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Abstract: In this study, we investigated in vitro the potential of Trichoderma harzianum to produce
bioactive secondary metabolites that can be used as alternatives to synthetic compounds. The study
focused on analyzing two extracts of T. harzianum using ethyl acetate and n-butanol solvents with
different polarities. The extracts were examined using phytochemical analysis to determine the
content of polyphenols, flavonoids, tannins, and alkaloids. Thin-layer chromatography (TLC) and
Gas chromatography-mass spectroscopy (GC-MS) analysis were used to profile volatile organic
metabolites (VOCs) present in the extracts. Furthermore, the extracts were tested for their antifungal
ability using the poison food technique. For measuring antioxidant activity, the 1,1-diphenyl-2-
picryl-hydrazyl (DPPH) test was used. Trichoderma harzianum was shown to have a significantly
high content of tannins and alkaloids, with a noticeable difference between the two extracts. GC-MS
analysis identified 33 potential compounds with numerous benefits that could be used in agriculture
and the medicinal industry. Moreover, strong antifungal activity was identified against Sclerotinia
sclerotiorum by 94.44%, Alternaria sp. by 77.04%, and Fusarium solani by 51.48; similarly, the ICsq
of antioxidant activity was estimated for ethyl acetate extract by 71.47% and n-butanol extract by
56.01%. This leads to the conclusion that Trichoderma harzianum VOCs play a significant role as an
antifungal and antioxidant agent when taking into account the advantageous bioactive chemicals
noted in the extracts. However, to our knowledge, this is the first study in Algeria presenting detailed
phytochemical analysis and GC-MS profiling of Trichoderma harzianum for two extracts, ethyl acetate
and n-butanol.
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1. Introduction

Endophytic fungi are an integral part of a plant’s mycobiome. They frequently appear
in the intercellular space of their plant hosts; however, they do not appear to cause any
disease symptoms [1]. Endophytes are species of microorganisms that are underutilized
for the discovery of novel chemicals since they coexist asymptomatically with their hosts.
They produce an array of metabolites and have the ability to produce substances that
are separated from, and only produced by, higher plants [2,3]. When agrochemicals are
applied poorly or excessively, phytopathogens become resistant and less susceptible [4].
Endophytes are biocontrol agents that can be utilized to control plant diseases and advance
sustainable agriculture [5]. Trichoderma species have been the subject of extensive research
and usage in biological control against phytopathogenic fungi due to their strong ability to
produce significant amounts of enzymes and metabolites [6,7]. Trichoderma is a filamentous
fungus with a wide range of uses in industry, agriculture, and the environment [8]. It
has the benefit of producing a variety of bioactive metabolites and potential drug leads.
Trichoderma is frequently used in agriculture as biofungicides and bioremediation agents
because they protect the host plant throughout its entire life cycle and can therefore act
as biocontrol agents [4,9,10]. Bio-efficient substances are an excellent source of potential
novel therapies [11]. The demand for novel therapeutic and therapeutically beneficial
chemicals is expected to continue to increase in order to face the challenges posed by
rising antibiotic resistance [12]. The secondary metabolites have not been thoroughly
or methodically assembled. To date, nearly 200 Trichoderma sp. compounds have been
identified as terpenoids, polyketides, peptides, alkaloids, and lactones [7]. Furthermore,
because Trichoderma species have a natural resistance to many agricultural agents, such as
fungicides, they are integrated into pest management strategies [13].

In this field, few studies were interested in examining the potential antagonistic effects
of Trichoderma hazianum in inhibiting the growth of the plant and pathogenic fungi [14],
as the primary goal of these investigations was to protect the plant against pathogenic
microorganisms, in particular the antifungal effects against Fusarium graminarium and Asper-
gillus terreus [15]. Some species of this fungus have the ability to clean up contaminated
environments. Trichoderma harzianum is one of the various methods for decreasing the
detrimental effects of heavy metals on plants [16]. Sesquiterpenes and diterpenes isolated
from Trichoderma species have been shown to exhibit anti-microbial, anti-microalgae, anti-
cancer, and phytotoxic properties [17].

A wide class of carbon-based substances known as fungal volatile organic compounds
(VOCs) has low molecular weights, low polarity, low boiling temperatures, and high
vapor pressure [18]. These substances are frequently lipophilic and include alcohols,
benzenoids, aldehydes, alkenes, acids, esters, ketones, thiols, and their derivatives, among
other chemical classes [19,20].

Aside from having few adverse effects and promising therapeutic applications, bio-
efficient natural compounds are a promising source of new antioxidants and antibacterial
agents [11]. This study aims to investigate the bio-efficiency of the secondary metabolites
of T. harzianum by using phytochemical analysis, TLC, and GC-MS. Furthermore, this study
focuses on identifying the compounds’ capacity for antioxidant and antifungal activities as
well as any potential advantages and applications.

2. Results

T. harzianum was grown and dried, and two extracts were prepared using 79.75 g of
the fine powder: ethyl acetate, yielding 1.81% of the extract and n-butanol, yielding 1.17%.

2.1. Phytochemical Analysis

Phytochemical analysis was carried out on T. harzianum ethyl acetate and n-butanol
extracts; a noticeable difference in the contents is shown in Table 1. A high tannin content
of 1584.16 mg TAE (Tannic acid equivalent)/g DE for ethyl extract and 2192.5 mg TAE/g
DE for n-butanol extract, followed by flavonoids of 266.18 mg QE (Quercetin equivalent)/g
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DE and 203.62 mg QE/g DE for ethyl extract and n-butanol extract, respectively. Phenolic
content was estimated to be 70.54 mg GAE (Gallic acid equivalent)/g DE for ethyl acetate
extract and 40.12 mg GAE/g DE for n-butanol extract. The alkaloid content is considered
to be the lowest in our analysis, as we noted 0.83 mg NE (Nicotine equivalent)/g DE for
ethyl acetate and 0.77 mg NE/g DE for n-butanol extract.

Table 1. Phytochemical analysis of T. harzianum extracts.

Ethyl Acetate n-butanol

i 2
Extract Extract Curve Equation R
Total phenolics 7054 4 5.92 1012 4 101 B — 0,009+ 0,194 oo
(mg GAE/g DE) ' : ‘ : =0 . .
Total flavonoids
266.18 = 15.11 203.62 +4.28 ABS =0.001x + 0.031 0.996

(mg QE/g DE) X

Total alkaloids

(mg NE/g DE) 0.83 +0.11 0.77 + 0.10 ABS = 0.0441x + 0.1002 0.999

Total tannins
(mg TAE/g DE)

GAE: Gallic acide equivalent. QE: Quercetin equivalent. NE: Nicotine equivalent. TAE: Tannic acid equivalent.
DE: Dry extract.

1584.16 £ 407.22 2192.5 £ 50 ABS =4 x 107°x + 0.039 0.995

ANOVA analysis results show that the amount of secondary metabolites in ethyl
acetate extract showed significant differences between groups F (40.028) and p < 0.0001.
Multiple comparisons using a Tukey test indicated that there is a significant difference for
the polyphenol, while the other variables (alkaloid, tannin, and flavonoid) do not show a
significant difference between the subsets. The n-butanol showed significant differences
between the groups F (340.98) and p < 0.0001. Multiple comparisons using Tukey’s HSD test
indicate that there is also a significant difference between the groups for the variable sub-
homogeneous sets. In this case, there are three subsets (1, 2, and 3) for which comparisons
were made. The groups show significant variations in terms of this variable (polyphenol
alkaloid, tannin, and flavonoid).

2.2. Thin Layer Chromatography Analysis (TLC)

Thin-layer chromatography was performed for T. harzianum ethyl acetate and n-
butanol extracts. Several patterns of composition were determined based on the presence
or absence of discriminant spots in the first visual inspection of the fungal extract.

TLC profiles of ethyl acetate extract and the results of spraying with Vanillin/Sulfuric
acid, Aluminum AICl3, Iodine, and the Dragendroff test (UV 245 and 365 nm) are illustrated
in Figure 1. Nine fractions were identified (F1-F9) by the Vanillin/Sulfuric test (Figure 1f),
characterized by an Rf: 0.05 and 0.08 with orange color and 0.13, 0.2, 0.33, 0.36, 0.41, 0.5,
and 0.7 with blue color, indicating a wide color range that shows the presence of different
compounds (carbonyl compounds). Eight fractions were identified (F1-F8) by the flavonoid
type aluminum test and are characterized by an Rf of 0.05 with an orange color and an Rf
of 0.08, 0.13, 0.2, 0.41, 0.5, 0.62, and 0.7 with a similar blue color under UV (365) (Figure 1b).
After the Dragendroff test in the system was used (Figure 1le), we noticed the presence
of three fractions, including an Rf of 0.05 and 0.2 blue and an Rf of 0.13 yellow, which
indicates the presence of alkaloids.

According to the results of the TLC plates of n-butanol extract, we noted the Vanillin/Su
Ifuric reagent (Figure 2f) presents 11 spots characterized by an Rf of 0.6, 0.11, 0.23, 0.4,
0.5, and 0.83 with a similar color blue. An Rf of 0.15, 0.26, or 0.57 is a yellow color. An
Rf between 0.33 and 0.63 is a green color, denoting the existence of several compounds
(carbonyl compounds, ketones, and phenols). The aluminum reagent presents 8 spots
(Figure 2d) characterized by an Rf of 0.11, 0.4 orange color, an Rf of 0.26, and 0.34 blue color,
and an Rf of 0.46, 0.5, 0.67, and 0.72 yellow color. This indicates the presence of flavonoids.
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The Dragendroff reagent (Figure 2e) presents three spots with an Rf of 0.09 and 0.77 in blue
and an Rf of 0.069 in green.
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Figure 1. Thin layer chromatography (TLC) of n-butanol of T. harzianum. (a): Under UV (254); (b): Un-
der UV (365); (c): Iodine reagent; (d): Aluminum AICl3; (e): Dragendroff reagent; (f) Vanillin/Sulfuric
acid reagent.
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Figure 2. Thin layer chromatography (TLC) of n-butanol of T. harzianum. (a): Under UV
(254); (b): Under UV (365); (c): Iodine reagent; (d): Aluminum AIClj; (e): Dragendroff reagent;
(f): Vanillin/Sulfuric acid reagent.

2.3. GC-MS Analysis

T. harzianum extracts by ethyl acetate and n-butanol were subjected to GC-MS ex-
amination. The investigations revealed an array of biomolecules (Tables 2 and 3), and a
GC-MS chromatogram of ethyl acetate extract showed 27 peaks, as shown in Figure 3. The
primary components were s-Triazine trichloride (33.24%), Linoleic acid (26.95%), Ethylene
sulfate (11.66%), 5-(Dimethylamino)-3,4-dihydro-4-isopropyl-4-methyl-2H-imidazol-2- one
(9.90%), and Palmitinic acid (5.86%).
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Table 2. Chemical composition of ethyl acetate extract of T. harzianum by GC-MS.
N° RT Compound Structure Molecular MW Peak Area % Compound
Formula g/mol Nature
x
1 15.201 Massoialactone C10H1602 168.23 0.05 Pyranone
) 0
2 19.511 Pentadecanoic acid \Wj\ C15H300, 242.39 0.06 Fatty Acid
'OH
3 20.071 Palmitic acid, methyl ester W)J\ > C17H340, 270.45 0.59 Fatty Acid
4 20.654 Palmitinic acid PO C16Hz0, 256.4241 5.86 Fatty Acid
o
5 21.282 Capric acid M C1oHxO2 172.26 0.14 Fatty Acid
OH
6 21717 Methyl linolelaidate PP C1oH3:0; 29448 323 Fatty Acid
7 21974 Methyl stearate e~ A CisHzs O, 298.503 0.33 Fatty Acid
8 22477 Linoleic acid e~ Ci3Hz, O, 280.45 26.95 Fatty Acid
9 23.523 9,17-Octadecadienal, (Z) NN NSNS Ci18H3,0 264.44 0.73 Aldehyde
10 23523 14-Methyl-8-hexadecyn-1-ol Ci7Hz0 252.44 0.46 Fatty
. ethy] exadecyn-1-o N . 17132 g N Alcohol
11 24.089 Ethyl linoleate CyoH360 308.49 0.71 Fatty Acid
(165)-12,16-epoxy-6.beta.-
hydroxy-17(15-16)-abeo-
12 26975 abioia-8,12.dicne- CaoHnOs 344.41 0.20 Ketone
3,11,14-trione
ks OH
Cl
O
li i
Ethyl F. NH
13 27558 2-(2-chloroacetamido)-3,3,3- C13HisCIEN, 05 356,70 158 Ester
trifluoro-2-(2-fluoroanilino) F o
propionate \/
HN
0
F
o o
X o
14 27,667 Allyl 2-Nitrophenylpyruvate | o /\/ C1H1N,Os 264.24 016 Ester
N
on
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Table 2. Cont.

N° RT Compound Structure Molecular MW Peak Area % Compound
Formula g/mol Nature
15 27.804 3-Méthyl mercaptopropanal O/\/\S/ C4HsOS 104.17 0.23 Aldehyde
NQ@)-
16 28.610 [bis(hexafluoromethyl)methylene] / / / 1.03 Hydrazide
oxamoyl hydrazide
1-Monolinoleoylglycerol . ’ - .
17 28.833 trimethylsily] ether \/\/E/E/\/\/\/Y A CosHy6O4Si 426.71 0.80 Ester
N
2-Methoxy-3 N
18 29330 -Methoxy-3- CsHsN,O 12414 0.98 Pyrazine
methylpyrazine _
N o
1-Monolinoleoylglycerol . I .
19 30.273 trimethylsilyl ether MW N C24H450481 426.71 1.12 Ester
—
5-(Dimethylamino)-3,4-
dihydro-4-isopropyl-4- = .
20 31627 mothyl-2Hmidarol-2- N CyHyN;0 183.26 9.90 Imidazole
one /g
N
H (0]
O
\ /
21 33.348 Ethylene sulfate /S§o C,H4045 124.11 11.66 /
0]
)CI\
22 35.200 s-Triazine trichloride N |N C3C13N;3 184.40 33.24 Triazine
)\ )\
Cl N Cl
e Tic: ABK. oL anta.m=
1.1=+07
1=+07
So0Oo0o0CO0
E000000
TEo0oO0O0OO 6
FoooOoOoOo
S000000 4
So0000O0
+socoocoo 22
4000000
z=oooGcoo 3 0 3
Zoooooo
1scoooo i6 gl
1o00000
d 1
soccoceo 1 2

Time—=

Figure 3. Chromatography-mass spectrometry (GC-MS) separation chromatograms for ethyl acetate
extract of T. harzianum.
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Table 3. Chemical composition of n-butanol extract of T. harzianum by GC-MS.

N° RT Compound Structure Molecular MW Pealz Area Compound
Formula g/mol %o Nature
1 20.52 Palmitic acid PO N C16H3,0, 256.42 2.72 Fatty Acid
2 21.70 Ethyl linoleate WWWK A~ CaoH3602 308.51 0.44 Fatty Acid
3 2219 Linoleic acid e~ CaHs0, 30850 14.05 Fatty Acid
4 1 (Z)-11-Hexadecenal P VNS Fe e C16H300 238.40 1.54 Aldehyde
5 23.62 Biperiden Cp1H9NO 311.46 0.54 Alcohol
6 27.25 Erucylamide WWK\ CnHyuNO 337.58 1.43 Fatty amide
0O, OH
6-nitro-1H-indazole-4-
7 27.45 carboxylic N / CgHsN304 207.15 2.26 Fatty Acid
acid \ o
) N
I
(0]
A<
8 28.007 Monolinolein TMS Mw)\)o\/u\/ Ca7Hs54045i> 498.88 147 Ester
) I
Cl
O
Ethyl 2-(2-chloroacetamido)- F F NH
9 29.33 3,3,3-trifluoro-2-(3- 0 Cy3H13CIF4N, O3 356.70 1.13 Ester
fluoroanilino)propionate F ~
O
F
: \/\/\/\/ﬂ/\/\/\)\ )\”‘ i
10 31.91 Glyceryl 1-oleate, diacetate /\(\ )K Co5Hyg0g 476.65 5.23 Fatty Acid

Regarding the n-butanol extract, it presented 10 peaks as shown in the chromatogram
(Figure 4). The main constituents were Ethyl linoleate 14.05%, Glyceryl 1-oleate, diac-
etate 5.23%, Palmitic acid 2.72%,1H-Indazole-5-carboxylic acid, 6-nitro- 2.26%, and (Z)-11-

Hexadecenal 1.54%.

2.4. Antioxidant Activity

DPPH radical scavenging assays were used to evaluate the antioxidant activity of
T. harzianum ethyl acetate and n-butanol extracts in different concentrations. Our re-
sults (Table 4) demonstrate that the IC5) obtained was higher than that of ascorbic acid
(0.265 mg/mL), where we noted the IC5y and the inhibition of ethyl acetate extract were
7.147 mg/mL, which was higher than the n-butanol extract with an ICsg of 5.415 mg/mL

and 56.01%.
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Figure 4. Chromatography—mass spectrometry (GC-MS) separation chromatograms for n-butanol
extract of T. harzianum.

Table 4. Inhibition percentage IC50 of ethyl acetate and n-butanol mL extracts of T. harzianum.

DPPH Assays IC5p mg/mL
Ethyl acetate extract 7.147 - 0.181
n-butanolextarct 5.415 4 0.238
Ascorbic acid 0.265 + 0.007

+: standard deviation.

2.5. Antifungal Activity

The results of the antifungal activity of T. harzianum in ethyl acetate and n-butanol
extracts are presented in Table 5. Both extracts were shown to have inhibitory activity on all
tested pathogens in comparison with the control. In particular, we noted a strong activity of
n-butanol extract against Sclerotinia sclerotiorum at 93.70%; however, we noted 58% against
Alternaria sp., and ethyl acetate extract was more effective against Alternaria sp. with 77.04%
and 51.48% against Fusarium solani.

Table 5. Inhibitory activity of T. harzianum extracts against pathogenic fungi.

Pathogenic Fungi %

Fxtracts Concentration Alternaria sp. Fusarium solani Sclerotinia sclerotiorum
100% 77.04 + 0.83 (a) 51.48 + 1.09 (b) ND
Ethyl acetate extract 50% 71.48 +3.12 (a) 9.63 +0.39 (¢) ND
25% 44.07 £ 1.7 (b) 1.85 £ 0.17 (c) ND
100% 58 +10.13 (a) ND 93.70 £ 0.02 (a)
n-butanol extract 50% 64 + 5.05 (b) ND 94.44 £+ 0.01 (a)
25% 68 £ 12.72 (b) ND 61.48 + 2.38 (b)
100% 55 + 0.80 35+09 60 + 1.41
(Fosetyl_i‘fargnlf&fnemo o/L) 50% 15 £ 0.25 3140.88 424155
25% 0 0 0

ND; not determined. The letters a, b, and c indicate the significant differences between the groups, according
to Tukey’s multiple comparison test with a level of significance of 0.05. Means with the same letter are not
significantly different.
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Based on the results presented in Table 5, the results of the normality test of ethyl
acetate against Alternaria sp. and Fusarium solani show an abnormal distribution, as the
p-values for all tests are less than 0.05. The Dunn test for independent samples proved
that the null hypothesis was rejected. We have the difference between the two groups as
indicated by the results reported in Sig. ajus., and add to that the differences between an
average of 100% and 25%.

For the statistical analysis of n-butanol extract against Alternaria sp., the data follow
the normal distribution. Based on Tukey’s HSD test (p < 0.05), it can be concluded that
there are significant differences in the means of the groups.

The results suggest that the data for Sclerotinia sclerotiorum are not normally distributed.
Based on the Dunn test with p-values less than 0.05, the null hypothesis is rejected. We have
the difference between the two groups as indicated by the results reported in Sig. ajus., and
add to that the differences between an average of 100% and the control.

3. Discussion

Trichoderma species have a major impact on the production of secondary metabolites,
which offer specific benefits in processes including competition, symbiosis, metal transport,
growth differentiation, signaling, and mycoparasitic activity [21]. The present study inves-
tigated the potentiality of T. harzianum secondary metabolites and phytochemical analysis
such as polyphenols, flavonoids, alkaloids, and tannins for ethyl acetate and n-butanol
extracts of varying polarities. Da Silva et al. [22] noted polyphenols for T. longibrachiatum in
an ethyl acetate extract of 103.62 mg g~ ! and in an n-butanol extract of 140.07 mg g~ ! in
their study on flavonoids in ethyl acetate (105.07 mg g~!) and n-butanol (162.81 mg g~ 1).
Our findings from this investigation on secondary metabolites were higher than those re-
ported by [23], where he noted 3.85 + 0.04 mg g~ ! on polyphenol and 36.54 4 3.17 mg g~ !
on flavonoids, whereas the total phenolic compounds and total flavonoids content of T.
harzianum were estimated to be 12.18 and 6.33 mg QE/100 mL, respectively. According
to [24], Trichoderma metabolites have displayed beneficial effects on plants, increasing
plant growth and development and inducing defense responses to abiotic stresses and
pathogens [25]. The presence of flavonoids and phenolic compounds in the extract is
associated with the growth of Trichoderma sp. [26]. In response to Trichoderma species,
phenolic compound accumulation has been linked to biochemical defense against plant
diseases. Furthermore, the increased synthesis of phenols and flavonoids has a direct effect
on antioxidant activity by acting as free radical scavengers and contributing to cell wall
formation, which defends plants from instances of biotic stress [27-29]. Flavonoids serve as
endogenous regulators of auxin movements and mediate developmental regulation [30,31].
Moreover, polyphenolic compounds have been recognized to possess pharmacological
properties such as antioxidative, hepatoprotective, antibacterial, anti-inflammatory, anti-
cancer, and potential antiviral properties [32]. Polyphenolic substances known as tannins
and alkaloids have astringent, diuretic, anti-inflammatory, antiseptic, antioxidant, and
hemostatic characteristics. The treatment of gastric and duodenal cancers is another appli-
cation for them [33,34]. The presence of alkaloids and tannins was confirmed by [35] for
Trichoderma sp.; however, [36] noted the presence of tannins and the lack of alkaloids for
T. harzianum. Ref. [37] reported that T. harzianum and T. viren both contain only alkaloid
compounds. Ecologically, the accumulation of alkaloids is an important chemical defensive
strategy used by plants to adapt to environmental stresses such as endophytes, pathogens,
and herbivores [38,39].

Thin-layer chromatography was performed for ethyl acetate and n-butanol extracts
of T. harzianum. The sequential extraction of the extract obtained revealed 1.81% and
1.17% extraction percentages, respectively. The presence of several bioactive biomolecules
was detected using thin-layer chromatography in T. harzianum. Spraying with different
reagents showed a wide range of colors that denote the presence of various compounds
(carbonylated compositions). The TLC profile suggests interesting chemical compositions
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that have bioactive compounds related to abiotic activities present in the ethyl acetate and
n-butanol extracts.

In the present study, T. harzianum extracts were subjected to Chromatography-mass
spectrometry (GC-MS), showing a profile of secondary metabolites that covers all the nu-
merous substances that a fungus may make on a certain substrate, including antibiotics and
other outwardly directed substances [40]. 22 compounds were identified in ethyl acetate
extracts and 11 in n-butanol extracts. The major compounds are fatty acid, ester, aldehyde,
hydrazide, pyrazine, imidazole, triazine, and fatty amide. A few of the compounds found
were similar between the two extracts.

Researchers have found that a large number of fatty acids have antimicrobial activi-
ties and the potential for medicine in nutritional therapy [41]. Some fatty acids have the
potential for antituberculosis therapy [42]. Linolenic acid, linoleic acid, and oleic acid
possess substantial activity against R. solani. In recent work [13], the antibacterial activity
of linolenic acid was demonstrated, while [43] showed that linoleic acid and oleic acid pos-
sessed insecticidal activity against the fourth-instar Aedes aegypti larvae. Recently, linoleic
acid and glycerol monolinolate have been reported to have sporogenic activities, enhancing
the asexual spores of Alternaria tomato [44] and Sclerotinia fructicola [45], respectively. Thus,
linoleic acid and its congeners may have important regulatory roles in sexual as well as
asexual reproductive processes in fungi [46]. Microorganism extracts are considered an-
other alternative to traditional fungicides and pesticides as they produce bioagents that are
effective against bacteria and fungi. Ref. [1] mentioned that T. harzianum can be used as a
biopesticide against different insect pests, and [47] reported that the compounds Hexade-
cenoic acid and 7,10-Octadecadienoic acid can be characterized as pesticides, nematicides,
and insecticides. The efficacy of pentadecanal and pentadecanoic acids as anti-biofilm
agents has been recently reported against different bacterial strains, and [48] reported that
Glyceryl 1-oleate and diacetate have antifungal and antimicrobial activity.

An ethyl acetate extract of T. harzianum showed the presence of the compound massoia
lactone, characterized as a new type of biosurfactant that can be produced by Aureobasidi-
umpullulans [49], Cyberlindnera samutprakarnensis [50], and Candida sp. [51]. Some biosurfac-
tants are also biologically active compounds with antifungal, antitumor, and anticancer
proliferative activities [52]. Massoia lactone has strong anti-fungal activity and many modes
of action and may be a good option for development as an efficient and environmentally
friendly bio-fungicide [53].

Pyrazines are aromatic heterocyclic nitrogen-containing compounds that are important
flavoring agents in many raw and roasted food products. Most alkyl pyrazines found in
food result from the condensation of aldehydes. Pyrazines are also found to be produced
by a wide variety of insects and play a role as pheromones [54]. For instance, some fungi
imitate flowers to draw in insects that act as vectors for the spread of fungi [55]. Due to
the aromatic properties of pyrazines, they have many uses in the flavor and fragrance
industries [56], and 2-methoxy-3-butylpyrazine can be used as an ingredient in various
perfumes [57].

Searching for strains capable of producing active ester hydrolases such as ethylene
glycol against PET films is an important step in worldwide recycling [58]. Producers such
as Trichoderma [59], Aspergillus [60], Penicillium [61], Alternaria [62], and Fusarium [52] are
widely used in biotechnological applications and organic chemistry. Their use as a model
for plastic biodegradation and chemical analyses has been reported in many studies [63,64].

Modern heterocyclic chemistry relies on the synthesis, reactions, and biological char-
acteristics of substituted imidazoles. Compounds possessing an imidazole ring system
have been found to exhibit a number of pharmacological properties, such as anticancer [65],
carboxypeptidase [66], anti-aging [67], anti-fungal [68], anti-bacterial [69], anti-diabetic [70],
and anti-malarial [71].

Given its broad spectrum of biological applications, s-triazine has attracted a consider-
able amount of attention from chemists due to its rich source of pharmacological activities,
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including antibacterial [72-74], antimalarial [73], antiprotozoal [75], antifungal [76], anti-
cancer [77], antimycobacterial [78], and antiviral [79].

Regarding the activity shown by the compounds, it is known that secondary metabo-
lites possessing aldehyde groups, especially unsaturated aldehydes, are bioactive and were
found to be inhibitory to seed germination [80,81], pollen germination [82], pathogenic
fungi [83], and bacteria [84].

In addition, hydrazide derivatives are available in numerous bioactive atoms and
show a wide variety of biological activities. Hydrazide has been demonstrated to possess
antibacterial [85], anticancer [86,87], antitubercular [88,89], anti-inflammatory [90], and
antifungal activity [91].

Strategies can be developed to use these fungi for the exploitation of bioactive com-
pounds. In addition, the use of endophytes as potential factories for the production of
secondary metabolites might revolutionize agricultural, pharmaceutical, and biotechnolog-
ical research in the near future [92].

An n-butanol extract of T. harzianum showed the presence of (Z)-11-Hexadecenal. Ref. [93]
mentioned that (Z)-11-hexadecenal, a major component of M. separata sex pheromone, was
found to attract early-instar larvae of M. separata, and this could aid in the development of
olfaction-based methods for controlling M. separata crop damage in the larval stage. The use
of (Z)-11-Hexadecenal pheromone is expected to reduce the use of chemical pesticides in C.
perspectalis [94]. Numerous studies have mentioned biperiden as an anticholinergic drug [95].

Erucylamide is a known compound with recognized antimicrobial activity [96]. The an-
timicrobial effect of (Z)-docos-13-enamide, one of the most abundant constituents detected
in the studied fractions known as erucamide, has been studied by [97], who detected the
formation of hydrogen bridges between erucamide and amino acid residues of tubulin and
glucosamine-6-P synthase, which could explain their anthelmintic and antibacterial actions.

The compounds without traceable or known biological activity may be novel ones that
should be further investigated to reveal their functions. The varying biological activities of
the bioactive compounds may account for the treatment of health disorders such as high
blood pressure, diabetes, asthma, fever, and cancer [98].

In the present study, the ethyl acetate and n-butanol extracts of T. harzianum were
evaluated for antifungal activity against three phytopathogenic fungi: Sclerotinia sclero-
tiorum, Alternaria sp., and Fusarium solani. Similar to our results, Trichoerma species have
been used with efficacy to treat plant diseases brought on by Fusarium [99], Alternaria, and
Sclerotium [100]. The potency of metabolites derived from Trichoderma species as antifungal
agents against plant diseases was reported by Zivkovi¢ et al. [101]. For example, they
inhibited Fusarium solani (74.4%), Alternaria solani (70.0%), Pythium aphanidermatum (67.7%),
and Macrophomina phaseolina (50.0%). The bioactivity of the sample secondary metabolites
from T. harzianum shows that all four Trichoderma species significantly inhibited the mycelial
growth of the four pathogens, Sclerotinia sclerotiorum [102]. Strains of Trichoderma such
as T. harzianum, T. hamatum, T. asperellum, and T. atroviride are applied for the control of
phytopathogens and also as plant growth promoters in agriculture and inhibit mycelia
growth as well [103]. The metabolite of T. harzianum produced in agar culture inhibited the
growth of all 3 pathogenic fungi tested in vitro (Table 1). Trichoderma species are known to
produce a number of antibiotics, such as trichodermin, trichodermol, harzianum A, and
harzianolide [104]. Our study demonstrated the involvement of volatile metabolites in the
inhibition of pathogenic fungi. The secondary metabolites produced by the fungal strains
have broken down into various classes of antifungal compounds and contribute to antifun-
gal activity, as shown in the GC-MS analysis of the two extracts. Our results implicated that
the content of phenols and flavonoids, as well as the productivity of these aforementioned
compounds by T. harzianum, could be responsible for the anti-fungal activity, modulators
of pathogenicity, and activators of plant defense [26].

The antioxidant activity of ethyl acetate and n-butanol in T. harzianum was studied.
Correspondingly, the antioxidant activity of T. longibrachiatum in the ethyl acetate extract
was estimated to be 3.77 mg g~ ! and in the butanoic extract, 304.18 mg g~ ! [22]. How-
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ever, [105] noted an antioxidant activity of 54.61% for the ethyl acetate extract of Trichoderma
sp., whereas [51] noted 72.72% for T. longibrachiatum and 53.43% for T. subviride. The extracts
obtained from T. harzianum exhibit strong antioxidant activity [106]. The antioxidant activ-
ity of the stable radical DPPH demonstrates the ability of molecules from the fungal extracts
to scavenge these radicals. The high activity can be linked to the presence of numerous
secondary metabolites, as shown in the phytochemical and GC-MS analyses [107-109].
Secondary metabolite analysis provides information for developing new pharmacological
agents that can act as antioxidants. These active compounds can be used as sources of
natural antioxidants and replace extraction from actual plants. The majority of antioxidants
used today are produced industrially, although they are responsible for liver damage and
carcinogenesis [110]. Contrarily, antioxidants of natural origin, such as those created by
endophytes, have not been proven dangerous, particularly because of the rich diversity of
life and the evolution of biochemistry [111].

4. Material and Methods
4.1. Chemical and Fungi Material

All chemical material and endophytic fungi were provided by the Biopesticides Labo-
ratory, INRAA, Touggourt. The chemicals used are n-butanol, ethyl acetate, Folin-Ciocalteu
reagent, sodium carbonate, sodium nitrite, aluminum chloride, hydrochloric acid, vanillin,
phosphate buffer, BCG solution, chloroform, Hexane, acetic acid, Dragendroff, dimethyl
sulfoxide (DMSO), 1, 1-diphenyl-2-picryl-hydrazyl (DPPH), and methanol.

The endophytic fungi evaluated in this study are T. harzianum, which was isolated from
soil collected from the southeast of Algeria in Sidi Mehdi (33°4/18.27" N 6°5'43.14" E). Three
pathogenic fungi, Sclerotinia sclerotiorum and Alternaria sp., were isolated from Solanum
tuberosum 1 and collected from Ouadsouf (33°22/4.12" N 6°51'5.91” E), and Fusarium solani
was isolated from Solanum lycopersicum collected from Touggourt (33°06'00” N 6° 04'00” E).

4.2. Extaction Method

The extraction of secondary metabolites from T. harzianum was done using the modi-
fied method of [112]. After the cultivation of fungus under fermentation conditions in a
liquid medium of PDB for 14 days, the mycelia were separated from the broth through
vacuum filtration. After drying, the mycelia were placed in Soxhlet, n-butanol, and ethyl
acetate extraction was performed for 2 h, then the extract was evaporated by a rotary
evaporator and stored until use.

4.3. Phytochemical Screening

Phytochemical analyses of polyphenols, flavonoids, alkaloids, and tannins were per-
formed for ethyl acetate and n-butanol extracts of T. harzianum. All tests were done in tripli-
cate [113]. All analyses were performed in the Biopesticides Laboratory, INRAA, Touggourt.

4.3.1. Quantification of Polyphenol Content

The Folin—Ciocalteu reagent was used to detect total polyphenols spectrophotometri-
cally using the colorimetric technique [114]. This evaluation is based on a measurement of
the total number of hydroxyl groups present in the extract. In a nutshell, 200 uL of each
extract, 800 uL of a 7.5% sodium carbonate solution, and a combination of 1 mL of reactive
Folin-Ciocalteu that had been diluted 10 times were added to glass hemolyze tubes. For
30 min, the tubes were swirled and held. The absorption was focused at 765 nm. In parallel,
a series of etaloning tests using various concentrations of acetic acid (0 to 1000 g/mL) were
carried out under the same operating conditions [115].

4.3.2. Quantification of Flavonoids Content

A method for measuring flavonoids was used based on the aluminum chloride and
oxygen atmospheres found on carbons 4 and 5 of the flavonoids coming together to form a
very stable combination [116]. The procedure utilized, with a few modifications, is based
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on those explained by Zhishen et al. [117] and Kim et al. [118]. In a glass hemolysis tube,
120 uL of NaNO; at 5% was mixed with 400 uL of extract, etalon, or distillate water for
reference. 120 pL of 10% AICl; was added after 5 min, and the mixture was thoroughly
mixed. After 6 min, 800 uL. of NaOH at 1 M was added to the solution. The absorbance was
measured immediately at 510 nm against the reference. A quercetin methyl ester solution
was prepared. The etaloning curve can be tracked using various solutions derived from the
mother solution that range in concentration from 0 to 1000 g/mL.

4.3.3. Quantification of Tannis Content

We combined the HCl approach with the vanillin method. Tanins’ capacity to trans-
form into red anthocyanidols by interaction with vanillin explains how this approach de-
pends on the reactivity of vanillin with the terminal grouping of the TCs’ flavonoids and the
generation of red complexes [119,120]. The vanillin technique published by [121] was used
to determine the concentration of condensed tannins. 1500 uL of the vanillin/methanol
solution at 1% were added with 50 uL of each extract, and the mixture was stirred well.
Hydrochloric acid (HCI) at a concentration of 4% was then added in a volume of 750 pL.
The completed combination was allowed to rest for 20 min at room temperature. The
absorbance was measured at 550 nm. Different concentrations ranging from 0 to 1000 g/mL
prepared from the catalytic mother solution will enable the tracing of the etaloning curve.

4.3.4. Quantification of Alkaloids Content

Accurately measured aliquots (0.4, 0.6, 0.8, 1, and 1.2 mL) of fungi extract were
transferred to different separatory funnels. Then 5 mL of pH 4.7 phosphate buffer and
5 mL of bromocresol green were taken, and the mixture was shaken with extracts of 1, 2,
3, and 4 mL of chloroform. The extracts were then collected in a 10 mL volumetric flask
and then diluted to adjust the solution with chloroform. The absorbance of the complex in
chloroform was measured at 470 nm in a UV-spectrophotometer (SHIMADZU UV-1800,
Kyoto, Japan) against the blank prepared as above but without a standard [122].

4.4. Thin Layer Chromatography

Apart from gas chromatography, thin-layer chromatography (TLC) is the most efficient
technique for separating and identifying fungus composition. When a fraction is investi-
gated by TLC, it is possible that a fraction that seemed homogenous by gas chromatography
really included many components [123].

Both ethyl acetate and n-butanol extracts were examined by TLC using the solvent
systems: for the ethyl acetate extract, Chloroform/Hexane/acetic acid (8:2:0.1) and for the
n-butanol extract, n-butanol/water/acetic acid (4:2:0.1) on silica gel G plates (20 x 10 cm).
One set of duplicated TLC plates served as the reference chromatogram. Spots and bands
were visualized by UV irradiation (254 and 365 nm) and by spraying with the follow-
ing reagents: Vanillin/Sulfuric acid, Aluminum AICl;, and Dragendroff [124]. They are
characterized by a retention factor (Rf).

4.5. Gas Chromatography-Mass Spectroscopy GC-MS

Separation of hydrocarbons and other volatile compounds from ethyl acetate and
n-butanol extracts of T. harzianum was determined with a GC (C.R.A.P.C., Bou-Ismail,
Algeria). Chromatograph: Hewlett-Packard Agilent 6890 plus Mass spectrometer: Hewlett
Packard Agilent, CA, USA. GC-MS analyses were done with an ionization energy of 70 eV.

The putative identification of volatile metabolites was performed by three different
chromatographic runs using three different capillary columns with different stationary
phases. The putative identification of volatile metabolites was performed in capillary
columns with different stationary phases. With a non-polar column (HP-5MS) of 30 m,
0.25 mm, and 0.25 pm, the oven program had an initial temperature of 60 °C for 5 min,
10 °C/min up to 300 °C, and isotherm for 10 min; injector temperature was kept at 250 °C
(splitless), and detector temperature was at 280 °C.
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4.6. Antifungal Activity

The Poison Food Technique method was used to assess the antifungal activity. The
activity of the two extracts was evaluated against three pathogens: Sclerotinia sclerotiorum,
Alternaria sp., and Fusarium solani. Each extract was reconstituted (4 mg/mL) in dimethyl
sulfoxide (DMSO) in 20 mL PDA, and a 6 mm pathogen disc was put in the center of each
Petri plate. The plates were then incubated at 27 °C until the control plate reached the
edges. The diameters of the inhibition zones were measured in centimeters. The activity
was performed in triplicate, and all treated plates were compared with the controls to
calculate the inhibition percentage of growth of T. harzianum [125].

The minimal inhibitory concentration (MIC) was defined as the lowest concentra-
tion, determined by performing a series of dilutions of 100%, 50%, and 25%. The lowest
concentrations showing a clear zone of inhibition were taken as the MIC [126].

Mycelia growth was monitored by measuring colony diameter in centimeters. The
inhibition percentage of mycelia growth is calculated by the following formula [127]:

Inhibition percentage 1% = (C; — C3)/Cy x 100

Cy: Diametrical growth of the control.
Cy: Diametrical growth of the fungus in the presence of a precise concentration (C) of
the extract.

4.7. Antioxidant Activity

The free radical scavenging activities were assessed for ethyl acetate and n-butanol
extracts of T. harzianum, and the extracts were measured using 1,1-diphenyl-2-picryl-
hydrazyl (DPPH). Serial dilutions were made to check the ICsp. An extract concentration of
0.1 mg/mL~! of endophytic crude extract dissolved in methanol (75 uL) was mixed with
250 pL of a methanolic solution containing 1,1-diphenyl-2-picrylhydrazyl (DPPH, Sigma,
St. Louis, MO, USA). radicals obtained from a fresh DPPH solution that was prepared by
mixing 24 mg of DPPH in 100 mL of methanol and storing it at 20 °C before use. After
aggressively shaking the mixture and letting it stand in the dark for 30 min, the absorbance
was measured at 517 nm. Ascorbic acid was used as the standard antioxidant. All readings
were taken in triplicate [128]. The following formula was used to determine the capacity to
scavenge the DPPH radical equation:

DPPH scavenging (%) = (Ao — A1)/ Ag x 100

Ay: Absorance of the control reaction.
Aj;: Absorance in the presence of the sample.

4.8. Statistical Analysis

In a statistical descriptive study of the inhibition rate of fungi, the key characteristics
of a dataset that includes measurements of the inhibition rate of fungi are summarized and
described [22]. The software IBM SPSS Statistics (Statistical Package for the Social Sciences)
v.24 for Windows was used to perform parametric (ANOVA followed by Tukey’s HSD
test) and non-parametric (Kruskal-Wallis followed by Dunn test) tests [129-131]. All the
series were first checked for normality (Kolmogorov—-Smirnov test) and equality of variance
(Bartlett test) to decide which tests were more appropriate.

5. Conclusions

T. harzianum biosynthesizes biopotent products and has varied nutritional, indus-
trial, and medical applications. A gas chromatography-mass spectroscopy examination
demonstrates the presence of 33 compounds in total. The present study shows a variety of
bioactive compounds in T. harzianum extracts that provide beneficial effects. Furthermore,
it possesses the distinctive ability to produce bioactive secondary metabolites for human
use as proficient therapeutic agents against various diseases. Ethyl acetate and n-butanol
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extracts demonstrated different levels of polyphenols, flavonoids, and alkaloids. The an-
tifungal inhibitory effect of ethyl acetate and n-butanol extracts obtained in this study
against pathogenic fungi might be a result of antifungal antibiotics present in secondary
metabolites. T. harzianum possesses the advantage of large-scale production of diverse
bioactive metabolites and potential drug leads, which is not always possible in plants. They
are widely used in agriculture as biofungicides and bioremediation agents.
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