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Abstract: In this study, we investigated urea glycerolysis over ZnAl2O4 catalysts that were prepared
by using a citrate complex method and the influence of calcination temperatures on the surface
properties of the prepared catalysts by varying the calcination temperature from 550 ◦C to 850 ◦C.
As the reciprocal substitution between Al3+ and Zn2+ cations led to the formation of a disordered
bulk ZnAl2O4 phase, different calcination temperatures strongly influenced the surface properties
of the ZnAl2O4 catalysts, including oxygen vacancy. The increase in the calcination temperature
from 550 ◦C to 650 ◦C decreased the inversion parameter of the ZnAl2O4 structure (from 0.365 to
0.222 for AlO4 and 0.409 to 0.358 for ZnO6). The disordered ZnAl2O4 structure led to a decrease in
the surface acidity. The ZnAl2O4-550 catalyst had a large specific surface area, along with highly
disordered surface sites, which increased surface acidity, resulting in a stronger interaction of the
Zn NCO complex on its surface and an improvement in catalytic performance. Fourier transform
infrared and thermogravimetric analysis results of the spent catalysts demonstrated the formation of
a greater amount of a solid Zn NCO complex over ZnAl2O4-550 than ZnAl2O4-650. Consequently,
the ZnAl2O4-550 catalyst outperformed the ZnAl2O4-650 catalyst in terms of glycerol conversion
(72%), glycerol carbonate yield (33%), and byproduct formation.

Keywords: partially inverse spinel; polymeric citrate complex method; acidity; glycerol carbonate

1. Introduction

In recent years, climate change has become increasingly severe, which has led to the
promotion of the development of the biodiesel industry [1,2]. Large amounts of crude
glycerol as a byproduct generated from biodiesel production have an economic impact as a
cheap and commercially viable renewable feedstock [3]. Among various glycerol reaction
pathways, glycerolysis into glycerol carbonate (GC) is an interesting research direction. GC
is an important glycerol derivative that is considered an interesting value-added chemical
due to its excellent properties such as being a non-hazardous low-vapor pressure liquid,
as well as its biodegradability, its low toxicity, its non-flammability, its high boiling point,
and its low volatility [4–6]. Because of its outstanding properties, GC has a wide range of
applications, including solvents, electrolytes, surfactants, wetting agents, and as a chemical
intermediate in polymer synthesis [5,7].

Traditionally, the chemical synthesis of GC is by glycerol reacting with phosgene;
however, this reaction is very dangerous and not environmentally friendly [8]. Alternatively,
carbonate sources with milder reaction conditions such as dialkyl carbonate [9–11], alkylene
carbonate [12], and CO2 [13,14] can be used. With special advantages such as being cheap,
easy to obtain, and recyclable, urea is used, along with glycerol, to efficiently produce
GC [15–18]. In our previous studies, catalytic performance was affected by the existence
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of Zn-containing intermediates, namely, zinc diamine diisocyanate (Zn(NH3)2(NCO)2,
abbreviated as a Zn NCO complex). The formation of the solid Zn NCO complex on the
ZnAl2O4 phase offered many benefits for increasing the GC yield: acting as active sites for
the heterogeneous GC pathway and interacting with an insoluble ZnAl2O4 phase [17].

The ZnAl2O4 spinel structure is represented with the typical formula (Zn2+)[Al3+
2]O4,

where Zn2+ cations occupy one-eighth of the tetrahedral sites, and Al3+ cations occupy
half of the octahedral sites. However, a normal ZnAl2O4 spinel structure can be partially
disordered, replacing some Al3+ cations with Zn2+ cations in the octahedral sites and
some Zn2+ cations with Al3+ cations in the tetrahedral sites [16]. It has been reported
that the disordered structure of the ZnAl2O4 spinel structure affected the formation of the
Zn NCO complex. Despite many studies on the various types of reactions or methods
for preparing the ZnAl2O4 spinel structure, only a few studies have been conducted to
investigate the influence of calcination temperatures on the structural properties of ZnAl2O4
catalysts. The formation of the disordered ZnAl2O4 structure is highly dependent on the
calcination temperature.

Hence, in this work, ZnAl2O4 spinel catalysts with a disordered structure (denoted
as ZnAl2O4-X, where X represents calcination temperature in ◦C) were prepared by using
a polymeric citrate complex method and calcined at different temperatures ranging from
550 ◦C to 850 ◦C to investigate the influence of calcination temperatures on the ZnAl2O4
spinel lattice structure, the acidity of the catalysts, and the formation of a solid Zn NCO
complex on the catalysts. We also used the prepared catalysts in the glycerolysis of urea
under vacuum (3 kPa) at 140 ◦C for 5 h. Characterizations, including Fourier transform
infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS), were employed
to observe the disordered ZnAl2O4 spinel structure. Acidic sites were measured via the
temperature-programmed desorption of NH3 (NH3-TPD), and the formation of a solid Zn
NCO complex was demonstrated by FT-IR and thermogravimetric analysis (TGA).

2. Materials and Methods
2.1. Catalyst Preparation

Citrate complex ZnAl2O4 catalysts were prepared by using a modified citrate complex
technique [19]. An aqueous solution of Zn(NO3)2.6H2O (Sigma-Aldrich Korea, Gyounggi,
Republic of Korea) and Al(NO3)3 · 9H2O (Sigma-Aldrich Korea) with a molar ratio of Zn
and Al in the precursor of 1:2 was prepared at room temperature, and the citric acid powder
(citric acid to metal ratio of 2:1) (Sigma-Aldrich Korea) was added to the solution, followed
by stirring with a magnetic bar. Stirring was continued at 70 ◦C to evaporate water until a
yellow viscous gel solution was formed. The gel was further dried in an oven at 140 ◦C and
spontaneously solidified by the emission of NOx gases. Finally, all catalysts were calcined
under a set temperature (550 ◦C–850 ◦C) in a furnace for 4 h. The catalysts were denoted as
ZnAl2O4-X, where X indicates the calcination temperature.

2.2. Reaction Test

The reaction was performed in a round-bottom, three-neck 100 mL flask, in which one
neck was connected to a vacuum line through a water condenser. Glycerol (Sigma-Aldrich
Korea) (0.2 mol) was added to the flask at 80 ◦C under stirring by a magnetic bar to reduce
the high viscosity of the glycerol. The reactor was connected to a vacuum pump through a
HNO3 (Sigma-Aldrich Korea) solution trap (to remove NH3) and a cold trap (to remove
order volatiles). After 10 min, 0.2 mol of urea (Sigma-Aldrich Korea) was poured into the
flask to mix with glycerol in the solution. When all the urea was dissolved completely in
glycerol and the solution was transparent, a certain amount of catalyst (5 wt% compared
with the initial glycerol amount) was added to the flask. The reaction was performed under
vacuum pressure (3 kPa) at 140 ◦C with constant stirring.

After the reaction tests, ethanol (Sigma-Aldrich Korea) was poured into the final
products, and the liquid products were separated from the spent catalyst via filtration.
The liquid product was quantitatively analyzed via gas chromatography by using a gas



Nanomaterials 2023, 13, 1901 3 of 14

chromatography machine (Acme 6100 GC, YL Instrument Co., Ltd., Dongangu, Anyang,
Republic of Korea) (a schematic diagram of the catalyst activity test device is shown in
Figure S1 in the Supplementary material) with a flame ionization detector and a capillary
column DB-Wax (30 m × 0.25 mm × 0.25 µm). The molar amount of each component was
calculated by using the internal standard method, with tetraethylene glycol (Sigma-Aldrich
Korea) as the internal standard chemical. Glycerol conversion, GC selectivity, GC yield,
and byproduct selectivity were calculated by using the equations below. The amount of
each chemical is on the mole unit.

Glycerol conversion (%) =
Initial amount of glycerol − Residual amount of glycerol

Initial amount of glycerol × 100

GC yield (%) = AmountofGC
Initial amount of glycerol × 100

GC selectivity (%) =
GC yield (%)

Glycerol conversion (%)
× 100

Byproduct selectivity (%)

=
Amount of byproduct

Initial amount of glycerol − Residual amount of glycerol × 100

FT-IR spectra of the liquid products were obtained by using a Thermo Scientific™
Nicolet™ iS™5 FT-IR spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) by
dropping a liquid sample between KBr (Sigma-Aldrich Korea) plates.

2.3. Catalyst Characterization

The Chemical Composition Zn/Al Molar Ratio was measured by using an Agilent
Technologies 5110 ICP-OES (Agilent, Santa Clara, CA, USA) instrument. The surface
characterizations were measured via N2 adsorption isotherm analysis on a Micromeritics
ASAP 2020 (USA) apparatus. The surface area was calculated by using the Brunauer–
Emmett–Teller (BET) method. X-ray diffraction (XRD) patterns for fresh catalysts were
obtained by using a Rigaku RAD-3C diffractometer (Rigaku Corp., Tokyo, Japan) with
Cu Ka radiation (λ = 1.5418 Å) at a scattering angle (2θ) scan rate of 2◦/min, operating at
35 kV and 20 mA. The fresh and spent catalysts were analyzed by using a Thermo Scientific
Nicolet iS5 FT-IR spectrometer (Thermo Fisher Scientific). XPS data were surveyed by using
a Thermo Scientific K-Alpha XPS spectrometer (Thermo Fisher Scientific). The numbers of
acidic and basic sites were measured on the basis of TPD-NH3/CO2 on a MicrotracBEL
BELCAT-M instrument (MicrotracBEL Corp., Osaka, Japan). An amount of 100–200 mg
of fresh catalysts was placed into the quartz sample tube of the instrument. Initially,
the sample was pretreated under helium flow (100 mL/min) at 600 ◦C for 1 h and then
cooled down to 50 ◦C. After that, a flow of NH3 or CO2 (50 mL/min) was injected for
chemisorption. Finally, the temperature was increased to 600 ◦C with a ramping rate of
1.5 ◦C/min; the desorbed species were removed via helium flow (30 mL/min) and analyzed
via thermal conductivity detection. The TGA of the spent catalysts was performed by using
a TGA Q50 apparatus (TA Instruments, New Castle, DE, USA).

3. Results and Discussion
3.1. Characterizations of Fresh Catalysts

The textural properties of the fresh catalysts, which were calculated from N2
adsorption–desorption measurements, are summarized in Table 1, and the N2 adsorption–
desorption isotherms and pore size distributions are shown in Figure S2. As indicated in
Figure S2a, all ZnAl2O4 catalysts exhibited type IV isotherm and type H3 hysteresis loops
(based on the IUPAC classification [20]), which is typical for mesoporous materials, indicat-
ing slit-shaped pores. As the calcination temperature increased, the hysteresis loop became
narrower, with a lower BET surface area and a lower average pore volume in the order
of ZnAl2O4-850 < ZnAl2O4-750 < ZnAl2O4-650 < ZnAl2O4-550. In contrast, the average
pore diameter exhibited an opposite trend. Increasing the calcination temperature led to
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the collapse of small pores to generate bigger ones. The relationships between textural
properties and calcination temperatures are depicted in Figure 1.

Table 1. Textural properties, ZnAl2O4 crystallite sizes, and the degree of orderliness of the ZnAl2O4

spinel of fresh catalysts.

Catalyst

Textural Properties Chemical
Composition Order

Parameter c

ZnAl2O4
Crystallite Size

(nm) dSBET (m2/g) a Vpore (cm3/g) a Dpore (nm) a Zn/Al Molar
Ratio b

ZnAl2O4-550 37.65 0.21 14.09 2.07 0.4784 20.29
ZnAl2O4-650 25.29 0.14 15.31 2.10 0.4922 25.50
ZnAl2O4-750 19.17 0.11 16.87 2.11 0.5074 29.21
ZnAl2O4-850 9.45 0.10 27.16 2.06 0.5153 34.06

a Measured via N2 isothermal adsorption–desorption at 77 K; surface area was calculated with BET method; pore
volume and pore size were obtained with the BJH method. b Determined from ICP-OES. c Calculated via the
fraction intensity of ZnAl2O4 (331) and [ZnAl2O4 (331) + ZnAl2O4 (400)] from XRD patterns. d Calculated via
Debye–Scherrer equation applied to XRD ZnAl2O4 (311) peak.
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Figure 2 depicts the XRD patterns of the fresh ZnAl2O4-X catalysts. Characteristic
peaks appearing at 2θ = 31.2◦, 36.8◦, 44.8◦, 49.1◦, 55.7◦, 59.3◦, 65.2◦, 74.1◦, and 77.3◦ can
be attributed to the crystalline phase of ZnAl2O4. All XRD patterns show ZnAl2O4 peaks,
which indicates the formation of ZnAl2O4 crystallite after high-temperature calcination
by using the polymeric citrate complex method. The final decomposition temperature of
the precursor in the derivative TGA (DTGA) result is below 550◦ (Figure S3), confirming
that the ZnAl2O4 crystallite structure is completely formed at a calcination temperature
above 550 ◦C. With increasing calcination temperature, the characteristic diffraction peaks
become sharper, narrower, and more intensive, indicating an increase in the crystallinity
and particle size of ZnAl2O4.
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In addition, the average crystallite size (D) of single-phase spinel samples can be
estimated by using the Debye–Scherrer equation [21,22]:

D =
0.9λ

βCosθ
,

where D represents the average crystallite size, λ denotes the wavelength of the X-ray
source (Cu Kα, 1.54 Å), β denotes the integral breadth of the (311) diffraction peak, and θ

denotes the Bragg’s diffraction angle. The calculated results are presented in Table 1. In
normally ordered spinel structures, the intensity of all odd reflections (e.g., 331) shows
higher intensity than those of all even reflections (e.g., 400). The XRD peak intensities of
(400) and (331) for various calcination temperatures are shown in Figure S4. It was observed
that the peak intensities of (400) and (331) changed significantly with increasing calcination
temperature. The degree of the order parameter in spinel samples can be calculated by
using the following equation [23]:

∆I =
Io

Io + Ie
,

where Io and Ie denote intensities corresponding to odd and even reflections, respectively.
The disordered spinel phase can be formed because some fraction of Al3+ cations occupies
the tetrahedral site, and Zn2+ cations occupy the octahedral site [24,25]. The degree of
the order parameter in the spinel samples is shown in Table 1. The order parameters of
ZnAl2O4-550 and ZnAl2O4-650 are 0.4784 and 0.4922, respectively. These values prove that
the ZnAl2O4 spinel structure obtained at the calcination temperatures of 550 ◦C and 650 ◦C
is a disordered structure, where Al3+ exists in tetrahedral positions and Zn2+ in octahedral
positions. When the calcination temperature is raised above 750 ◦C, the degree of the order
parameters is above 0.5, indicating that the ZnAl2O4 spinel is a normally ordered structure.

The FT-IR spectra of the fresh catalysts are shown in Figure 3A. The two vibration
bands at 661 and 554 cm−1 can be attributed to the stretching mode of the octahedrally
coordinated Al-O (AlO6), with another assignment of the peak at 495 cm−1 to the bending
mode of AlO6. A broad shoulder band from 704 to 900 cm−1 can be assigned to tetrahedrally
coordinated Al-O (AlO4) [16,26–28]. The enlarged spectra (from 600 to 1000 cm−1) focusing
on the vibration bands of AlO4 and AlO6 are depicted in Figure 3B. The relative intensities
of AlO4 to AlO6 decrease as the calcination temperature increases. The AlO4 vibration
bands for the ZnAl2O4-750 and ZnAl2O4-850 catalysts are weak. In contrast, the shoulder
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of the AlO4 vibration for ZnAl2O4-550 and ZnAl2O4-650 is strong and observable. The
presence of Al3+ in the tetrahedral position reflects a partial inversion of the ZnAl2O4 spinel
structure. The FT-IR results are consistent with the XRD results and the inversion parameter
obtained from the XPS measurement, which is shown later.
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The deconvoluted XPS results of the fresh ZnAl2O4-550 and ZnAl2O4-650 catalysts
are depicted in Figure 4. The Al2p XPS spectrum is illustrated in Figure 4A. The peak
at a binding energy of 71.0 eV can be assigned to Al3+ occupying the tetrahedral sites
(AlO4) [29], and a peak of approximately 74.2 eV can be assigned to Al3+ occupying the
octahedral sites (AlO6) [29–31]. In Zn2p3/2 spectra, as shown in Figure 4B, the larger peak
at a lower binding energy (approximately 1022–1022.2 eV) is attributed to Zn2+ occupying
the tetrahedra sites (ZnO4), and a smaller peak at a higher binding energy (approximately
1024.5 eV) is attributed to Zn2+ occupying the octahedra sites (ZnO6) [29,30,32]. The
normally ordered ZnAl2O4 spinel structure contains Al3+ cations at the octahedral sites
and Zn2+ cations at the tetrahedral sites. When some Al3+ cations substitute Zn2+ cations
in the tetrahedral positions and some Zn2+ cations substitute Al3+ cations in the octahedral
positions, this results in the formation of a partially inversed spinel structure. The inversion
parameter of a spinel structure can be defined by surface XPS measurements [30]. Table 2
shows the inversion parameter of the fresh ZnAl2O4-550 and ZnAl2O4-650 catalysts by
calculating the ratio of AlO4/(AlO4 + AlO6) and ZnO6/(ZnO4 + ZnO6), and the inversion
parameter values follow the order of ZnAl2O4-550 > ZnAl2O4-650. These results help us
demonstrate that the degree of disorder of the spinel ZnAl2O4 structure decreases with
increasing calcination temperature. The deconvoluted patterns of O1s can be fitted to three
peaks. The peak Oa at the highest binding energy (approximately 543.5–534.8 eV) can be
assigned to the oxygen weakly bonded with the surface of the catalysts (such as adsorbed
H2O and O2 from the atmosphere) [16,33,34]. The peak at approximately 533.4–533.6 eV
(Ob) can be assigned to the oxygen-deficient regions or oxygen vacancy (Ov) [33,34]. Finally,
the peak at the lowest binding energy (approximately 531.4–531.7 eV) can be assigned
to the lattice O in the ZnAl2O4 phase [16]. In a partially inversed spinel structure or a
disordered structure, the substitution of a Zn2+ cation with an Al3+ cation to generate a
Zn2+ octahedral site and Al3+ tetrahedral site is the main reason for the oxygen vacancy
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formation on the catalyst surface. An oxygen vacancy was formed to balance the positive
charge of the cation caused by the substitution of Zn2+ for Al3+ at an octahedral site. The
intensities of oxygen vacancy follow the order of ZnAl2O4-550 > ZnAl2O4-650, which are
listed in Table 2.
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Table 2. The change in the number of acidic sites and oxygen vacancy is based on the ratio of
AlO4/(AlO4 + AlO6) and ZnO6/(ZnO4 + ZnO6).

Catalyst Intensity Ratio of
AlO4/(AlO4 + AlO6) a

Intensity Ratio of
ZnO6/(ZnO4 + ZnO6) b

Acidic Sites
(mmol/g) The Fraction of Ob (%) c

ZnAl2O4-550 0.365 0.409 0.45 15.7
ZnAl2O4-650 0.222 0.358 0.32 13.6
ZnAl2O4-750 - - 0.29 -
ZnAl2O4-850 - - 0.1 -

a Intensity ratios of the AlO4 (tetrahedral site) and AlO6 (octahedral site) were obtained from the deconvolution of
XPS results by using the Origin software (OriginPro 2021 9.8.0.200). b Intensity ratios of the ZnO6 (octahedral site)
and ZnO4 (tetrahedral site) were obtained from the deconvolution of XPS results by using the Origin software.
c The fraction of Ob was calculated via the percentage of intensity of Ob in total intensity of deconvolution O1s
XPS results.

The NH3-TPD measurements of the fresh catalysts are shown in Figure S5, and the
acidic sites are summarized in Table 2. The number of acidic sites decreases in the order
of ZnAl2O4-550 > ZnAl2O4-650 > ZnAl2O4-750 > ZnAl2O4-850. The relationship between
the calcination temperature and the total number of acidic sites is shown in Figure 5.
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In this study, the presence of AlO4 and ZnO6 in the ZnAl2O4 spinel structure indicates
the partially disordered structure of the catalyst. Furthermore, the partially disordered
structure ZnAl2O4 spinel is capable of producing surface acidity on catalysts, which is
related to the XPS intensity of Oa (in Figure 4) [16]. The high-intensity peak of Oa in the
ZnAl2O4-550 catalyst and its dependency on the calcination temperature follow the same
trend as the number of acidic sites.
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The relationship between the number of acidic sites of the fresh catalysts and the
inversion parameter (intensity ratio of AlO4/(AlO4 + AlO6)), the XPS intensity of oxygen
vacancies (Ov), and the inversion parameter (intensity ratio of ZnO6/(ZnO4 + ZnO6)) are
shown in Figure 6. In the normally ordered ZnAl2O4 spinel structure, Al3+ cations occupy
the octahedral sites (AlO6) with low acidity. Meanwhile, Al3+ cations occupying tetrahedral
sites (AlO4) in the partially inversed ZnAl2O4 spinel structure can result in higher surface
acidity [16,27,35–38]. The higher Lewis acidity of AlO4 than AlO6 can be explained by
the lower energy acceptor orbital of the AlO4 sites. When AlO4 contacts the surface, the
removal of one of the four oxygen atoms results in the formation of three-coordinated Al
with higher Lewis acidity strength [39]. Figure 6 depicts the positive relationship between
the inversion parameter (AlO4/(AlO4 + AlO6)) and total surface acidity. With an increase
in the calcination temperature, the disordered ZnAl2O4 structure decreases, indicating that
there are fewer sites in which Al3+ cations occupy the tetrahedral position (AlO4), which
decreases the total surface acidity. Another factor increasing surface acidity is the Lewis
acidity of surface oxygen vacancies. Substitution of Zn2+ cations for Al3+ cations at the
octahedral site and the formation of oxygen vacancies (Ov) to balance the positive charge
of the cations can increase surface acidity. Mefford et al. [40] reported that the formation of
surface hydroxyl groups was related to the Lewis acidity of surface oxygen vacancies, and
evidence was provided from XPS Oa peaks of H2O or O2 adsorbed from the atmosphere.
As the number of ZnO6 sites decreases with increasing calcination temperature, fewer
oxygen vacancies are formed, lowering the surface acidity of the ZnAl2O4-650 catalyst
compared with the ZnAl2O4-550 catalyst. From the above findings, we conclude that at
the calcination temperature of 550 ◦C, a partially disordered ZnAl2O4 spinel structure
is formed, in which some Al3+ cations occupy tetrahedral positions, and Zn2+ occupy
octahedral positions, resulting in the formation of oxygen vacancies, which increases the
surface acidity of the catalyst. With increasing calcination temperature, the structure of
ZnAl2O4 gradually returns to normal, and the number of AlO4 and ZnO6 sites and oxygen
vacancies decreases, lowering the surface acidity of the catalyst.
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3.2. Catalytic Activity

The reaction results (yield, conversion, and selectivity) calculated from gas chro-
matograms (a typical gas chromatogram is shown in Figure S6, see Supplementary Ma-
terials) for the glycerolysis of urea over the ZnAl2O4-550 and ZnAl2O4-650 catalysts are
summarized in Table 3 and Figure 7A. During the reaction, besides the formation of the
main product GC, there are also byproducts such as chemicals (2), (3), and (5). After the
5 h experiment, no other by-products are collected, indicating that the carbon balance
between reagents and products is close to 100% (Table S1, see Supplementary Materials).
The relationship between the number of acidic sites vs. GC yield and the number of basic
sites (Figure S7, see Supplementary Materials) vs. byproduct (2) selectivity for each catalyst
is depicted in Figure 7B. At a reaction time of 5 h, the ZnAl2O4-550 catalyst exhibited
higher GC yield and lower (2) selectivity (GC yield = 46%, (2) selectivity = 34%) than the
ZnAl2O4-650 catalyst with GC yield = 41% and (2) selectivity = 41%. Previous studies have
reported the existence of the intermediate isocyanate (NCO) complex of Zn, which is an
active site for the reaction [18,41]. Moreover, it has been proven that the Lewis acidic site
acts as an active site for the ammonia (NH3) group of Zn NCO complex adsorption [16].
The ZnAl2O4-550 catalyst has a higher GC yield and more surface acidic sites than the
ZnAl2O4-650 catalyst.

Table 3. Analysis of liquid products obtained from the glycerolysis of urea over various mixed
oxide catalysts prepared at different calcined temperatures. (Reaction temperature = 140 ◦C, reaction
time = 5 h, reaction pressure = 3 kPa, glycerol/urea ratio = 1:1). (2): 2,3-dihydroxypropyl carbamate,
(4): 4 (hydroxymethyl)oxazolidin-2-one, and (5): (2-oxo-1,3-dioxolan-4-yl) methylcarbamate.

Catalyst Glycerol Conversion (%) GC Yield (%)
Selectivity (%) Acidic Sites

(mmol/g)
Basic Sites
(mmol/g)GC (2) (4) (5)

ZnAl2O4-550 72.2 ± 0.7 33 ± 0.3 45.8 ± 0.5 34.3 ± 0.1 12.4 ± 0.2 7.5 ± 0.1 0.45 0.23
ZnAl2O4-650 72.2 ± 0.8 30 ± 0.3 40.9 ± 0.7 40.9 ± 0.3 10.9 ± 0.2 7.3 ± 0.1 0.32 0.13



Nanomaterials 2023, 13, 1901 10 of 14
Nanomaterials 2023, 13, x FOR PEER REVIEW 10 of 16 
 

 

 
Figure 7. Catalytic performance of ZnAl2O4-550 and ZnAl2O4-650 catalysts in the glycerolysis of urea 
(A), and the relationship between the number of acidic sites vs. GC yield and the number of basic 
sites vs. (2) selectivity (B). 

Table 3. Analysis of liquid products obtained from the glycerolysis of urea over various mixed oxide 
catalysts prepared at different calcined temperatures. (Reaction temperature = 140 °C, reaction time 
= 5 h, reaction pressure = 3 kPa, glycerol/urea ratio = 1:1). (2): 2,3-dihydroxypropyl carbamate, (4): 4 
(hydroxymethyl)oxazolidin-2-one, and (5): (2-oxo-1,3-dioxolan-4-yl) methylcarbamate. 

Catalyst Glycerol Con-
version (%) 

GC Yield 
(%) 

Selectivity (%) Acidic Sites 
(mmol/g) 

Basic Sites  
 (mmol/g) GC (2) (4) (5) 

ZnAl2O4-550 72.2 ± 0.7 33 ± 0.3 45.8 ± 0.5 34.3 ± 0.1 12.4 ± 0.2 7.5 ± 0.1 0.45 0.23 
ZnAl2O4-650 72.2 ± 0.8 30 ± 0.3 40.9 ± 0.7 40.9 ± 0.3 10.9 ± 0.2 7.3 ± 0.1 0.32 0.13 

The formation of the Zn NCO complex on the solid phase can be confirmed by the 
FT-IR and TGA of the spent catalysts. The FT-IR spectra of the spent catalysts are shown 
in Figure 8. Besides the bands for AlO4 and AlO6 being detected at 704 and 661 cm−1, re-
spectively, the vibration band of NCO in the Zn NCO complex on the solid phase is de-
tected at 2350 cm−1 [42]. There is no information about the NCO band in the fresh catalysts. 
However, after a 5 h reaction, this band can be detected by FT-IR. The intensity of the 
NCO peak for ZnAl2O4-550 is higher than that for ZnAl2O4-650 because of the higher num-
ber of acidic sites in this catalyst. The same trend is presented by TGA and DTGA profiles 
in Figure 9. The DTGA profiles of the spent catalysts (Figure 9B) show the decomposition 
of the Zn NCO complex at 273 °C for ZnAl2O4-550 and 254 °C for ZnAl2O4-650 [16]. The 
higher decomposition temperature for the ZnAl2O4-550 catalyst can be attributed to a 
stronger crystalline Zn NCO complex with higher thermal stability. The DTGA results are 
consistent with the FT-IR results. The higher intensity of the Zn NCO decomposition peak 
in ZnAl2O4-550 demonstrated that the ability to adsorb the ammonia group in the Zn NCO 
of AlO4 (Lewis acidic site) is more significant in the ZnAl2O4-550 catalyst than in the 
ZnAl2O4-650 catalyst. 

Figure 7. Catalytic performance of ZnAl2O4-550 and ZnAl2O4-650 catalysts in the glycerolysis of
urea (A), and the relationship between the number of acidic sites vs. GC yield and the number of
basic sites vs. (2) selectivity (B).

The formation of the Zn NCO complex on the solid phase can be confirmed by the
FT-IR and TGA of the spent catalysts. The FT-IR spectra of the spent catalysts are shown
in Figure 8. Besides the bands for AlO4 and AlO6 being detected at 704 and 661 cm−1,
respectively, the vibration band of NCO in the Zn NCO complex on the solid phase is
detected at 2350 cm−1 [42]. There is no information about the NCO band in the fresh
catalysts. However, after a 5 h reaction, this band can be detected by FT-IR. The intensity
of the NCO peak for ZnAl2O4-550 is higher than that for ZnAl2O4-650 because of the
higher number of acidic sites in this catalyst. The same trend is presented by TGA and
DTGA profiles in Figure 9. The DTGA profiles of the spent catalysts (Figure 9B) show
the decomposition of the Zn NCO complex at 273 ◦C for ZnAl2O4-550 and 254 ◦C for
ZnAl2O4-650 [16]. The higher decomposition temperature for the ZnAl2O4-550 catalyst can
be attributed to a stronger crystalline Zn NCO complex with higher thermal stability. The
DTGA results are consistent with the FT-IR results. The higher intensity of the Zn NCO
decomposition peak in ZnAl2O4-550 demonstrated that the ability to adsorb the ammonia
group in the Zn NCO of AlO4 (Lewis acidic site) is more significant in the ZnAl2O4-550
catalyst than in the ZnAl2O4-650 catalyst.
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Another notable finding is the relationship between surface basicity and byproduct
(2) selectivity. The basic site values are shown in Table 3 and Figure 7B, showing that the
relationship between the number of basic sites and (2) selectivity is inversely proportional.
That is, if the number of basic sites decreases, more byproducts (2) are formed, and the GC
yield reduces. Fernandes et al. [43] explained that surface basicity acted as an active site for
the (2) byproduct decomposition process. This study shows the same trend: when using
ZnAl2O4-550 with more basic sites for the reaction, (2) selectivity (34%) is lower, whereas it
is higher with ZnAl2O4-650 (41%).

Catalytic reaction routes over a disordered ZnAl2O4 spinel structure are depicted in
Scheme 1. As mentioned above, there are several disordered sites over a partially inverted
ZnAl2O4 spinel: AlO4 (symbolized as Al*), ZnO6 (symbolized as Zn*) and oxygen vacancies
(symbolized as Ov). ZnAl2O4 catalysis follows the heterogeneous reaction pathways. The
catalysts form the Zn NCO complexes via the reaction with urea. The AlO4 site works as a
Lewis acidic site where the ammonia (NH3) group of the Zn NCO complex can adsorb. The
presence of the Zn NCO complex adsorbed on the solid phase is confirmed by the FT-IR
and TGA measurements.
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In Table 4, the catalytic reaction results in this work are compared to those recently
published in the literature. Because the ZnAl2O4 catalyst follows only the heterogeneous
catalysis pathway, the glycerol conversion and GC yield values are relatively low. However,
it can still be compared with some previous studies. Zhang et al. prepared the zinc
glycerolate (ZMG) and ZnO from zinc glycerolate (ZnO from ZMG) via the calcination
method. Glycerol conversion and GC yield of the ZMG are about 65 and 55%, respectively.
The authors have demonstrated through reaction tests that catalysts with acidic and basic
properties favor the synthesis of glycerol carbonate.

Table 4. Summary of catalytic reaction performance of glycerol carbonylation with urea over sev-
eral catalysts.

Catalyst Mol Ratio
Glycerol/Urea

Weight %
Catalyst/Glycerol Glycerol Conversion (%) GC Yield (%) Reference

ZnO pure 1:1.5 5 ~60 ~35 [44]
ZMG 1:1.5 5 ~65 ~55 [44]

Co3O4/ZnO 1:1.5 5 69 97 [45]
La2Cu0.5Fe0.5O4 1:1 5 49 82 [46]

La(OH)3 1:1.5 5 42.3 55.6 [47]
MoO3/SnO2 1:3 10 69 97 [48]

MgO 1:1.5 - 71 100 [43]
ZnO 1:1.5 5 67 49 [49]

[HOEMIm][PF6] 1:1.5 - 62 47 [50]
ZnAl2O4-550 1:1.5 5 72.2 33 This work
ZnAl2O4-650 1:1.5 5 72.2 30 This work

4. Conclusions

In this study, the disordered ZnAl2O4 catalysts were successfully prepared by using
the citrate complex method at different temperatures ranging from 550 ◦C to 850 ◦C.
The ZnAl2O4-550 catalyst exhibited a more disordered ZnAl2O4 structure than the other
catalysts calcined at a higher calcination temperature, resulting in more disordered sites
of AlO4 and more oxygen vacancies in ZnAl2O4-550. The ZnAl2O4-650 catalyst having
Al3+ cations at the octahedral sites (AlO6) exhibited low acidity, whereas the AlO4 sites
in ZnAl2O4-550 resulted in high surface acidity. From the XPS intensities of Oa (H2O or
O2 adsorbed) and Ob (oxygen vacancies), ZnAl2O4-550 contained more surface oxygen
vacancies than ZnAl2O4-650, which contributed to the increased surface acidity of ZnAl2O4-
550. The high surface acidity of ZnAl2O4-550 resulted in strong interactions with the Zn
NCO complex on its surface, improving catalytic performance. The intermediate product
of urea glycerolysis was 2,3-dihydroxypropyl carbamate (2), which had higher selectivity
for ZnAl2O4-650 than ZnAl2O4-550, lowering the GC yield.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/nano13131901/s1, Figure S1. A schematic diagram of the catalyst
activity test device with the gas chromatographic analysis conditions; Figure S2: N2 adsorption–
desorption isotherms (A) and pore size distribution curves (B): (a) ZnAl2O4-550, (b) ZnAl2O4-650,
(c) ZnAl2O4-750, and (d) ZnAl2O4-850; Figure S3: DTGA curves of ZnAl2O4 xerogel precursor
prepared by using polymeric citrate complex method; Figure S4: Enlarged XRD patterns of fresh
catalysts: (a) ZnAl2O4-550, (b) ZnAl2O4-650, (c) Znl2O4-750, and (d) ZnAl2O4-850; Figure S5: NH3
profiles of fresh catalysts: (a) ZnAl2O4-550, (b) ZnAl2O4-650, (c) ZnAl2O4-750, and (d) ZnAl2O4-
850; Figure S6: Typical gas chromatograms of ZnAl2O4-550 (A) and ZnAl2O4-650 (B). (2): 2,3-
dihydroxypropyl carbamate, (4): 4-(hydroxymethyl) oxazolidine-2-one, and (5): (2-oxo-1,3-dioxolan-
4-yl) methyl carbamate; Figure S7: CO2 profiles of fresh catalysts: (a) ZnAl2O4-550, (b) ZnAl2O4;
Table S1: The initial amount of each reactant; the amount of glycerol and products after reaction and
carbon balance.
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