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Abstract

A hallmark symptom of many anxiety disorders, and multiple neuropsychiatric disorders

more broadly, is generalization of fearful responses to non-fearful stimuli. Anxiety disorders

are often comorbid with cardiovascular diseases. One established, and modifiable, risk fac-

tor for cardiovascular diseases is salt intake. Yet, investigations into how excess salt con-

sumption affects anxiety-relevant behaviors remains little explored. Moreover, no studies

have yet assessed how high salt intake influences generalization of fear. Here, we used

adult C57BL/6J mice of both sexes to evaluate the influence of two or six weeks of high salt

consumption (4.0% NaCl), compared to controls (0.4% NaCl), on contextual fear acquisi-

tion, expression, and generalization. Further, we measured osmotic and physiological stress

by quantifying serum osmolality and corticosterone levels, respectively. Consuming excess

salt did not influence contextual fear acquisition nor discrimination between the context

used for training and a novel, neutral context when training occurred 48 prior to testing. How-

ever, when a four week delay between training and testing was employed to induce natural

fear generalization processes, we found that high salt intake selectively increases contex-

tual fear generalization in females, but the same diet reduces contextual fear generalization

in males. These sex-specific effects were independent of any changes in serum osmolality

nor corticosterone levels, suggesting the behavioral shifts are a consequence of more sub-

tle, neurophysiologic changes. This is the first evidence of salt consumption influencing con-

textual fear generalization, and adds information about sex-specific effects of salt that are

largely missing from current literature.

Introduction

Excessive dietary salt intake occurs across nations and cultures [1, 2]. While salt’s practical

uses include food preservation and flavor enhancement, consumption of too much salt has

been associated with increased risk for cardiovascular diseases [3–6]. Indeed, average estimates

of global salt intake indicate people consume 3,950 mg of sodium (the component of NaCl that

has been associated with multiple negative health outcomes) [3, 7, 8]. When put in the context

that, according to the World Health Organization, adults should consume less than 2,000 mg
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of sodium, this overconsumption of salt becomes quantifiably apparent [9]. It is estimated that

reducing consumption of salt can attenuate risk for cardiovascular disease by ~20% [5, 10],

meaning dietary salt consumption has a profound physiological influence.

Globally, cardiovascular diseases and neuropsychiatric disorders, particularly disorders

involving anxiety symptoms, are often comorbid [11–15] (see also reviews [16, 17]). Increasing

literature suggests dietary components such as excess sugar and/or fat are associated with both

metabolic conditions like insulin resistance and type II diabetes, as well as with neuropsychiat-

ric conditions (e.g., depression) and diseases (e.g., Alzheimer’s) [18–22]. Trait anxiety appears

largely unaffected by excess salt consumption [23–27] (reviewed in [28]). Far less understood

is how excess salt intake might affect neuropsychiatric symptoms like generalized (i.e., non-

specific, state) anxiety, though some researchers have begun to recognize this possibility [29,

30]. We hypothesized that excessive consumption of dietary salt would enhance fear generali-

zation in rodents, a possibility that has not yet been explored.

Fear generalization is an established neurobehavioral phenomenon that occurs across spe-

cies, and studies are making considerable progress in identifying brain regions critical to this

process [31–34]. These include specific subregions of the cingulate and prefrontal cortices, hip-

pocampus, amygdala, and brainstem nuclei (e.g., locus coeruleus). Growing evidence indicates

the hippocampus and amygdala are affected by excess salt consumption in rodents [24, 26, 35–

41], including: reductions in nicotinic receptor levels [35]; increased markers of oxidative stress

[24, 26, 37, 41], neuronal activation [42], and neuroinflammation [42]; reduced long-term

potentiation [40]; and increased microvasculature leakiness [36]. Other brain regions remain

underexplored. This evidence, combined with human evidence of comorbidity between anxiety

disorders and cardiovascular diseases, supports our hypothesis–at least based upon male data–

that fear generalization is augmented by high salt intake. Unfortunately, both the scant literature

on behavioral effects of increased salt intake, and the larger body of work on the neurocircuitry

of fear generalization, have focused almost exclusively on male rodents. Here, we included both

sexes in our studies, but given the current state of the literature we could not formulate data-

based a priori hypotheses specifically regarding how female fear generalization behavior might

differ from male fear generalization under conditions of excess salt intake.

Materials and methods

Animals

Mice of both sexes on a C57BL/6J background were purchased from Jackson Laboratory (Bar

Harbor, ME) and bred in-house. All mice were at least 9 weeks old prior to commencing

experiments. At the start of diet manipulation, mice were singly housed to facilitate accurate

quantification of diet and water consumption relative to the mouse’s body weight. Prior to

experiments, all mouse cages contained Nestlets (Ancare, Bellmore, NY) and huts; at the time

of singly housing for diet manipulation, two additional pieces of enrichment (e.g., swing,

wood block, etc.) were added to each cage. Cages contained 7090 Teklad Sani-chip bedding

(Envigo, East Millstone, NJ) and were housed in a 12:12 light/dark cycle room, with lights on

at 07:00, and temperature maintained at 22 ± 2˚C.

Prior to diet manipulation, mice were fed LabDiet 5001 rodent laboratory chow (LabDiet,

Brentwood, MO) ad libitum. At the time of diet manipulation, mice were pseudorandomly

assigned to either a control diet (0.4% NaCl w/w; D17012, Research Diets, Inc., New Bruns-

wick, NJ) or a high salt diet (4.0% NaCl; D17013; Fig 1A). These diets were available ad libi-
tum, and water was always available ad libitum. Twice weekly, measurements of diet and water

consumption plus body weight were taken. Refer to Supporting Information for statistics and

graphs on average water consumed per day (S15 and S19 Tables; S9 and S13 Figs); average
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food consumed per day (S16 and S20 Tables; S10 and S13 Figs); weekly body weight changes

(S17 and S21 Tables; S11 and S14 Figs); raw body weights (S18 and S22 Tables; S12 and S14

Figs); average NaCl consumed per day (S23 and S28 Tables; S15 and S20 Figs); average NaCl

consumed as percentage of body weight (S24 and S29 Tables; S16 and S20 Figs); weekly ratio

between water:NaCl consumption (S25 and S30 Tables; S17 and S21 Figs); average kcal con-

sumed per day (S26 and S31 Tables; S18 and S22 Figs); and average kcal consumed as percent-

age of body weight (S27 and S32 Tables; S19 and S22 Figs).

Diet manipulations lasted for two weeks (Experiment 1; Fig 1A) or six weeks (Experiments

2 and 3; Fig 1A). All procedures were approved by the Kent State University Institutional Ani-

mal Care and Use Committee (protocol 536 LG 22–14), and adhered to the National Research

Council’s Guide for the Care and Use of Laboratory Animals, 8th Ed. [43]. Every measure was

taken to minimize suffering.

Experimental timelines

Experimental timelines are graphically illustrated in Fig 1A. For Experiment 1, context fear

training occurred after two weeks of diet manipulation, and context fear testing occurred 48 h

after training. For Experiment 2, training occurred after six weeks of diet manipulation, and

testing occurred 48 h after training. For Experiment 3, training occurred after two weeks of

diet manipulation, and testing occurred four weeks after training (a standard time frame for

natural development of fear generalization in mice [44]).

Context fear conditioning. Females and males always underwent behavior separately.

Fear conditioning took place in identical Coulbourn Instruments chambers (7 in D × 7 in

W × 12 in H; Allentown, PA) composed of two opposing aluminum walls and two Plexiglas

walls surrounding a stainless-steel shock grid floor. Each chamber was located within its own

sound-attenuating enclosure, and had a camera mounted to the top for real-time measure-

ments of freezing behavior (absence of all movement except that necessary for breathing)

using FreezeFrame (v. 5.201, Coulburn Instruments).

Context fear training. The Training Context (Fig 1B) consisted of the shock grid floor, a

patterned background, visible illumination, and scent cue (70% ethanol). Training occurred at

either the two week or six week time point (Fig 1A). Training involved exposure to five, 1 s, 0.8

mA scrambled foot shocks pseudorandomly administered during a 6 min training session at

137, 186, 229, 285, and 324 s. Training with five foot shocks is optimal for eliciting time-depen-

dent contextual fear generalization in rodents [44–46]. Freezing behavior was quantified as the

average percent freezing across the first six 5 s bins (i.e., 30 s) that occurred immediately after

the 5 s bin containing the foot shock.

Context fear testing. Testing occurred at either the two (Experiment 1) or six week

(Experiments 2 and 3) time point (Fig 1A). Mice were tested either in the Training Context, or

Fig 1. Study timeline and fear conditioning procedures. A) Mice were assigned to either a control (0.4% NaCl) or

high salt (4.0% NaCl) diet for two or six weeks. Experiment 1 involved diet manipulation for two weeks, at which time

mice underwent context fear training, followed 48 h later by context fear testing. Experiment 2 (grey shading) involved

diet manipulation for six weeks, at which time mice underwent context fear training, followed 48 h later by context

fear testing. Experiment 3 involved diet manipulation for two weeks, at which time mice underwent context fear

training, followed four weeks later (while continuing the same diet manipulation) by context fear testing. B) Mice

trained with a mild foot shock in the Training Context were tested 48 h (Experiments 1, 2) or four weeks (Experiment

3) later in either the Training Context or the Neutral Context. The Training Context included a metal grid floor, visible

illumination, patterned background, and 70% ethanol scent. The Neutral Context included a smooth acrylic floor,

infrared illumination, no background, and Windex scent. C) Control no shock mice were exposed to the Training

Context, but were never administered a foot shock. These mice were tested at the same timelines for Experiments 1–3

in the Training Context, to assess for any baseline influences of diet consumption on fear behavior.

https://doi.org/10.1371/journal.pone.0286221.g001
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in a Neutral Context which consisted of a smooth floor, no background, only infrared illumi-

nation, and a different scent cue (Windex1, SC Johnson, Racine, WI; Fig 1B). All mice were

only ever tested in a single context, and testing lasted for 10 minutes, with the average percent-

age freezing occurring during minutes two through six being quantified and analyzed [46].

Foot shocks were never administered during testing.

No shock controls. Control ‘no shock’ mice were run concurrently in every cohort of ani-

mals (Fig 1C) for every Experiment. These no shock mice were exposed to the Training Con-

text for ‘training’, but no foot shock was ever administered. Likewise, control no shock mice

were tested in the Training Context, to evaluate how diet manipulation and the Experiment

timelines influenced freezing behavior in the absence of any contextual fear conditioning.

Serum measurements

Forty-eight hours after testing for context fear expression, mice were briefly anesthetized with

isoflurane then rapidly decapitated for collection of trunk blood. Trunk blood was allowed to

clot at room temperature for 30 min, then was spun at 3500 rpm for 1 h at 4˚C. Serum was

then removed from tubes and aliquoted into two vials–one for measuring serum osmolality,

the other for measuring serum corticosterone. Serum osmolality was measured immediately

using an Osmo1 single-sample micro-osmometer (Advanced Instruments, Norwood, MA).

Prior to every serum batch, a ClinitrolTM 290 reference solution (Advanced Instruments) from

a new ampule was measured to confirm accurate readings. Samples for serum corticosterone

were stored immediately at −80˚C until analysis with a corticosterone ELISA kit (Enzo Life

Sciences, Inc., Farmingdale, NY) using their small volume protocol. Serum corticosterone lev-

els were log-transformed to account for positive skewness [27, 47, 48]. Log-transformed serum

corticosterone levels are, for brevity, hereafter referred to as ’cort’ levels.

Statistical analyses

Data were analyzed with GraphPad Prism 9.4.0 (GraphPad Software, San Diego, CA) and IBM

SPSS Statistics 28.0.0.0 (IBM, Armonk, NY). Our a priori significance threshold was set at

p<0.05. Analyses were made within each Experiment. Repeated measures data (diet/water

consumption, salt or kcal calculations, body weight, context fear training) were analyzed using

3-way repeated measures ANOVAs within individual sexes ([repeated measure, e.g., body

weight] × diet × context) and pairwise comparisons with Bonferroni correction. Greenhouse-

Geisser corrections were employed for within-subjects analyses. Measurements of contextual

fear expression, serum osmolality, and serum corticosterone across contexts were analyzed

with a 3-way ANOVA (diet × sex × context) and Holm-Šı́dák’s post-hocs. Control no shock

fear behavior data were analyzed separately, given these were purposely included as negative

controls and not intended to be analyzed in comparison to experimental groups. These no

shock control data were analyzed on their own with 3-way ANOVAs (diet × sex × context)

and Holm-Šı́dák’s post-hocs, or with repeated measures 3-way ANOVAs within each sex

([repeated measure, e.g., body weight] × diet × sex) plus pairwise comparisons with Bonferroni

correction, and also using Greenhouse-Geisser corrections for within-subjects analyses. All

ANOVA statistics are reported in S1–S32 Tables. The criterion to exclude outliers was a priori
assigned as being >5 standard deviations ± mean. Numbers of mice per sex/shock/diet/con-

text condition varied, and exact numbers are present in the respective figure legends for each

group of data. Broadly: no shock fear behavior n = 7–9; shock fear behavior n = 7–10; shock

serum osmolality n = 8–9; shock serum corticosterone n = 7–9. Details of outliers that were

excluded (training baseline, n = 1; no shock testing, n = 1; shock testing, n = 4; osmolality,

n = 1; log-transformed serum corticosterone, n = 2; water:NaCl consumption ratio across
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weeks, n = 8) are provided in S33 Table. Graphs were created with GraphPad Prism, and show

the mean ± the 95% confidence interval (CI), with non-repeated measures graphs also showing

individual data points.

Results

No shock controls were built into every Experiment to evaluate how consumption of a high

salt (4.0% NaCl) diet, relative to the control (0.4% NaCl) diet, might affect fear behavior in the

absence of contextual fear conditioning. For ‘training’ of no shock controls, no three-way

interactions of time × sex × diet were observed in any of the three experiments, nor were two-

way interactions of sex × diet nor time × diet (S1 Table). The only two-way interaction evalu-

ated that reached the significance threshold was for a time × sex interaction in training for

Experiment 3 (S1 Table), indicating that during ‘training’ one sex behaved differently over

time than the other. In Experiments 1 and 2, no significant main effects of sex nor diet were

detected, though both had significant main effects of time (S1 Table), meaning behavior of

mice changed over the course of ‘training’. This is to be expected when mice are initially

exploring a new environment, then become complacent in the absence of any apparent threat.

Pairwise comparisons indicated a few time points at which significant differences in freezing

behavior between males consuming control and high salt diets were detected (S1A Fig, left and

right panels), but these did not exhibit a consistent pattern, and were absent in Experiment 2

(S1A Fig, middle panel), suggesting they were not meaningful.

As with ‘training’, testing of no shock control mice revealed no significant interactions

involving diet, and no main effect of diet (S2 Table), illustrating that diet did not impact freez-

ing behavior in the absence of any fear conditioning. A significant interaction between

Experiment × sex was observed, but Holm-Šı́dák’s post-hoc tests revealed no significant differ-

ences across the sexes within any Experiment, nor within the sexes across any Experiments

(S1B Fig), indicating at a granular level, there were no Experiment-specific sex differences.

Acquisition of contextual fear resulted in no significant three- nor two-way interactions in

any of the three Experiments within either sex (S3–S5 Tables). Likewise, no main effects of

Context nor diet were detected (S3–S5 Tables), meaning diet condition did not affect fear

learning, and there were no inherent differences in mice to be tested in one Context or the

other. In fact, the only significant main effect was that of time, detected across all three Experi-

ments (S3–S5 Tables). This illustrates all mice that underwent contextual fear conditioning

with foot shocks present during training exhibited increasing levels of freezing (i.e., fear behav-

ior) over the course of the training session (Fig 2). Pairwise comparisons between male mice to

be tested in the Neutral Context indicated that, in Experiment 2, mice consuming high salt

exhibited elevated freezing levels following the second and third of the five training foot

shocks, relative to mice consuming control diet (Fig 2B, right panel). All other acquisition

curves lacked significant differences across diets and future testing contexts (Fig 2), indicating

that a high salt diet does not impact acquisition of contextual fear after two (Experiments 1, 3)

or six (Experiment 2) weeks of consumption.

Unlike context fear training, where diet was without significant effect on acquisition, high

salt diet consumption did significantly affect context fear expression. Moreover, these dietary

effects were often sex-selective. Across all three Experiments, there were no significant three-

way interactions, nor were there any significant diet × context interactions (S7 Table). How-

ever, sex-specific fear behaviors between contexts were significant for Experiments 2 and 3,

and fear behaviors across diet and sex combinations were significant for Experiment 3

(S7 Table). Further, diet alone had a significant effect in Experiment 2, and sex and context

independently had significant effects on fear behavior in Experiment 1 (S7 Table). In other

PLOS ONE Salt sex-specifically influences fear generalization

PLOS ONE | https://doi.org/10.1371/journal.pone.0286221 July 13, 2023 6 / 24

https://doi.org/10.1371/journal.pone.0286221


PLOS ONE Salt sex-specifically influences fear generalization

PLOS ONE | https://doi.org/10.1371/journal.pone.0286221 July 13, 2023 7 / 24

https://doi.org/10.1371/journal.pone.0286221


words, diet was without a significant effect in Experiment 1, but diet did influence the out-

comes of Experiments 2 and 3, and for all three Experiments, sex had a significant–and mostly

interactional–impact as well.

Holm-Šı́dák’s post-hoc testing helped indicate directionality of high salt consumption’s

effects on contextual fear expression and generalization across sexes for the three different

Experiment timelines employed. Experiment 1 involved training mice after two weeks of diet

manipulation, and testing 48 h after training. The expected low (average ~20% or less) freezing

levels in the Neutral Context, with higher (average ~40% or more) freezing levels in the Train-

ing Context, were observed across nearly all the sex and diet combinations (Fig 3A). A non-

significant trend was noted for contextual fear expression in the Training Context between

females and males consuming the high salt diet (p = 0.0542; Fig 3A). Excepting this, Experi-

ment 1 suggests that contextual fear expression after two weeks of high salt diet consumption

is unaffected across contexts and sexes.

Experiment 2 involved training mice after six weeks of diet manipulation, then testing 48 h

following training. Similar to Experiment 1, contextual fear expression was largely unaffected

by diet or sex, with one exception. Male mice consuming the control diet exhibited reduced

contextual fear expression in the Training Context as compared to female mice consuming the

control diet (Fig 3B); this sex difference in Training Context fear expression was absent in

mice of both sexes consuming the high salt diet. As anticipated when testing for contextual

fear expression relatively soon after training (in this case, 48 h), freezing behavior

averaging� 20% indicated that mice did not exhibit fear behavior in the Neutral Context (see

S1 Fig for no shock comparisons).

Experiment 3 evaluated how high salt intake affects contextual fear generalization by train-

ing mice after two weeks of diet manipulation, then testing for contextual fear expression four

weeks later (i.e., after 6 wks of diet manipulation). When doing this, contextual fear generaliza-

tion (freezing ~40% or more in Neutral Context) was observed in all but males consuming a

high salt diet (Fig 3C). In fact, contextual fear expression in females consuming a high salt diet

tested in the Neutral Context was so high that it was statistically indifferent from females con-

suming either diet and tested in the Training Context (Fig 3C). On the contrary, males tested

in the Neutral Context after consuming high salt exhibited significantly lower contextual fear

than females tested in the Neutral Context after consuming high salt (Fig 3C). This indicates a

bidirectional, sex-selective effect of high salt consumption on contextual fear generalization.

Fig 2. Context fear training across Experiments. Mice assigned to 0.4% NaCl represented by blue symbols, mice

assigned to 4.0% NaCl represented by red symbols; mice to be tested in Training Context represented by squares and

solid lines, mice to be tested in Neutral Context represented by circles and dotted lines. All mice were trained in the

Training Context with five, pseudorandomized mild (1 s, 0.8 mA) foot shocks during a 6 min training session. Percent

freezing during training of mice in A) Experiment 1, B) Experiment 2 (grey shading), and C) Experiment 3. Baseline

percent freezing averaged across the first two minutes of the training session and plotted along x-axis as 0 time point.

Average percent freezing for each 30 sec period following each of the five mild foot shocks are plotted along x-axis as

Post-shock Periods 1–5. Experiment 1: 0.4% NaCl females Training Context, n = 7; 0.4% NaCl females Neutral

Context, n = 9; 4.0% NaCl females Training Context, n = 8; 4.0% NaCl females Neutral Context, n = 9; 0.4% NaCl

males Training Context, n = 8; 0.4% NaCl males Neutral Context, n = 9; 4.0% NaCl males Training Context, n = 7;

4.0% NaCl males Neutral Context, n = 8. Experiment 2: 0.4% NaCl females Training Context, n = 9; 0.4% NaCl females

Neutral Context, n = 8; 4.0% NaCl females Training Context, n = 8; 4.0% NaCl females Neutral Context, n = 8; 0.4%

NaCl males Training Context, n = 9; 0.4% NaCl males Neutral Context, n = 8; 4.0% NaCl males Training Context,

n = 8; 4.0% NaCl males Neutral Context, n = 10. Experiment 3: 0.4% NaCl females Training Context, n = 8; 0.4% NaCl

females Neutral Context, n = 9; 4.0% NaCl females Training Context, n = 9; 4.0% NaCl females Neutral Context, n = 8;

0.4% NaCl males Training Context, n = 7; 0.4% NaCl males Neutral Context, n = 8; 4.0% NaCl males Training

Context, n = 8; 4.0% NaCl males Neutral Context, n = 8. Data are graphed as mean ± 95% confidence interval.
✣indicates p<0.05 difference between males to be tested in Neutral Context and consuming 0.4% and 4.0% NaCl diets

at indicated time points.

https://doi.org/10.1371/journal.pone.0286221.g002
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Regardless of diet condition, all mice had ad libitum access to drinking water. Nonetheless,

we evaluated if serum osmolality was affected across diet condition, sex, or testing Context in

mice trained with foot shocks (Fig 4A–4C), as well as across diet, sex, and Experiment in con-

trol no shock mice. In control no shock mice, no three-way interactions were observed, but a

significant two-way interaction where serum osmolality across the sexes differed between

Experiments (S11 Table). Despite this interaction, Holm-Šı́dák’s post-hoc testing revealed no

significant directional differences when the data were examined between sexes within each

Experiment for control no shock mice. Analyses of mice trained with foot shocks revealed zero

three- or two-way interactions, and no significant main effects (S12 Table). Serum osmolality

was not affected by diet, neither in control no shock mice nor in fear conditioned mice. Taken

together, these findings suggest serum osmolality was unaltered in all mice, and thus the

behavioral changes observed were not the consequence of osmotic stress. For food, water, salt,

and kcal consumption data, plus body weight records, readers are referred to the Supporting

Information.

In addition to serum osmolality, serum corticosterone levels were also measured in all mice

48 h after completion of context fear testing. Similar to serum osmolality, no three-way inter-

actions were detected in log-transformed serum corticosterone (cort) levels of no shock con-

trol mice, but we did find a significant interaction between sexes across Experiments (S13

Table). Unlike with serum osmolality, Holm-Šı́dák’s post-hoc tests revealed directional, diet-

specific differences in cort levels within sexes across Experiments, and across sexes within an

Experiment (S6 Fig). Specifically, control-diet consuming females had lower cort levels in

Experiment 2 relative to Experiment 1 (p = 0.0423). Similarly, high salt-consuming males had

lower cort levels in Experiment 3 relative to Experiment 1 (p = 0.0109). Within Experiment 3,

females consuming high salt had significantly higher cort levels relative to high salt males

(p = 0.0143). Considering these changes were observed in mice that were not exposed to a foot

shock at any point, these data suggest that six weeks of high salt consumption could sex-selec-

tively reduce cort levels in males, but not females. However, the absence of a significant differ-

ence (p = 0.2369) between cort levels of high salt males between Experiments 1 and 2

challenges this interpretation.

Cort levels in mice that underwent context fear conditioning with foot shocks had no signif-

icant three- nor two-way significant interactions (S14 Table). Sex alone had a significant effect

on cort levels in Experiments 1 and 3, whereas context specifically influenced cort levels in

Experiment 2. Drilling down to directional differences, there were largely no significant

Fig 3. Context fear expression across contexts and Experiments. Mice assigned to 0.4% NaCl represented by blue

symbols, mice assigned to 4.0% NaCl represented by red symbols; mice tested in Training Context represented by

squares and solid lines, mice tested in Neutral Context represented by circles and dotted lines. Percent freezing during

minutes two through six of the 10 min testing session are graphed for all mice. Testing occurred A) 48 h after training

in Experiment 1, during which mice underwent two weeks of diet manipulation; B) 48 h after training in Experiment 2

(grey shading), during which mice underwent six weeks of diet manipulation; and C) four weeks after training in

Experiment 3, during which mice underwent six total weeks of diet manipulation (training occurred after two weeks of

diet manipulation). Experiment 1: 0.4% NaCl females Training Context, n = 7; 0.4% NaCl females Neutral Context,

n = 9; 4.0% NaCl females Training Context, n = 8; 4.0% NaCl females Neutral Context, n = 9; 0.4% NaCl males

Training Context, n = 8; 0.4% NaCl males Neutral Context, n = 9; 4.0% NaCl males Training Context, n = 7; 4.0%

NaCl males Neutral Context, n = 8. Experiment 2: 0.4% NaCl females Training Context, n = 9; 0.4% NaCl females

Neutral Context, n = 8; 4.0% NaCl females Training Context, n = 8; 4.0% NaCl females Neutral Context, n = 8; 0.4%

NaCl males Training Context, n = 9; 0.4% NaCl males Neutral Context, n = 8; 4.0% NaCl males Training Context,

n = 8; 4.0% NaCl males Neutral Context, n = 10. Experiment 3: 0.4% NaCl females Training Context, n = 8; 0.4% NaCl

females Neutral Context, n = 9; 4.0% NaCl females Training Context, n = 9; 4.0% NaCl females Neutral Context, n = 8;

0.4% NaCl males Training Context, n = 7; 0.4% NaCl males Neutral Context, n = 8; 4.0% NaCl males Training

Context, n = 8; 4.0% NaCl males Neutral Context, n = 8. Data are graphed as mean ± 95% confidence interval.

*p<0.05, **p<0.01, ***p<0.001 indicate difference between Training Context and Testing Context within same sex

and diet. ✣✣✣indicates p<0.001 difference between females and males on same diet and tested in same context.

https://doi.org/10.1371/journal.pone.0286221.g003
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differences detected by Holm-Šı́dák’s post-hoc tests (Fig 5A and 5B). The one exception was

that in Experiment 3, males had lower cort levels than females (p = 0.0183), specifically

between those consuming control diet and tested in the Training Context (Fig 5C). Similar,

but non-significant, trends were noted between females and males tested in the Neutral Con-

text consuming control diet (p = 0.0549) or consuming high salt (p = 0.0859; Fig 5C) for

Experiment 3. Generally, cort levels did not consistently vary as a result of sex, diet, testing

context, nor their interaction, indicating that shifts in circulating corticosterone are not

responsible for the observed changes in contextual fear expression nor contextual fear general-

ization. Circulating cort levels were largely not correlated with contextual fear expression,

except in females consuming high salt and tested in the Training Context in Experiment 3

(p = 0.039; see S23 Fig).

Discussion

This is the first investigation into how context fear training, and subsequent expression and

generalization, are affected across the sexes by a high salt diet. Our findings suggest that a rela-

tively short (two week) period of high salt consumption might reduce expression of recently

learned context fear in males, whereas a longer (six week) consumption period of high salt pre-

vents decreases in expression of recently learned context fear in males. Moreover, context fear

generalization was enhanced in females, but attenuated in males, by consumption of a high

salt diet. Despite being contrary to our hypothesis regarding males, these data indicate that

excess salt consumption affects behavior in a sex-selective manner. Further, these behavioral

changes occurred independent of any changes in serum osmolality, and likewise largely did

not map onto serum corticosterone levels, indicating that neither osmotic nor physiologic

stress states were responsible.

Previous studies assessing how excess salt intake affects context fear behavior exclusively

used male rats [25] or male mice [26]. These studies both used higher salt diets of 8.0% NaCl,

compared to the 4.0% NaCl diet used here [25, 26]. Both teams reported attenuated context

fear expression, indexed by freezing behavior. This freezing behavior was measured during

testing that occurred in the Training Context either 24 h [26], or both 2 and 24 h [25], after

training. Their observations differ from ours, which did not observe significant effects of high

salt diet on contextual fear expression in the Training Context. A similarity between the pres-

ent study and that of Ge and colleagues is the absence of any diet influence on fear acquisition

to the auditory cue [26], or in our case, to the context. However, this raises an important caveat

regarding both prior investigations—rodents were trained using a cued fear paradigm with an

auditory tone [25, 26], rather than training the rodents as the present study did with a tradi-

tional context fear conditioning protocol that lacks discrete cues. These different training

Fig 4. Serum osmolality in context fear conditioned mice across Experiments. Mice assigned to 0.4% NaCl

represented by blue symbols, mice assigned to 4.0% NaCl represented by red symbols; mice tested in Training Context

represented by squares and solid lines, mice tested in Neutral Context represented by circles and dotted lines. Serum

osmolality in context fear conditioned mice from A) Experiment 1, B) Experiment 2 (grey shading), and C)

Experiment 3. Experiment 1: 0.4% NaCl females Training Context, n = 8; 0.4% NaCl females Neutral Context, n = 9;

4.0% NaCl females Training Context, n = 8; 4.0% NaCl females Neutral Context, n = 9; 0.4% NaCl males Training

Context, n = 8; 0.4% NaCl males Neutral Context, n = 9; 4.0% NaCl males Training Context, n = 8; 4.0% NaCl males

Neutral Context, n = 8. Experiment 2: 0.4% NaCl females Training Context, n = 9; 0.4% NaCl females Neutral Context,

n = 9; 4.0% NaCl females Training Context, n = 8; 4.0% NaCl females Neutral Context, n = 8; 0.4% NaCl males

Training Context, n = 9; 0.4% NaCl males Neutral Context, n = 9; 4.0% NaCl males Training Context, n = 9; 4.0%

NaCl males Neutral Context, n = 9. Experiment 3: 0.4% NaCl females Training Context, n = 8; 0.4% NaCl females

Neutral Context, n = 9; 4.0% NaCl females Training Context, n = 9; 4.0% NaCl females Neutral Context, n = 8; 0.4%

NaCl males Training Context, n = 7; 0.4% NaCl males Neutral Context, n = 8; 4.0% NaCl males Training Context,

n = 7; 4.0% NaCl males Neutral Context, n = 7. Data are graphed as mean ± 95% confidence interval.

https://doi.org/10.1371/journal.pone.0286221.g004
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procedures engage distinct brain regions [49, 50], and likewise elicit distinguishable patterns

of neuronal activation [51–53]. Thus, in the present study we assessed contextual fear expres-

sion specifically following contextual fear conditioning, rather than cued fear conditioning.

Generalization of contextual fear is a hallmark symptom of many anxiety disorders, and is a

conserved cross-species neurobehavioral phenomenon that is useful for understanding how

neurophysiological changes influence behaviors [32, 54]. The majority of contextual fear gen-

eralization investigations in rodents have been performed in males [33], though studies have

recently begun to include females. Such sex-inclusive studies indicate that rodents of both

sexes can and do exhibit generalized contextual fear, at timepoints both days [55] and weeks

[56] after context fear training. Sex differences in the influence of various contextual modalities

have been reported (see review [33]), and in our study contextual differences included tactile,

olfactory, and visual modalities. We observed robust discrimination between contexts across

the sexes when training was temporally proximal to testing, as well as convincing evidence of

contextual fear generalization in both sexes consuming control diet when testing occurred

four weeks following training. In contrast to our hypothesis that high salt intake would

enhance contextual fear generalization in males, we instead found an attenuation of this mea-

sure in males, but an enhancement in females. Given the near absence of investigations into

how excess salt intake affects female behaviors (see review [28]), plus the relatively scant litera-

ture on contextual fear generalization in females (see review [33]), we did not have enough

information to formulate an a priori hypothesis for females consuming high salt. Some

researchers have suggested excess salt intake exacerbates neuropsychiatric symptoms and con-

ditions [29, 30]. Our data support this relationship, at least in females. However, the relation-

ship between high salt consumption and anxiety-relevant behaviors was not supported in our

male mice, and in fact our data suggest an inverse relationship. Given frequent comorbidity

between cardiovascular diseases and pathological anxiety [11–15] (see also reviews [16, 17]),

and the adverse impact of overconsumption of salt on cardiovascular disease risk [5, 10], this

finding in males was surprising. Nonetheless, it may be that in males, high salt-mediated car-

diovascular pathology is necessary for emergence of increased anxiety-related behaviors,

whereas in females excess salt is sufficient. This would parallel findings indicating greater met-

abolic disruptions in men relative to women with comorbid obesity and mental health disor-

ders [57–59] (see review [60]), greater incidence of depression and anxiety in men versus

women with multiple sclerosis [61], and increased incidence of a biomarker of cardiovascular

disease in men versus women with depression [62]. However, some literature suggests this is

not a consistent finding across disease conditions [63].

Along these lines, we evaluated if mice consuming excess salt exhibited peripheral indica-

tors of osmotic (serum osmolality) or physiological (serum corticosterone) stress. Changes in

Fig 5. Log-transformed serum corticosterone levels in fear conditioned mice across Experiments. Mice assigned to

0.4% NaCl represented by blue symbols, mice assigned to 4.0% NaCl represented by red symbols; mice tested in

Training Context represented by squares and solid lines, mice tested in Neutral Context represented by circles and

dotted lines. Log-transformed serum corticosterone levels in context fear conditioned mice in A) Experiment 1, B)

Experiment 2 (grey shading), and C) Experiment 3. Experiment 1: 0.4% NaCl females Training Context, n = 6; 0.4%

NaCl females Neutral Context, n = 7; 4.0% NaCl females Training Context, n = 7; 4.0% NaCl females Neutral Context,

n = 7; 0.4% NaCl males Training Context, n = 8; 0.4% NaCl males Neutral Context, n = 9; 4.0% NaCl males Training

Context, n = 8; 4.0% NaCl males Neutral Context, n = 8. Experiment 2: 0.4% NaCl females Training Context, n = 8;

0.4% NaCl females Neutral Context, n = 9; 4.0% NaCl females Training Context, n = 7; 4.0% NaCl females Neutral

Context, n = 7; 0.4% NaCl males Training Context, n = 9; 0.4% NaCl males Neutral Context, n = 9; 4.0% NaCl males

Training Context, n = 8; 4.0% NaCl males Neutral Context, n = 10. Experiment 3: 0.4% NaCl females Training

Context, n = 7; 0.4% NaCl females Neutral Context, n = 8; 4.0% NaCl females Training Context, n = 8; 4.0% NaCl

females Neutral Context, n = 7; 0.4% NaCl males Training Context, n = 8; 0.4% NaCl males Neutral Context, n = 8;

4.0% NaCl males Training Context, n = 8; 4.0% NaCl males Neutral Context, n = 7. Data are graphed as mean ± 95%

confidence interval. ✣indicates p<0.05 difference between females and males on same diet and tested in same context.

https://doi.org/10.1371/journal.pone.0286221.g005
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these measures could suggest an overall disrupted state of homeostasis that might confound

contextual fear learning and/or expression. For example, osmotic stress can reduce sensitivity

to pain [64]. Though the shock level (0.8 mA) and duration (1 sec) that we use are intended to

only elicit discomfort/distress, it remains possible that osmotic stress could skew sensory per-

ception of this brief aversive experience. Similarly, endogenous corticosterone levels can influ-

ence temporal development of contextual fear generalization as well as the persistence of

contextual discrimination [65]. The absence of any sex-, diet-, or context-specific differences

in serum osmolality indicates that osmotic stress was not present in our experimental animals.

No significant correlations between cort levels and fear expression in the Neutral Context were

detected for either sex in Experiment 3. Indeed, of all the mice trained in the Training Context

with foot shocks, only Experiment 3 females consuming high salt and tested in the Training

Context displayed a significant (negative) correlation between context fear expression and cort

levels (S23 Fig). The absence of any significant correlations between cort levels and any other

sex/diet/context combination across Experiments indicates that cort levels overall probably

did not confound observed context fear expression and generalization.

Limitations

Limitations of this study include singly housing of mice to allow for tracking of individual

food/water/salt/kcal consumption and changes in body weight, meaning that mice were

excluded from social stimulation. Some data suggests behavioral responses to single housing

differs across the sexes in mice and rats (see review [66]), so this might have influenced sex-

specific behaviors observed in the present study. However, a meta-analysis of 293 male and

female mouse studies indicates that singly housing mice reduces coefficients of variation in

trait variability by 37% in both sexes [67], suggesting our housing condition may have reduced

the variability of our data. Diet manipulations were relatively short (two or six weeks),

restricted to non-breeding adults, and contained no other accompanying unhealthy dietary

components (e.g., low fiber, high fat). Only a single shock level and context fear conditioning

paradigm was used, and mice were only tested in a single context. Thus, for future studies it

will be important to evaluate behavior in group housed mice, assess longer diet manipulation

periods and include additional unhealthy dietary components, and study how consumption of

excess salt by younger mice affects their fear behaviors. Testing of behavior during the natural

activity period of mice would be informative, as would assessing generalization and concurrent

cort levels during different stages of the circadian cycle [68].

Conclusions

Our study provides foundational evidence of sex-selective consequences of excess salt intake

on context fear expression and generalization. Additional studies will be essential to flesh out

these initial findings and determine what brain cell populations are most impacted by excess

salt intake, and how the effects of high salt might be mitigated. One logical starting point is

evaluation of microglia, given converging evidence that both fear processing [69, 70] and high

salt intake [42, 71, 72] affect microglial activation. Moreover, oral administration of the brain-

penetrant anti-inflammatory drug minocycline can mitigate microglial activation and behav-

ioral changes in rodents consuming high salt [42], and the same drug attenuated fear measures

in human participants [73]. Future studies should also assess how excess salt intake affects

cued fear expression and discrimination, and in so doing begin identifying how specific limbic

brain regions might differentially be affected in their functionality and/or connectivity follow-

ing extended periods of excess salt consumption. The evidence presented here, in conjunction

with past literature focused on salt’s effects on behaviors outside of the fear domain(reviewed
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in [28]), indicates that salt is an underappreciated, non-caloric influence on conserved mam-

malian behaviors.
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