enabling the automated interpretation, segmentation, and detection of
abnormalities. AI algorithms have enhanced medical imaging analysis, aiding
in early disease detection, diagnosis, and treatment planning in fields such as
radiology and pathology.
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Table 1. Cont.

Year Root Summary

1990s Robotics

Robotics started making an impact on healthcare in the 1990s, combining AI
with mechanical devices to perform various medical tasks. Robotic systems
have been developed for surgical procedures, rehabilitation, assistive care, and
remote telemedicine applications. By incorporating AI algorithms, robotic
systems can enhance precision, dexterity, and automation in healthcare,
leading to improved outcomes, reduced invasiveness, and increased
accessibility to medical services.

1990s Data Mining

Data mining, or knowledge discovery from databases, became a key root of AI
in healthcare in the 1990s. With the growth of electronic health records and the
accumulation of vast numbers of healthcare data, data-mining techniques were
applied to uncover hidden patterns, relationships, and insights. Data mining
has contributed to population health management, disease surveillance,
predictive modeling, and the identification of risk factors in healthcare.

1990s Decision Support Systems

Decision support systems (DSS) emerged as a root of AI in healthcare in the
1990s, aiming to assist healthcare professionals in making informed decisions.
DSSs incorporate AI techniques, such as rule-based systems, probabilistic
models, and machine learning, to provide evidence-based recommendations,
clinical guidelines, and alerts. DSSs have facilitated diagnosis, treatment
planning, medication management, and improved patient safety in healthcare
settings.

2000s Knowledge Representation

Knowledge representation, which involves capturing and organizing
knowledge in a structured format, has been a fundamental root of AI in
healthcare. Various knowledge-representation techniques, such as ontologies,
semantic networks, and knowledge graphs, have been applied to represent
medical knowledge, clinical guidelines, and domain-specific information.

A key factor in this growth is ML, a subset of AI that focuses on the development of
algorithms that enable computers to learn from and make decisions based on data [8]. In
healthcare, ML has become a critical tool for predictive analytics, personalized medicine,
and disease diagnosis and prognosis.

One significant application of ML in healthcare is the use of artificial neural networks
(ANNs)—computational models that emulate the human brain’s structure and function.
ANNs consist of layers of interconnected “neurons” or nodes that transmit and process
information [9]. Their remarkable ability to learn from data without being explicitly
programmed to perform specific tasks makes them suitable for a wide array of applications,
including medical diagnosis, drug discovery, and patient care management [9–11].

In the context of spinal disease management, ANNs have begun to find their footing.
The last few decades have seen a growing body of research exploring their potential
in diagnosing spinal diseases, predicting treatment outcomes, and even forecasting the
likelihood of adverse events [9–11]. These developments are part of a larger shift towards
data-driven, personalized, and predictive healthcare that promises to significantly improve
patient outcomes and the efficiency of the healthcare system.

Thus, the incorporation of AI, ML, and particularly ANNs in healthcare represents
an important evolution, ushering in a new era in spinal disease management. The scale of
this revolution and its potential impact can hardly be overstated. However, it is vital to
approach these technologies with an understanding of their strengths, limitations, and the
ethical considerations that accompany their use to ensure that their integration into clinical
practice is thoughtful, equitable, and ultimately beneficial for all patients.
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3. Current Applications of AI and ML in Spinal Care

AI and ML have seen significant developments and implementations in recent years,
particularly in the domain of healthcare (Table 2). Spinal care—a critical aspect of the
healthcare system—has been no exception to this trend. Over time, these technologies
have been utilized in various capacities in the sphere of spinal care, ranging from disease
diagnosis to treatment and even the prediction of adverse events (Table 3) [8,12–15].

Table 2. Representative Machine-Learning Models for Healthcare Applications.

Model Description Pros Cons

Convolutional Neural
Networks (CNNs)

CNNs are widely used for
image-based tasks in healthcare, such
as medical imaging analysis,
including classification, segmentation,
and detection. They leverage
specialized layers to extract features
from images and have achieved
remarkable success in areas such as
radiology and pathology.

- Excellent performance in
image analysis tasks

- Automatic feature
extraction

- Ability to handle
complex image
structures

- High computational
requirements

- Require large numbers
of labeled training data

- Limited interpretability

Recurrent Neural
Networks (RNNs)

RNNs are suitable for sequential data
analysis and have been applied in
various healthcare tasks. They can
capture dependencies over time,
making them valuable for tasks, such
as time-series analysis, patient
monitoring, and natural language
processing in electronic health
records (EHRs).

- Ability to capture
temporal dependencies

- Effective for sequential
and time-series data

- Widely used in NLP
applications

- Vulnerable to
vanishing/exploding
gradients

- Difficulty in modeling
long-term dependencies

- High computational
requirements

Neural Networks

Neural networks, including
multi-layer perceptrons (MLPs), are
versatile models used in healthcare.
They are composed of interconnected
layers of artificial neurons, enabling
them to learn complex patterns in
both structured and unstructured
healthcare data. They have been
applied to various tasks, including
disease diagnosis, risk prediction,
and patient outcome analysis.

- Ability to learn complex
patterns from data

- Suitable for a wide
range of healthcare tasks

- Effective for both
structured and
unstructured data

- Require large numbers
of labeled training data

- Prone to overfitting
- Interpretability can be

challenging, especially
for deep neural
networks

Support Vector
Machines (SVMs)

SVMs are a popular class of
supervised learning algorithms used
in healthcare. They are effective for
classification tasks and have been
applied in various areas, including
disease diagnosis, risk prediction, and
outcome analysis, by mapping data
into high-dimensional feature spaces.

- Effective for
high-dimensional data

- Good generalization
performance

- Robust to overfitting

- Computationally
expensive for large
datasets

- Require careful selection
of the kernel function
and hyperparameters

- Lack probabilistic
outputs

Random Forests

Random forests are an ensemble
learning method that combines
multiple decision trees to make
predictions. They are versatile and
have been used in disease diagnosis,
prognosis, and feature selection by
leveraging their ability to handle
high-dimensional data and identify
important features.

- Good performance for
high-dimensional data

- Ability to handle
missing values and
outliers

- Provide feature
importance ranking

- Can be slow for large
datasets

- Lack interpretability for
individual trees
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Table 2. Cont.

Model Description Pros Cons

Deep Belief Networks
(DBNs)

DBNs are generative models that
employ unsupervised learning to
learn hierarchical representations of
data. They have shown promise in
healthcare tasks, such as genetic
analysis and medical imaging, and in
clinical decision support systems by
capturing complex patterns in large
datasets.

- Ability to capture
hierarchical
representations

- Effective for
unsupervised feature
learning

- Suitable for large-scale
datasets

- Computationally
expensive for training

- Require large numbers
of labeled data for
supervised fine-tuning

- Difficult to interpret and
understand the learned
representations

Natural Language
Processing (NLP)

NLP techniques are used to process
and analyze human language data.
They involve various tasks, such as
sentiment analysis, text classification,
named entity recognition, machine
translation, and question-answering
systems, enabling the understanding
and extraction of information from
textual data.

- Extraction of insights
from unstructured
textual data

- Sentiment analysis and
text classification

- Named entity
recognition

- Machine translation for
cross-lingual
communication

- Question-answering
systems for information
retrieval

- Ambiguity and context
in natural language

- Language complexity
and variation

- Lack of domain-specific
data

- Privacy and ethical
concerns

- Bias and fairness
- Interpretability

challenges

Decision Trees

Decision trees are simple yet
powerful models used for
classification and regression tasks.
They partition data based on features
to form a tree-like structure and make
predictions. Decision trees are
interpretable and can handle both
categorical and numerical data.

- Easy to interpret and
visualize

- Can handle both
categorical and
numerical features

- Nonlinear relationships
between features can be
captured

- Prone to overfitting,
especially with complex
trees

- Sensitive to small
variations in data

Table 3. Potential Applications of AI in Spinal Disease Care.

Area of Spinal Disease Care Description

Diagnosis and Detection
AI can assist in the automated analysis of medical imaging data, such as MRI or CT scans, for
the detection and segmentation of spinal conditions, such as spinal stenosis. AI algorithms can
aid in accurate and efficient diagnosis, providing valuable insights for healthcare professionals.

Treatment Planning

AI can support healthcare professionals in personalized treatment planning for spinal diseases.
By analyzing patient data, including medical images, clinical records, and outcomes, AI
algorithms can help determine the most appropriate treatment options and assist in surgical
technique selection.

Surgical Guidance
AI can provide real-time guidance during spinal surgeries. By integrating pre-operative
imaging data and intraoperative feedback, AI systems can help surgeons navigate complex
spinal anatomies and make informed decisions, leading to improved surgical outcomes.

Predictive Modeling

AI can develop predictive models to assess disease progression and treatment outcomes for
spinal diseases. These models can aid in prognosticating patient outcomes, optimizing
treatment strategies, and facilitating shared decision making between healthcare providers and
patients.
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Table 3. Cont.

Area of Spinal Disease Care Description

Rehabilitation Support
AI can assist in designing personalized rehabilitation programs for patients with spinal diseases.
By analyzing patient data, including movement patterns and sensor data, AI algorithms can
provide customized recommendations and monitoring during the rehabilitation process.

Remote Monitoring

AI-enabled remote monitoring systems can help track and monitor patients with spinal diseases
outside of healthcare facilities. These systems can provide continuous monitoring, detect
changes in symptoms or movement patterns, and alert healthcare providers for timely
intervention.

4. Clinical Case Studies: AI in Spinal Care

AI and ML have gained significant traction in spinal disease diagnosis, treatment
recommendation, and patient outcome prediction. One notable case study is the work of
Jujjavarapu et al., who used a deep-learning model to predict surgical outcomes in patients
with lumbar disc herniation and lumbar spinal stenosis [16]. The study demonstrated that
the AI model outperformed a benchmark model (logistic regression) in predicting early
surgery, achieving an AUC of 0.725 compared to 0.597.

Another compelling case study was presented by Halicka et al., who developed an
AI algorithm capable of predicting patient-reported outcomes following lumbar spine
surgery [17]. The study aimed to develop and externally validate prediction models for
spinal surgery outcomes using multivariate regression and random-forest approaches. The
study included patients who underwent lumbar spine surgery for degenerative pathology.
The models were evaluated based on changes in back and leg pain intensity and Core
Outcome Measures Index (COMI) scores. The models demonstrated good calibration
and explained variations in the validation data. The discrimination ability ranged from
0.62 to 0.72, indicating moderate predictive performance. The most important predictors
included age, baseline scores, type of degenerative pathology, previous surgeries, smoking
status, morbidity, and hospital-stay duration. The developed models showed robustness
but had borderline-acceptable discrimination abilities, suggesting the need for additional
prognostic factors.

In addition to its diagnostic applications, AI has shown promise in predicting hospital
stays following spine surgery. Shahrestani et al. conducted a study in which algorithms
were trained using preoperative and perioperative variables from a dataset of patients
with spondylolisthesis [18]. In the study conducted by Shahrestani et al., the researchers
aimed to develop k-nearest-neighbors (KNN) classification algorithms to identify patients
at a higher risk of extended hospital length of stay (LOS) following spinal surgery for
spondylolisthesis. They analyzed the Quality Outcomes Database (QOD) spondylolis-
thesis dataset, including preoperative and perioperative variables. Out of 608 enrolled
patients, 544 met the inclusion criteria. The KNN models exhibited impressive predictive
performance. Model 1 achieved an overall accuracy of 98.1%, a sensitivity of 100%, a
specificity of 84.6%, a positive predictive value (PPV) of 97.9%, and a negative predictive
value (NPV) of 100%. Model 2 demonstrated an overall accuracy of 99.1%, a sensitivity
of 100%, a specificity of 92.3%, a PPV of 99.0%, and an NPV of 100%. Receiver operating
characteristic (ROC) curve analysis revealed an area under the curve (AUC) of 0.998 for
both models. The study concluded that these nonlinear KNN machine-learning models
have exceptional predictive value for LOS and can potentially assist in patient selection,
management, resource utilization, and preoperative surgical planning. These models have
the potential to assist spine surgeons in patient selection, the optimization of resource
utilization, and preoperative planning.

These case studies serve as tangible examples of the benefits that AI and ML can bring
to spinal care. They highlight that AI is not merely a futuristic concept but a current tool
that is being utilized to enhance patient care. However, it is important to note that the
application of these technologies is still in its early stages, and further research and clinical
trials are needed to refine these tools and fully unlock their potential.



J. Clin. Med. 2023, 12, 4188 7 of 15

The introduction of AI and ML in spinal care signifies a paradigm shift toward an
AI-augmented care model. An understanding of the evolution of computation in this
context is crucial to appreciate the potential impact on diagnosis, treatment, and adverse-
event prediction.

Decision-tree models have been used in predicting hospital readmission, prolonged
hospital say, surgical complication, and direct cost following surgery for spinal stenosis
with a high degree of accuracy [19–22]. They have also been utilized for texture analysis of
spinal stenosis from MR imaging.

On another front, ANNs have been deployed to predict non-home discharge after
spinal stenosis surgery [23]. Other models have predicted patient outcomes, including
pain and functional disability after spinal stenosis surgery [19–22,24]. As the research
evolves, future iterations of these AI and ML models could incorporate additional patient
features, such as body mass index, lean mass, or gender, to further improve diagnostic and
prognostic capabilities.

Natural language processing (NLP)—another application of AI—has also been ex-
plored in the context of spinal care [25,26]. For instance, an NLP system was developed
and found to have a higher sensitivity for identifying standard reporting characteristics
for low back pain on radiologic imaging compared to its rule-based counterpart [25]. This
suggests that future NLP systems using ML could potentially enhance pathology-specific
word choice to refine diagnosis and treatment strategies.

In addition to the more traditional ML techniques, support vector machines (SVMs)
have also been used to classify patients with low back pain based on progression following
rehabilitation [27]. A model developed by Jiang et al. achieved a striking 100% sensitivity
and a 93.75% accuracy, hinting at the possibility of preoperative identification of patients
who may require additional or more intensive rehabilitation efforts [27].

Comparatively, ANNs have been tested against gold-standard diagnostic categoriza-
tion of low back pain in patients. The results revealed a high sensitivity and specificity
of 95.7% and 100%, respectively. The successful combination of these ML algorithms
with additional diagnostic tests could potentially revolutionize the clinician’s diagnostic
process [28].

Predictive models have also been employed to identify the risk of major intraoperative
or perioperative complications following adult spinal deformity [19,22,29–31]. Using
preoperative variables, including coronal and sagittal radiographic images, a decision-tree
model was developed by Scheer et al. and Yagi et al. [19,22]. This kind of risk assessment
tool can provide invaluable assistance in surgical planning and patient counseling.

In summary, AI and ML have brought a transformative change to spinal care, offering
significant advancements in disease detection, patient outcome prediction, risk assessment,
and therapeutic decision making. The above applications demonstrate just a fraction of
their potential, and ongoing research in this field promises further breakthroughs that will
revolutionize the field of spinal care. The future of spinal care may be one in which AI and
ML are integral to all stages of care, from diagnosis to treatment and prognosis, providing
physicians with tools to offer more personalized and effective care.

5. AI and ML in Spinal Imaging

Spinal imaging is a cornerstone of the diagnosis and management of various spinal
disorders. Traditionally, these images have been analyzed manually by clinicians—a process
that can be time-consuming and susceptible to human error. However, the advent of AI and
ML has transformed this situation, enabling automated, fast, and precise image interpretation.

One of the fundamental applications of AI in spinal care revolves around localization—
a concept associated with object detection and classification [32–36]. This concept enables
the identification and labeling of an object in an image and can be invaluable in detecting
anomalies in the spine. The SVM represents one such ML model that has demonstrated
effectiveness in this field. SVMs have been used in detecting incidental lumbar spine
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fractures on X-rays, predicting forces applied to the lower back during weighted loading,
and even characterizing type 1 Gaucher disease based on bone microarchitecture [37,38].

Similarly, the random-forest model, another ML technique, has been employed to
identify osteoporosis more effectively than traditional bone turnover markers alone. It
has also been used in the screening of patients undergoing non-osteoporosis dedicated CT
imaging for potential osteoporosis [39].

Neural networks have found use in predicting fractures, both of the spine and the hip.
Notably, these networks have been trained to detect posterior-element spinal fractures in
trauma patients using CT images. Further, they have been used to identify hip fractures
using a combination of radiographs, patient traits, and hospital process variables. In an
exciting development, researchers found that image recognition algorithms using both
imaging and non-imaging data may primarily use non-imaging data [40].

Convoluted neural networks (CNNs)—an offshoot of neural networks—have been
developed to characterize and classify alignment-related pathologies, such as kyphosis and
scoliosis [41,42]. One such CNN generated by Jamaludin et al. from dual-energy X-ray
absorptiometry (DEXA) scans was able to automate spine curve identification, boasting
a sensitivity of 86.5%, a specificity of 96.9%, and an AUC (area under the ROC curve) of
0.80 [43]. This capability opens the possibility for earlier detection of alignment-related
pathologies, such as scoliosis and kyphosis.

Regression techniques have also been incorporated in ML for spinal care, with logistic
regression models predicting the development of neuromuscular scoliosis in pediatric
patients with cerebral palsy. Linear regression models have been used for postoperative
height gain following the correction of idiopathic scoliosis [44].

Clustering methods have been used to identify distinct subgroups within adolescent id-
iopathic scoliosis populations. However, it has been challenging to identify discriminatory
characteristics for patient clustering in certain study sets [42].

AI has also been beneficial in diagnosing various types of spinal pathologies, including
lumbar neural foraminal stenosis and central spinal stenosis [10,15,44,45]. Deep neural
networks have been employed to automatically localize and grade multiple spinal regions.
These ML methods have the potential to reduce the qualitative MRI grading time in
large epidemiological studies. Similarly, deep neural networks have been utilized to
automatically localize and grade multiple spinal regions to diagnose conditions such as
lumbar neural foraminal stenosis [44–46].

In another study, Roller et al. applied CNNs to MRI images to predict the operative
level of patients undergoing disc decompression surgery [36]. An algorithm has also been
developed to predict patients at risk for re-herniation after microdiscectomy, achieving a
recall of 0.80 and an accuracy of 0.70 [36].

AI has even been used to predict early-onset adjacent segment degeneration following
anterior cervical discectomy fusion (ACDF) using an SVM on tabular data [47].

Overall, AI and ML techniques in spinal imaging have shown promising results in
improving the accuracy, speed, and predictive capability of the diagnosis and treatment of
spinal conditions. These developments hold great promise for improving patient outcomes
and transforming the way spinal care is delivered. However, it is essential to continue to
refine these AI and ML models, incorporating new insights and additional patient features
to ensure their continued evolution and relevance in clinical practice.

6. Role of AI and ML in Spinal Rehabilitation

AI and ML have diverse applications in rehabilitation, including applications in the
field of physical medicine and rehabilitation (PM&R). In rehabilitation, ML is utilized in
various areas, including symbiotic neuroprosthetics, myoelectric control, brain–computer
interfaces, perioperative medicine, musculoskeletal medicine, diagnostic imaging, patient
data measurement, and clinical decision support [48–50]. AI has even been used to assess
rehabilitative exercises based on machine indications [48–51]. Brain–computer interfaces
(BCIs) have emerged as a novel approach in neurorehabilitation. By recording and decoding
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brain signals, BCIs aim to enhance motor imagery-based training, facilitate task execution
through functional electrical stimulation or robotic orthoses, and understand cerebral
reorganizations after injury. BCIs show potential in promoting recovery and can be adapted
to a diverse population. However, controlled clinical trials are needed to validate their
effectiveness in pathological conditions and compare them to traditional methods [48,49].
Recently, Simmonov et al. presented an innovative rehabilitation strategy utilizing AI [51].
They explored the use of humanoid robots in pulmonary rehabilitation for COPD patients.
The Aldebaran Robotics’ NAO humanoid was programmed to assist patients during
rehabilitation exercises and assess their performance using the dynamic time warping
(DTW) algorithm. The study highlights the potential of intelligent humanoid applications
to enhance rehabilitative care and minimize the reliance on human intervention.

As PM&R providers, we have the opportunity to harness these AI and ML tools to
advance patient care and contribute to the progress of the field.

7. Validity and Reliability: Ensuring Accuracy in AI-Driven Diagnosis and Treatment

The promise of AI and ML in spinal care is underpinned by their ability to accurately
and reliably assist in diagnosing and treating spinal diseases. However, the validity and
reliability of these AI-driven systems are not guaranteed. They need to be thoroughly
evaluated and confirmed through rigorous testing, validation, and continuous assessment
to ensure the accuracy and reliability of their outputs (Table 4) [52].

Table 4. Limitations of and improvement measures for AI and ML in spinal care.

Limitations Improvement Measures

Lack of high-quality, diverse data
Ensure data collection with proper annotation and labeling
Expand data sources and collaborations
Implement data augmentation techniques to increase dataset diversity

Potential bias and fairness issues
Develop bias detection and mitigation techniques
Implement fairness-aware algorithms
Conduct rigorous evaluation of models for bias and fairness

Interpretability and explainability
Develop transparent and interpretable AI and ML models
Create model-agnostic interpretability techniques
Provide explanations for model predictions and decisions

Generalizability and transferability
Collect data from diverse populations and settings
Explore transfer-learning and domain-adaptation techniques
Conduct external validation studies across different healthcare settings

AI and ML models are as good as the data they are trained on. Thus, the quality and
diversity of the data used play a significant role in the validity of the AI model. If the
training data are not representative of the broader population or the specific patient groups,
the AI model may perform poorly when deployed in real-world settings. Therefore, using
high-quality, diverse, and representative datasets during model training is essential for
ensuring the validity of AI models [53].

The reliability of an AI system refers to its ability to consistently produce the same
results under the same conditions. This is particularly important in healthcare settings
where reliable predictions are crucial for clinical decision making. Variability in AI system
performance can lead to different diagnoses or treatment plans for the same patient, which
can have serious implications for patient care [54]. Ensuring the validity and reliability
of AI systems in spinal care also involves external validation, where the performance of
AI models is assessed using data that were not involved in the model’s training or initial
validation. This is a crucial step to gauge the generalizability of AI models and their
readiness for real-world clinical deployment [55].

Lastly, a system for continuous monitoring and evaluation should be in place. This al-
lows for the detection of any changes in the performance of AI models over time, providing
an opportunity to make necessary adjustments and updates [56].



J. Clin. Med. 2023, 12, 4188 10 of 15

In conclusion, the integration of AI and ML into spinal care promises many benefits,
but it is incumbent upon us to ensure the accuracy and reliability of these AI-driven systems.
As we navigate this new terrain, the focus must remain on delivering the highest quality of
care to patients.

8. Future Direction of AI and ML in Spinal Care

The future of spinal care will likely be heavily influenced by advancements in AI
and ML. These technologies are poised to redefine the diagnosis, treatment, and overall
management of spinal conditions, enhancing precision, speed, and patient outcomes.

While the current applications of AI and ML in spinal care are impressive, the potential
for future advancements is enormous. In the realm of diagnosis, we can expect to see AI
and ML models that can accurately interpret complex spinal images, detect subtle patterns
invisible to the human eye, and even predict the likelihood of certain spinal conditions
based on a wide array of factors. For instance, deep-learning algorithms could be refined
to not only detect fractures and pathologies but also predict their progression. Similarly,
predictive models could be developed to anticipate complications, readmissions, and
patient outcomes post-surgery with greater precision.

Treatment strategies may also be revolutionized by AI and ML. Personalized medicine—
a treatment approach that tailors therapy to individual patients based on their unique
genetic, environmental, and lifestyle factors—could become standard in spinal care. AI
and ML could facilitate this by analyzing vast quantities of data to identify the most effec-
tive treatment strategies for each patient. This could range from determining the optimal
surgical approach to predicting the success of various rehabilitation strategies.

AI and ML could also enhance patient monitoring and follow-up care. Wearable
technology and remote monitoring devices could collect real-time data on patients’ health
status and recovery, which could then be analyzed using AI algorithms to detect complica-
tions or deviations from the expected recovery trajectory [57,58]. This could enable timely
intervention, reducing the risk of adverse events and improving patient outcomes.

In addition, AI and ML could play a crucial role in healthcare administration within
spinal care. Advanced algorithms could streamline administrative tasks, such as scheduling,
billing, and record-keeping, reducing the administrative burden on healthcare providers
and allowing them to focus more on patient care [59]. Moreover, AI and ML could be
used to optimize resource allocation, ensuring that resources are directed to where they are
most needed.

Furthermore, the fusion of AI and ML with other innovative technologies, such as
virtual reality and augmented reality, could open new horizons in spinal care. For example,
these combined technologies could be used for pre-operative planning and simulation,
improving surgical precision and patient outcomes [60,61]. However, to fully realize these
potential advancements, several challenges must be addressed. These include ensuring
the privacy and security of patient data, managing the vast numbers of data generated by
AI and ML algorithms, and ensuring that these technologies are accessible and affordable
for all patients. Furthermore, it will be crucial to ensure that healthcare providers are
adequately trained in the use of these technologies and that ethical considerations are
appropriately addressed.

AI and ML hold immense promise for the future of spinal care. As these technologies
continue to advance, they have the potential to transform the way spinal conditions are
diagnosed, treated, and managed, ultimately leading to better patient outcomes and more
efficient healthcare delivery.

9. Addressing Ethical and Regulatory Challenges in AI-Driven Spinal Care

AI and ML continue to make significant strides in spinal care. However, as these
technologies become more deeply integrated into our healthcare systems, it is of the utmost
importance to address the ethical considerations and understand the evolving regulatory
landscape that governs their use [62].
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From an ethical standpoint, the advent of AI and ML in healthcare introduces numer-
ous questions. One such critical concern is patient data privacy. Machine-learning models
require large numbers of data to function optimally, necessitating stringent measures to
ensure that the data collection and processing respect patients’ privacy rights and comply
with established data protection laws [63].

Additionally, the deployment of AI and ML in healthcare raises questions about
responsibility and accountability. In instances where an AI-driven diagnosis or treatment
recommendation proves erroneous, it is essential to ascertain who bears the responsibility—
is it the healthcare provider, the developers of the algorithm, or the institution implementing
it? This “black box” problem emphasizes the need for transparency and explainability in
AI systems [64].

Moreover, there are concerns about data quality and bias. AI and ML models are only
as reliable as the data they are trained on. Inaccurate, incomplete, or biased data could lead
to flawed models and misguided clinical decisions. This concern underscores the critical
need for transparent and interpretable AI and ML models [65].

The ethical considerations also extend to the potential for AI and ML to replace human
expertise. While these technologies can augment the abilities of clinicians, it is essential to
maintain a balanced approach that leverages the strengths of both human expertise and
AI [66]. These technologies should be seen as tools to assist clinicians, not replace them.
Furthermore, considering the inherent uncertainties in AI and ML predictions, how can
informed consent be ensured when utilizing these technologies in patient care? Patients
have a right to comprehend the basis of their treatment decisions, which can be challenging
when these decisions are influenced by complex algorithms [67].

Simultaneously, we need to address the regulatory landscape of AI and ML in health-
care, which is currently in its early stages. Bodies such as the U.S. Food and Drug Ad-
ministration (FDA) and the European Medicines Agency (EMA) have initiated outlining
frameworks for regulating AI in healthcare, focusing on safety, effectiveness, and data
privacy [68]. However, the swift pace of AI and ML development poses challenges to
maintaining current and effective regulatory oversight [69].

In conclusion, while AI and ML hold significant promise for transforming spinal care,
their integration into clinical practice must be carried out thoughtfully, keeping in mind the
ethical considerations, and in alignment with regulatory requirements [62]. Navigating this
evolving landscape necessitates implementing these technologies in ways that benefit all
patients, uphold their privacy, and maintain the highest standards of care [70]. As we move
forward, addressing these challenges and ethical considerations is paramount to ensure the
responsible and effective use of these powerful tools in spinal care [71].

10. Conclusions

AI and ML have demonstrated their potential to revolutionize spinal care, offering
advancements in diagnosis, treatment, and outcome prediction. The capacity of these
technologies to process vast numbers of data, uncover patterns, and learn from experience
opens up new opportunities for precision medicine and personalized patient care.

In imaging, AI and ML have been shown to improve the detection and classification of
various spinal conditions, offering the potential to enhance diagnostic accuracy and speed.
Furthermore, with their predictive capabilities, these technologies may aid in treatment
planning and predicting patient outcomes, enhancing the overall quality of care.

Looking ahead, we foresee a future in which AI and ML play an integral role in spinal
care. The ongoing advancements in these technologies suggest a future with more precise
diagnoses, targeted treatments, and improved patient outcomes. The development of
algorithms capable of understanding complex spinal pathologies holds promise for better
decision making and improved patient care. However, the journey toward this future is
not without challenges. Ensuring data quality, overcoming integration barriers, managing
data security, and addressing ethical considerations are all crucial to the successful and
responsible application of AI and ML in spinal care.
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In summary, while the incorporation of AI and ML in spinal care presents substantial
potential benefits, it necessitates a thoughtful and measured approach. A balanced and
ethical integration of these technologies can lead to significant advancements in spinal care,
shaping a future in which healthcare is more personalized, effective, and efficient.
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