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Abstract: The glycocalyx generally covers almost all cellular surfaces, where it participates in me-
diating cell-surface interactions with the extracellular matrix as well as with intracellular signaling
molecules. The endothelial glycocalyx that covers the luminal surface mediates the interactions
of endothelial cells with materials flowing in the circulating blood, including blood cells. Cardio-
vascular diseases (CVD) remain a major cause of morbidity and mortality around the world. The
cardiovascular risk factors start by causing endothelial cell dysfunction associated with destruction
or irregular maintenance of the glycocalyx, which may culminate into a full-blown cardiovascular
disease. The endothelial glycocalyx plays a crucial role in shielding the cell from excessive exposure
and absorption of excessive salt, which can potentially cause damage to the endothelial cells and
underlying tissues of the blood vessels. So, in this mini review/commentary, we delineate and
provide a concise summary of the various components of the glycocalyx, their interaction with salt,
and subsequent involvement in the cardiovascular disease process. We also highlight the major
components of the glycocalyx that could be used as disease biomarkers or as drug targets in the
management of cardiovascular diseases.

Keywords: endothelial-glycocalyx; proteoglycans; syndecans; hyaluronan; glypicans; sodium
chloride-salt; CVD; hypertension

1. Background

The blood vascular system consists of a network of vessels ranging from as large as the
aorta, arteries, and veins to the smaller units including arterioles, venules, and capillaries [1].
With the exception of the capillaries whose wall is made up of a single layer of endothelial
cells, the other vessels have a wall with several tissue layers called tunics: tunica interna,
tunica media, and tunica adventitia/externa [2]. The innermost tissue layer in the wall of the
blood vessels is the luminal surface layer, consisting of continuously arranged endothelial
cells [3]. The single layer of endothelial cells making up the capillaries is interrupted with
some fenestrations or pores in some tissues such as in the gastrointestinal tract to enable
the transportation of molecules across the capillary wall [3–5]. The luminal surface of
endothelial cells is lined with a meshwork consisting of glycoproteins, proteoglycans, and
hyaluronic acid/hyaluronan (HA), forming a gel-like material known as the endothelial
glycocalyx [6,7]. The main components of the endothelial glycocalyx therefore include
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cell surface heparan sulfate proteoglycans (HSPGs) with associated chondroitin sulfate
(CS) polysaccharide chains in certain syndecans (SDCs) and hyaluronic acid/hyaluronan
(HA) [8]. The HA in the glycocalyx helps to reinforce its thickness and provides it with a
gel-like appearance on the surface of the endothelial cells [9]. The endothelial-associated
HSPGs consist of syndecans (SDCs) and glypicans (GPCs) that are located on the cell
membranes [10] and perlecan secreted into the extracellular matrix with a pericellular
localization near the basement membrane [10,11].

The glycocalyx plays an important protective role on the tissues that it covers, espe-
cially the epithelial and endothelial surfaces [12]. For instance, the endothelial glycocalyx
has been reported to act as a salt-buffer on the endothelial surfaces, preventing the rapid ab-
sorption of sodium chloride (NaCl) from plasma and, thus, protecting the endothelium and
the underlying tissues from the damaging effects of direct exposure to excessive amounts
of salt [13]. An intact glycocalyx is also essential for the normal structure or function of
endothelial cells, and endothelial dysfunction is mainly associated with old age, as well as
pathological conditions including inflammatory conditions, atherosclerosis, hypertension,
and heart failure [14]. The extensive sulfation of the glycosaminoglycan (GAG) chains
among the proteoglycans within the endothelial glycocalyx increases its negativity that
allows it to bind plasma proteins such as albumin [15]. The major components of the en-
dothelial glycocalyx that project into the vascular lumen are also involved in flow-mediated
“mechanosensation-mechanotranduction” that affects nitric oxide synthesis and vasodila-
tion [16]. In addition, the glycocalyx is involved in endothelial cell calcium dynamics as the
mechanotransduction processes are mediated by the glycocalyx components are believed
to either increase the calcium permeability into the cells or its release from the endoplasmic
reticulum reservoirs [17]. The mechanotransduction of the luminal shear stress due to the
increased blood flow into various chemical processes in the endothelial cells, involves the
interaction of the glycocalyx with both membrane and cytoskeletal proteins [18].

Glycocalyx homeostasis is very important in a sense that there is constant biosynthesis
and degradation of its components to maintain a balanced cell surface layer [9]. Deviations
from this balance either through excessive degradation or biosynthesis of the glycocalyx
has been associated with various disease states [19,20]. The excessive degradation of
the glycocalyx has been linked to disease conditions including cardiovascular diseases,
hypertension, diabetes, and some cancers [21]. On the other hand, increased biosynthesis
of the glycocalyx components has been observed and associated with various types of
cancers [21–24]. There are certain enzymes that are generally implicated in the degradation
of components of the glycocalyx including: matrix metalloproteinases (MMPs), ADAM-17
(a disintegrin and metalloproteinase), and ‘sheddases’ such as secretases, heparanases, and
hyaluronidases (HYAL 1to 3) [25–27]. Circulating levels of the glycocalyx degradation
enzymes and/or levels of these components of the glycocalyx such as syndecans or HA in
plasma may be used to gauge the status of the endothelial glycocalyx in various disease
states [28]. Thus, prolonged cardio-pulmonary bipass in individuals undergoing cardiac
surgery has been associated with increased glycocalyx degradation based on the increased
levels of syndecan-1 in circulation [29].

This mini-review is intended to provide a concise summary of the literature show-
ing the interactions between the endothelial and glycocalyx or its components with salt,
strategies to reduce the damaging effects of excessive sodium chloride (NaCl) on the en-
dothelium, and the potential use of the glycocalyx as a biomarker of the endothelial status
in cardiovascular-related conditions.

2. Major Components of the Glycocalyx in CVD Pathophysiology

The components of the glycocalyx involved in CVD pathophysiology include membrane-
bound heparan sulfate proteoglycans (such as syndecans and glypicans), CD44, and a
membrane-associated polysaccharide called hyaluronic acid (or hyaluronan) (Figure 1).
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differentiation-44.

2.1. Heparan Sulfate Proteoglycans (Syndecans and Glypicans)

The cellular biosynthesis of the HSPGs was extensively well reviewed previously [30],
so we will not provide any additional details here.

2.1.1. Syndecans

Syndecans belong to a family of single-pass transmembrane proteoglycans with three
major domains: an ectodomain on the outside, a transmembrane domain, and a cytoplasmic
domain on the inner side of the plasma membrane [31]. The ectodomain is modified with
conjugated glycosaminoglycan (GAG) chains in form of either heparan sulfate (HS) or
chondroitin sulfate (CS) chains or both, which enable syndecans to act as cell surface co-
receptors [32]. Heparan sulfate chains are the major GAG in syndencans, but CS chains are
also found on syndecans 1 and 3 [33]. The GAG chains are conjugated to the ectodomain of
a core protein, expressed by any of the four mammalian genes that encode for syndecans
1 to 4 (SDCs 1 to 4) [34]. The GAG-attachment site on the ectodomain is at both ends in
the case of SDC-1 and SDC-3, but it is near the terminal end for SDC-2 and SDC-4 [35].
The presence of cleavage sites on the ectodomains of syndecans renders them liable to
being ‘slashed’ from the plasma membrane by ‘sheddases’ (proteolytic enzymes such as
matrix metalloproteinases) and released into plasma (becoming ‘solubilized’ as soluble
syndecans), which may be potentially utilized as biomarkers for various diseases [35–37].
The HS and CS chains are modified with unique sulfation patterns along their lengths,
making them highly negatively charged and enabling them to bind with a wide range of
positively charged particles including positively charged peptides (e.g., growth factors)
and electrolytes including sodium ions. This configuration renders the entire cell surface
glycocalyx with an overall negative charge, which serves a protective function for the
epithelial and endothelial cells by binding the sodium ions and preventing the cells from
damage due to excessive exposure to sodium ions.
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Although no major mutations in syndecans have been reported that are associated
with specific diseases, single nucleotide polymorphisms in the syndecans SDC-3 and SDC-4
are linked with lipid metabolism dysregulation [38]. The single nucleotide polymorphisms
(SNPs) in the SDC-3 core-protein ectodomain (i.e., rs2282440 and rs2491132) were posi-
tively associated with obesity among Koreans [39] and with metabolic syndrome among
Taiwanese people [40,41], suggesting that SDC-3 could be an important genetic modifier in
the cardiovascular disease risk factors; whereas, in a cardiovascular risk study conducted
among Finnish adults, the SNPs in SDC-4 were associated with obesity, hypertension,
and an increased prevalence of coronary artery disease [42]. Moreover, the endothelial
cells that were subjected to abnormal physical forces such as enhanced shear stress due to
rapid blood flow during hypertension can cause an increased expression of SDC-4 along-
side other extracellular matrix molecules [43]. Syndecans are believed to be involved in
cardiac fibrosis, which is a key step in heart disease [44]. In addition, it has been demon-
strated in mice that the overexpression of syndecan-4 can lead to an increased activation of
Calcineurin-NFAT-dependent signaling, which exacerbates hypertrophy in an overloaded
heart model [45]. Increased shedding of the endothelial cell surface proteoglycans occurs
during the cardiovascular disease process, and elevated levels of some of the components
of the glycocalyx such as syndecan-1 have been observed [46,47]. This has led to the sug-
gestion that these altered levels of syndecan-1 may be potential prognostic biomarkers for
patients suffering from ischemic heart disease and heart failure [48,49].

2.1.2. Glypicans

Glypicans are membrane-bound or cell surface heparan sulfate proteoglycans with
one or two heparan sulfate chains and a glycosylphosphatidylinositol anchor that attaches
the entire molecule to the plasma membrane [50]. This group of molecules consists of six
members, from glypican-1 to -6, which are expressed predominantly during embryonic
development [51]. They are involved in facilitating Wnt, hedgehog, fibroblast growth
factor, and bone-morphogenic proteins/peptide signaling [51–53]. Their GPI anchor is
cleaved by the expression of an enzyme known as Notum that releases not only glypicans
but also other GPI-anchored proteins from the cell surface [54]. Glypicans are a major
component of the glycocalyx alongside syndecans, which undergo significant remodeling
by sheer stress on the endothelial surface during atherosclerosis [55]. Glypican- 1 is the
main member among the glypican family that has been confirmed to be associated with
the endothelial glycocalyx, lining the luminal surface of blood vessels [30]. Glypican-1
is believed to be involved in the mechanosensation leading to shear-induced endothelial
nitric oxide synthesis, which is required for improving the compliance of blood vessels
through vasodilation [56].

2.2. Hyaluronan

Hyaluronan is a long polysaccharide of alternating glucuronic acid (GlcA) and N-
acetylglucosamine (GlcNAc) sugar residues, which are un-sulfated but result in a highly
negatively charged molecule [57]. It is pericellularly synthesized by a family of three
pericellular enzymes known as hyaluronan synthases: from HAS-1 to -3 [58,59]. It is
then degraded by a family of six hyaluronidase (HYALs) members, of which HYAL-1 and
HYAL-2 are the most potent enzymes [60,61]. HYAL-2 is believed to have a role in promot-
ing pulmonary vascular remolding and pulmonary hypertension [61]. The deficiency of
HYAL-3 increases collagen deposition, promoting post-myocardial infarction fibrosis [61].
Hyaluronan is most known as an extracellular matrix molecule, but, due to its close associa-
tion with various cell surface structures including its cognate receptor CD44, integrins, and
proteoglycans, it contributes to the surface gel-like glycocalyx of the synthesizing cell [62].
The hyaluronan receptor-CD44 can also be cleaved from the cell surface by proteases such
as ADAM-10, ADAM-17, and MMP-14 [63,64]. A delicate balance is maintained normally
between hyaluronan bio-synthesis and degradation depending on the activity of HASs
and HYL enzymes, which varies in different physiological and pathological conditions [62].



Nutrients 2023, 15, 2873 5 of 16

The hyaluronan synthesis and degradation processes are indeed crucial during cardio-
vascular development or angiogenesis [65,66]. Native hyaluronan is believed to inhibit
angiogenesis, whereas oligosaccharides formed following hyaluronan degradation seem
to promote angiogenesis by increasing endothelial cell proliferation and migration [67,68].
The interactions of hyaluronan with reactive oxygen or nitrogen species (ROS/RNS) and
their consequences on tissue homeostasis are well summarized by Berdiaki et al., whereby
the innate high molecular weight hyaluronan is anti-angiogenic, anti-inflammatory, and
anti-oncogenic [69]. However, following degradation by the ROS/RNS, the low molec-
ular weight oligosaccharides produced become pro-angiogenic, pro-inflammatory, and
oncogenic [69]. Changes in hyaluronan synthesis and degradation have mainly been asso-
ciated with cancer and inflammatory conditions [70–73]. Indeed, elevated levels of serum
hyaluronan have been previously reported in patients with rheumatic mitral stenosis and
pulmonary arterial thromboembolism [74]. In addition, there is also excessive abnormal
angiogenesis, which is observed in the progression of cancer, diabetic retinopathy and
in atherosclerosis [75–78]. Atherosclerosis is one of the major cardiovascular disease con-
ditions involving inflammation, where hyaluronan is thought to play a role [79]. The
differentially expressed hyaluronan in atheromatic aortas was found to play a role in
platelet-derived growth factor (PDGF)-induced vascular smooth muscle cell proliferation
and migration, which is important during atherogenesis [80]. The CD44-hyaluronan axis
is believed to regulate the inflammatory process involved in atherosclerosis, making it an
important potential drug target in order to bring about disease remission [81]. Indeed,
overexpression of hyaluronan in the tunica media of an aorta has been demonstrated to
promote the development of atherosclerosis [82]. Moreover, increased expression of some
of the biosynthetic enzymes of hyaluronan, such as HAS-3, was found to increase inflam-
mation in an atherosclerotic plaque and promote atheroprogression [83]. This suggests that
hyaluronan biosynthetic enzymes such as HAS-3 could be important therapeutic targets in
the fight against atherosclerosis. The inflammatory process in atherosclerosis also promotes
endothelial and platelet dysfunction that exacerbate the pathogenesis of this condition [84].
More evidence showing the impairment of the endothelial glycocalyx in atherosclerosis
and obesity was recently summarized by Sang Joon Ahn et al. [85].

3. Glycocalyx and Salt Interactions

Since the endothelial glycocalyx covers the luminal surface of the cells, where it forms
a gel-like structure, it is believed to protect the endothelial cells from direct exposure to
excessive NaCl salt (above 160 mEq/L) dissolved in plasma [86]. The normal sodium
levels in plasma are kept within a narrow range of 135–145 mEq/L by a combination of
‘thirst’/water intake and hormonal (aldosterone-anti-diuretic/vasopressin) systems [87,88].
The GAG chains (including heparan sulfate, chondroitin sulfate, and hyaluronan) are major
components of the glycocalyx and are highly negatively charged, making them attractive
to the positively charged sodium ions flowing in circulation [89], Figure 2. Thus, the
glycocalyx is able to play a positive role in the sodium buffering by transiently binding
sodium on the luminal side of the blood vessels [90]. The glycocalyx, therefore, is a major
player in buffering the intravascular sodium and stores a great amount sodium creating a
hypertonic environment [91,92].

Increased sodium levels in plasma are associated with rapid degradation of the en-
dothelial glycocalyx, which may cause endothelial dysfunction characteristic of most
cardiovascular diseases [13,92,93]. Sodium overload in the blood vessels arises as a result
of excessive dietary intake beyond the capacity of the kidney to excrete it, which affects
the function of not only the blood vessels but also of other organs including the heart and
kidneys [91,94,95].
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3.1. Proposed Glycocalyx-Salt Interaction Mechanisms Contributing to Hypertension and
Cardiovascular Disease

The mechanism underlying the rapid degradation of the endothelial glycocalyx is that
excess sodium diminishes the buffering capacity of the glycocalyx leading to increased
sodium reaching endothelial cells as well as reducing the repelling effect between the
vascular and erythrocyte glycocalyces; this leads to corrosion of both the erythrocyte and
endothelial glycocalyces, which result in endothelial activation and dysfunction [93,96,97].
Damage to the vascular glycocalyx also leads to extravasation of the excess sodium ions
into the interstitial glycosaminoglycan networks where sodium disrupts the function of
the glycosaminoglycans and also activates immune cells [91,98,99]. The augmented in-
teraction between the erythrocytes and endothelial glycocalyces increases the thrombotic
events [100] and the interaction between the endothelial cell and innate cells in the lu-
men via the adhesion molecules [101]. The entry of excess sodium through the epithelial
sodium channel (ENaC) on the endothelial cells and innate immune cells (such as dendritic
cells [102–105] and macrophages) activates nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase resulting in the generation of super oxides, peroxynitrite, and other
reactive oxygen species (ROS) [106]. Normally, nitric oxide (NO) is produced to dilate
blood vessels by converting L-arginine to L-citrulline and NO catalyzed by the endothelial
nitric oxide synthase. The ROS react directly with the NO production pathway and inhibit
the production of NO [106–108]. The increased oxidative stress from ROS production by
the NADPH oxidase enzyme also activates the nuclear factor kappa-light-chain-enhancer
of activated B (NF-κB) mediated by the NLR Family Pyrin Domain Containing 3 (NLRP3)
inflammasome, leading to the production of inflammatory cytokines such as tumor necrosis
factor-alpha (TNF-α), IL-1β, and IL-6 [105,109,110]. The increased production of inflamma-
tory cytokines coupled with the reduced production of NO resulting from ROS reactions
leads to the stiffening of blood vessels and endothelial activation/dysfunction that con-
tributes to hypertension and CVDs [109]. The produced inflammatory cytokines disrupt the
gap junctions between the endothelial cells and connexin hemichannels leading to increased
permeability and endothelial dysfunction [111]. Further, the activated endothelial cells
begin to increase their expression of adhesion molecules leading to increased rolling and
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adhesion of monocytes and other cells to the endothelial cells in the vasculature leading
to thrombotic and increased endothelial dysfunction [112]. This is further augmented by
the increased activation of NADPH oxidase that is mediated by increased salt entry via
the ENaC leading to the formation of isolevuglandin (IsoLG)-protein adducts, adaptive
immune activation, and secretion of inflammatory cytokines such as IL-17A, TNF-α, and
interferon-gamma (IFN-γ) that contributes to the development of hypertension and exac-
erbates the already existing CVDs [110,113–115] (see Figure 3). IsoLGs are formed when
ROS peroxidize arachidonic acid, a structural component of cell membranes [114]. The
resulting IsoLGs bind non-covalently to lysine residues of intracellular proteins, altering
their structure and function [114]. The IsoLG-protein adduct is presented to the T cells on
the major histocompatibility complex (MHC) molecules of the dendritic cells as neoantigens
to activate the T cells [114]. The inflammatory cytokines secreted by the T cells injure the
vascular lining and cause endothelial dysfunction, and the resulting healing by fibrosis re-
duces the vascular lumen, stiffens the blood vessels, and accelerates atherosclerosis leading
to hypertension [114]. Moreover, the delta sub-unit of the ENaC has been reported to be
expressed in human arteries and its elevated levels of expression are potentially associated
with hypertension [116].
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The endothelial cells with excessively degraded glycocalyx from excess sodium over-
load are unable to produce sufficient nitric oxide due to the reduced activation of en-
dothelial nitric oxide synthase [117,118]. Recent evidence has shown that the endothelial
glycocalyx plays a role in initiating the signal transduction pathways that contribute to NO
production. Specifically, Bartosch et al. demonstrated that the proteoglycan glypican-1, not
syndecan-1, plays a dominant role in propagating extracellular forces into the endothelial
cells to activate signal transduction for the production of NO [119]. Moreover, this plasma
sodium overload contributes not only to increased loss of the endothelial glycocalyx but
also to vascular inflammation, which is characteristic of various cardiovascular diseases as
explained above [120]. For instance, the hypertension experienced in pre-eclampsia has
been associated with increased degradation of the endothelial glycocalyx with subsequent
endothelial dysfunction and vascular injury [121,122].

The endothelial glycocalyx is therefore highly sensitive to high salt intake. Not only
does high salt disrupt the repulsive forces between erythrocytes and endothelial glycoca-
lyces by saturating their buffering capacity for sodium ions, but, as mentioned earlier, high
sodium also facilitates and increases the adhesion forces occurring between monocytes
and endothelial surfaces leading to monocyte and endothelial cell activation that results
in endothelial dysfunction and inflammation [120]. Activation of the endothelial cells
increases their expression of P- and E-selectins and additional adhesion molecules that
facilitate rolling and adhesion of the leukocyte to the endothelium [123,124].

It is also important to mention that the damage to the glycocalyx induced by high salt
intake occurs more with chronic salt overload as opposed to acute salt loading and deterio-
ration of the glycocalyx advances with ageing independent of the salt intake [120,125].

3.2. Possible Strategies for Reducing the Damaging Effects of NaCl-Salt Overload on
Vascular Endothelium

Studies that explore the mechanisms associated with reducing the damaging effects of
salt overload on vascular endothelium are scarce, but a few studies have reported promising
results and are highlighted below.

High dietary salt intake remains a big challenge as many people in various populations
around the world are still unable to stop consuming high amounts of salt due to the diverse
sources of dietary salt available in common foods [126–128]. It is therefore understandable
that efforts are being made to find alternative ways of overcoming the deleterious effects
of high salt overload on human health, other than simply advising people to reduce salt
intake. For example, a recent clinical trial conducted among black women aged between
20 and 60 years in the USA provided evidence showing that ‘hot yoga’ can reduce the
harmful effects of salt overload on endothelial function [129]. The exact mechanism is
unknown. Similarly, regular aerobic exercise has also been reported to reduce endothelin-
1-mediated vasoconstriction and endothelial dysfunction in postmenopausal women, as
well as in obese or overweight adults [130,131]. Replacement or substitution of NaCl salt
with other forms of salt with similar ‘saltness’ taste, such as potassium chloride (KCl) and
monosodium glutamate (MSG), have also been piloted by the Department of Food Science
at Cornell University (New York) and been found to have relatively high acceptability
among the study subjects, although with a caveat of not disclosing the specific names of
the salt substitute [132]. Consumer acceptability of the salt substitute is indeed considered
to be necessary in the reduction in NaCl dietary salt intake [133]. It has also been suggested
that the increased intake of potassium, rather than sodium, can help to alleviate the
deleterious effects of excessive sodium during the treatment of hypertension [134,135].
Other substitutes that have been used in the reduction in dietary NaCl intake include yeast
extract, taste peptides, and odor compounds [136]. Since the ENaC subunits are expressed
in several vascular beds including mesenteric, cerebral, and renal [137–139], where the
increased ENaC expression is also associated with salt-sensitive hypertension by causing
endothelial dysfunction or vascular smooth muscle activation [103,140], it is a therapeutic
target to be blocked using drugs such as benzamil or amiloride in conjunction with other
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potential anti-hypertensive agents [141]. Because high extracellular salt concentration
increases ENaC expression [90,142], it is logical that blocking it with amiloride helps to
restore endothelial function through increased phosphorylation of endothelial nitric oxide
synthase (eNOS) [138]. As the endothelial glycocalyx plays a central role in buffering
against excessive salt, with its degradation preceding vascular endothelial dysfunction,
preventing this damage and restoring the glycocalyx has been proposed as an important
strategy in managing CVD disorders [46]. Some of the therapies that can be used to protect
against degradation and help in regenerating the damaged endothelial glycocalyx include
berberin, doxycycline, and sphingosine-1-phosphate (S1P) [143–145]. These drugs act to
prevent the shedding of the glycocalyx by inhibiting the increased secretion of heparinase
and MMP enzymes [145,146]. For instance, S1P binds on its receptor on the endothelial
cells and increases the synthesis of syndecan-1 and heparan sulfate through phosphatidyl
inositol-3 kinase (PI3K) signaling [147].

4. Current Diagnostic Tools to Determine Glycocalyx and Endothelial Health Status

Since the glycocalyx consists of both protein and carbohydrate components, its break-
down products include monomers or shorter/smaller molecules of each of the two large
macromolecules, as well as shed syndecans and glypicans [27,148]. These include small
peptides or amino acids and the breakdown products of proteins: glypicans, syndecan-1,
shorter disaccharides, or individual GlcA and GlcNAc—these are sugar residues, which are
the major breakdown products of the polysaccharide component of the glycocalyx [148].
The much longer HA polysaccharides are usually reduced to shorter sugar chains that
are released into various body fluids including saliva, cerebrospinal fluid (CSF), urine,
and blood plasma and can easily be isolated from such body fluids [149,150]. The smaller
peptides or amino acids can be re-used in the synthesis of new proteins by body cells [151].
Most of the breakdown products of the polysaccharide component of the glycocalyx end
up being deposited in body tissues and body fluids from which they can be measured or
determined to assess the level of glycocalyx degradation as biomarkers of health or dis-
ease [148,150]. For example, elevated plasma levels of the glycocalyx components seen in
sepsis-associated encephalopathy can be used as early biomarkers of cognitive impairment
among sepsis patients [152]. However, Hahn et al. have summarized evidence, which
seems to suggest that since glycocalyx shedding is widespread in both acute and chronic in-
flammatory conditions, there is a lack of adequate sensitivity or specificity for any particular
disease by measuring the plasma levels of the glycocalyx components [153]. A combination
of biochemical and immunological techniques such as ELISA are commonly used in the
determination of the concentration of glycocalyx breakdown products [154,155]. The thick-
ness of the glycocalyx may also be determined indirectly by using a side stream dark field
imaging technique [156]. Other techniques such as atomic force microscopy and liquid
chromatography with selected reaction monitoring in tandem with mass spectrometry
(LC-SRM/MS) have been used to successfully determine the glycocalyx thickness disrup-
tion in both in vivo and in vitro assays [157]. Dimethylmethylene blue (GAG-DMMB) and
liquid chromatography-tandem mass spectrometry (GAG-MS) assay have also been used
to determine the concentration of the glycocalyx components in urine [158].

Erythrocyte Salt Sensitivity Test

The sodium buffering capacity of both the endothelial and erythrocyte glycocalyx
can be measured using a simple “salt blood test” as a way of assessing the functional
capacity of the glycocalyx [159,160]. We have previously shown that a high intake of salt
is associated with a damaged glycocalyx and could be potentially used to predict future
CVD [161]. The salt blood test or erythrocyte salt sensitivity test has been used in several
studies as a surrogate for endothelial function and should be used more often in cost limited
settings [161,162]. A recent pilot study by McNally et al. demonstrated that the erythrocyte
salt sensitivity test can be used as a marker for cellular salt sensitivity in hypertension [163].
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5. Future Directions

Future research efforts should be directed toward interventions that can ameliorate the
damaging effects of excessive dietary salt, since many people seem to be unable to avoid
it. Additional research is needed to specifically evaluate and validate the diagnostic and
prognostic potential of these glycocalyx components that are found in body fluids such as
the plasma and urine of patients with cardiovascular disease.

6. Conclusions

Endothelial glycocalyx is important in protecting endothelial cells from direct exposure
to excessive amounts of salt and helps in maintaining normal endothelial function, which is
necessary in the prevention of cardiovascular diseases. The degradation of the glycocalyx
is increased in certain cardiovascular diseases due to enhanced sheer force of the rapid
blood flow in hypertension, inflammatory changes, and oxidative stress in atherosclerosis
and, alternatively, because of the increased expression of degradative enzymes. Excessive
salt due to salt overload may also lead to rapid degradation of the endothelial glycocalyx,
resulting in an endothelial dysfunction and consequent cardiovascular disease. This makes
dietary modification, particularly reducing sodium-salt intake or using substitutes for
dietary salt, a key strategy for preserving glycocalyx integrity. The increased presence of
breakdown components of the glycocalyx, such as syndecans and hyaluronan in the plasma
or urine of cardiovascular disease patients can be measured and utilized as a potential
prognostic biomarker for specific cardiovascular disorders.
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