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Abstract: To meet the growing needs of public safety and sustainable development, it is highly
desirable to develop flame-retardant polymer materials using a facile and low-cost method. Although
conventional solution chemical synthesis has proven to be an efficient way of developing flame
retardants, it often requires organic solvents and a complicated separation process. In this review, we
summarize the progress made in utilizing simple ball milling (an important type of mechanochemical
approach) to fabricate flame retardants and flame-retardant polymer composites. To elaborate, we
first present a basic introduction to ball milling, and its crushing, exfoliating, modifying, and reacting
actions, as used in the development of high-performance flame retardants. Then, we report the
mixing action of ball milling, as used in the preparation of flame-retardant polymer composites,
especially in the formation of multifunctional segregated structures. Hopefully, this review will
provide a reference for the study of developing flame-retardant polymer materials in a facile and
feasible way.
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1. Introduction

Polymer materials have contributed significantly to the development of modern so-
ciety, due to their excellent properties, including high workability, low price, and good
chemical resistance [1–6]. However, the flammability of most polymer materials greatly
limits their wide range of applications [7–10]. One proposed solution to this problem is
the development of flame retardants [11–14], which could restrain the ignition and fire-
spreading of polymer materials, specifically decreasing heat release and smoke production.
To date, various flame retardants have been developed to achieve satisfactory fire resistance
in different polymer materials, such as halogenated flame retardants [15–19], inorganic lay-
ered compounds [20–23], and phosphorous–nitrogen intumescent flame retardants [24–27].
Flame-retardant polymers and their composites have been used widely in construction, elec-
tronics, transportation, and so on [28–30]. Regarding the preparation of flame retardants,
the conventional method is liquid-phase synthesis [31,32], in which organic solvents and
complicated purification are always required. Moreover, the environmental toxicity and
environmental accumulation of various flame retardants have become increasingly impor-
tant [33–35]. Therefore, for high efficiency and environmental protection, a more efficient
and greener approach toward the facile preparation of flame retardants is highly desirable.

As a typical sub-factor in mechanochemistry [36], ball milling has been developed
for crushing, mixing, and reacting, due to the impact and shear forces generated by high-
speed rotation and high-temperature surroundings [37–40]. It is widely used in fabricating
flame retardants, for its superior properties of easy processing, low cost, and large-scale
production [39]. The most conventional application of ball milling in the field of flame
retardants is grinding to reduce particle size [41,42]. Notably, ball milling is effective
in preparing inorganic compounds on the nanoscale [43–45], including flame-retardant

Molecules 2023, 28, 5090. https://doi.org/10.3390/molecules28135090 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules28135090
https://doi.org/10.3390/molecules28135090
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0009-0002-9786-3824
https://orcid.org/0000-0001-8738-3259
https://orcid.org/0000-0002-7567-0522
https://doi.org/10.3390/molecules28135090
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules28135090?type=check_update&version=1


Molecules 2023, 28, 5090 2 of 19

synergists. As is well known, the size of additives for polymer composites is closely
related to the dispersion state and the final performance. Recently, with the rise of two-
dimensional nanomaterials (e.g., graphene), the shear force generated by ball milling is
utilized to achieve the facile exfoliation of layered compounds, such as graphite [46–48],
boron nitride [49–52], and black phosphorus [53,54]. Another important usage of ball
milling is to conduct chemical reactions, including the simple surface modification of
particles, and complicated chemical synthesis [14,55]. As for flame retardants, surface
modification by ball milling is prominent in improving properties, such as hydrolysis
resistance [56,57], interfacial compatibility [56,57], and flame-retardant efficiency [58,59].
Moreover, ball milling plays an important role in fabricating flame-retardant polymer
composites, including simple mixing, and customizing specific structures (e.g., a segregated
structure for electromagnetic wave shielding) [60,61].

This review aims to summarize the technological progress made in utilizing ball
milling for facilely preparing flame retardants, followed by a study and discussion of
the fabrication of flame-retardant polymer composites. Firstly, the basic concept and the
category of ball milling are briefly discussed. Next, the crushing, exfoliating, modifying,
and reacting actions of ball milling in developing flame retardants are primarily examined.
Then, ball milling for the mixing of flame retardants and the polymer matrix, which
concern segregated structures and flame retardancy, is overviewed. Finally, conclusions are
proposed, and insights are given.

2. Ball Milling Methods

Ball milling is a technique that is widely utilized to crush powders into small particles.
According to the operational mode, the types of ball milling primarily include planetary
ball milling, tumbler ball milling, vibration ball milling, and attrition ball milling. Each
type of mill is developed to achieve a specific purpose, and each undoubtedly has relative
weaknesses. For example, attrition ball milling generates higher surface contact, while
vibration ball milling could produce higher milling force [62,63]. Comparatively, planetary
ball milling is widely used owing to its compact size and low cost. According to the
generated energy, ball milling can be mainly classified as low-energy ball milling and
high-energy ball milling. The rotation speed of most planetary ball mills is 0~500 rpm,
while high-energy ball mills can reach up to 1800 rpm. During ball milling, shear force,
impact force, and friction force can be generated. Shear force is in favor of exfoliating
layered compounds, and impact force can efficiently grind the powders into fine particles.
As for high-energy ball milling, the heat generated by friction can be used to induce
the chemical reaction and phase transition, such as the conversion of red phosphorus to
black phosphorus. Regarding the materials of the ball milling tank and bead, the most
commonly used is made from steel, due to the high hardness and processability. Other
widely used materials include agate, zirconia, and nylon, which are appropriate for those
raw materials that can react with steel. That is to say, the ball milling method satisfies almost
all requirements when developing flame retardants, including crushing, exfoliating, surface
modifying, and reacting, as well as mixing flame-retardant additives and the polymer
matrix without the limitation of containers.

3. Ball Milling-Assisted Fabrication of Flame Retardants
3.1. Ball Milling for Crushing

The basic application of ball milling is crushing powders, including flame-retardant ad-
ditives. As is known, the particle size plays an important role in influencing the properties.
For example, the specific surface area increases with the reduction in particle size, which is
crucial for flame retardants with catalytic effects. As for mechanical properties, large flame-
retardant particles lead to a stress concentration within polymer composites. As a result,
the mechanical strength is always decreased. Therefore, crushing flame retardants into fine
powders is necessary. Bocz and coworkers studied the influence of flame retardant size on
the fire retardancy and mechanical properties of polypropylene (PP) composites [64]. The
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flame-retardant system consists of pentaerythritol (PER) and ammonium polyphosphate
(APP) in a weight ratio of 1 to 2. Ball milling was utilized to reduce the particle size of the
APP/PER mixture to a large extent, as shown in Figure 1. Upon undergoing the ball milling
process, the average particle size of APP was decreased from 15 µm to 8 µm, while the PER
was crushed from microparticles (~200 µm) to submicronic particles. An outperformed
flame retardancy was observed in the PP composite with smaller APP/PER particles. It is
believed that the better distribution of additives and the modified degradation mechanism
contribute significantly to the formation of a protective char layer. Moreover, the smaller
APP/PER particles are in favor of enhancing the mechanical performance (10% higher
tensile strength) of flame-retarded PP composites.
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Figure 1. SEM micrographs of APP and PER additives before and after milling. Reproduced from
ref. [64] with permission from John Wiley and Sons.

In Bao’s research, the attapulgite clay (ATP) was treated by ball milling to reduce the
particle size. It was then grafted onto cotton fabric to improve flame retardancy [65]. To
comprehensively evaluate the effect of the milling process, the ball milling was conducted
for 4, 5, 6, and 8 h, under rotational speeds of 200, 300, and 400 r/min, in the mass ratio
of zirconia ball to ATP of 3:1, 4:1, 5:1, and 6:1, respectively. It was observed that the ball
milling parameters (speed, time, and mass ratio) strongly influenced the particle size of the
milled ATP, as well as the final fire retardancy of the resultant cotton fabrics. The uniformly
distributed stable oxide layer decomposed by the ATP was believed to be the key contribu-
tor. Following the same idea, Üreyen and partners crushed zinc borate (ZnB) from 9 µm to
a submicron scale by wet milling, and subsequent high-shear-fluid processing, to reduce
the flammability of polyethylene terephthalate (PET) woven fabrics [66]. The crushed ZnB
was dispersed in alkyl phosphonate and organophosphorus flame retardants, to obtain a
homogenous dispersion, which was then applied to the fabrics by the pad-dry-cure method.
A synergistic effect between ZnB and organophosphorus flame retardants was proposed,
specifically decreasing the mean CO, total smoke release, and total smoke production.

In recent years, the concept of sustainable development has been defined as essential
to combating climate change. The combination of facile preparation and biomass raw
materials attracts much attention in developing flame retardants. Among these, the ball
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milling of various biomass materials is of great importance. For example, Jawaid and
coworkers reported the preparation of nano flame retardants from date palm biomass [67].
They performed the agricultural waste, date palm trunk fiber as biobased raw material
upon the chemical process, and high-energy ball milling to fabricate new flame retardants
on the nanoscale. The particle size analysis results indicated that the as-prepared products
were in the mean size range of 274.5–289.7 nm. The multielement composition (carbon,
oxygen, silicon, sulfur, calcium, and potassium) and high decomposition temperature of
nano-sized fillers suggest their potential application in the field of flame retardants [68,69].
Besides the biomass raw materials, another important issue in consideration of critical
environmental pollution is how to reuse the existing petroleum-based material [70–72].
Wang and coauthors proposed a novel recycling strategy for fabricating fire retardants
from polyphenylene sulfide waste textiles [73]. A sequence of thermal aging, ball milling,
and screening was conducted to upcycle waste polyphenylene sulfide (PPS) filter bags into
PPS powders (75–100 µm), which were first used to decrease the flammability of epoxy
resin (EP). The high thermal stability and good charring ability of PPS are believed to
constitute the main reason for the decreased heat and smoke/toxic gases released from EP
composites. This work presented a promising pattern in the upcycling of solid wastes into
flame retardants.

3.2. Ball Milling for Exfoliation

As a typical type of inorganic flame-retardant additive with a physical barrier effect,
nano-sized layered compounds have been a hotspot for flame-retardant research in recent
years, from clay to graphene to MXene. The preparation of nano-sized layered flame retar-
dants generally includes the bottom-up approach and top-down processing. Comparatively,
the top-down approach features the superiority of easy processing, large-scale production,
and low cost. Owing to the shear forces, among other aspects, ball milling is considered
one of the most promising techniques for exfoliating layered compounds and producing
two-dimensional flame retardants.

3.2.1. Graphene-Based Flame Retardants

The discovery of graphene has opened up a whole new field of material research.
Graphene has been regarded as a promising material in various fields, including electron-
ics [74,75], catalysts [76,77], and semiconductors [78,79], as well as flame retardants [80,81].
However, the high cost of preparing graphene is always a critical problem, especially in
the flame-retardant field, which sees such high consumption. Researchers have developed
various methods for fabricating graphene on an acceptable production scale. Ball milling is
always a good choice. Kim and coworkers initially reported the fabrication of graphene
phosphonic acid (GPA) flame retardants via the ball milling of graphite and red phospho-
rus [46]. As shown in Figure 2, the graphite is firstly crushed and exfoliated into thin layer
graphene. Upon exposure to the high energy generated by ball milling, the graphitic C-C
bonds cleave, and react with phosphorus to form C-P bonds. Subsequently, the unstable
P converts into a phospho-oxygen compound, and then phosphate compounds (highest
oxidation state), in the presence of oxygen and moisture. The obtained GPA can be easily
dispersed in various solvents to form a stable solution, which could be used to treat papers
and fabrics, to allow fire retardancy.

Inspired by Kim’s work, Jeon and coworkers prepared a heavily aluminated graphene
(AlGnP) flame retardant through the ball milling of graphite and solid aluminum (Al)
beads. Approximately 30.9 wt% of element Al in AlGnP was detected [47]. Subsequently,
the poly(vinyl alcohol)/AlGnP composite films were fabricated via a simple solution
blending and casting method, thanks to the excellent dispersibility of AlGnP. As expected,
an improved flame retardancy was observed. Additionally, Chen and coworkers prepared
Sn-doped graphene (GnPSn) as an efficient flame retardant, via ball milling expandable
graphite and Sn powder in a wet condition [48]. The synergistic flame-retardant effect of
GnPSn and hexaphenoxy cyclotriphosphazene (HPCTP) for EP resin was proposed. An
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LOI value of 33.6%, and UL-94 of V0 grade, were observed for the EP composite with 6.3
wt% HPCTP and 2.7 wt% GnPSn. The compactness of the residual char in the condensed
phase was highlighted in discussing the specific flame-retardant mechanism.

Molecules 2023, 27, x FOR PEER REVIEW 5 of 19 
 

 

the unstable P converts into a phospho-oxygen compound, and then phosphate com-
pounds (highest oxidation state), in the presence of oxygen and moisture. The obtained 
GPA can be easily dispersed in various solvents to form a stable solution, which could be 
used to treat papers and fabrics, to allow fire retardancy. 

 
Figure 2. Schematic representation of the mechanochemical cracking of a graphite flake in a ball-
mill crusher containing stainless steel balls (diameter 5 mm), in the presence of red phosphorus, and 
subsequent exposure to air moisture to produce GPA. Reproduced from ref. [46] with permission 
from the American Chemical Society. 

Inspired by Kim’s work, Jeon and coworkers prepared a heavily aluminated gra-
phene (AlGnP) flame retardant through the ball milling of graphite and solid aluminum 
(Al) beads. Approximately 30.9 wt% of element Al in AlGnP was detected [47]. Subse-
quently, the poly(vinyl alcohol)/AlGnP composite films were fabricated via a simple so-
lution blending and casting method, thanks to the excellent dispersibility of AlGnP. As 
expected, an improved flame retardancy was observed. Additionally, Chen and cowork-
ers prepared Sn-doped graphene (GnPSn) as an efficient flame retardant, via ball milling 
expandable graphite and Sn powder in a wet condition [48]. The synergistic flame-retard-
ant effect of GnPSn and hexaphenoxy cyclotriphosphazene (HPCTP) for EP resin was pro-
posed. An LOI value of 33.6%, and UL-94 of V0 grade, were observed for the EP composite 
with 6.3 wt% HPCTP and 2.7 wt% GnPSn. The compactness of the residual char in the 
condensed phase was highlighted in discussing the specific flame-retardant mechanism. 

For the efficient exfoliation of graphite, a combination of ball milling and other tech-
niques has been proposed, such as ball milling coupled with ultrasonication, reported by 
Wang et al. [82], thermal shock combined with the ball milling method [83], and a combi-
nation of the ball milling and microwave-assisted methods [84]. Moreover, to meet the 
goal of sustainable development, various green and biobased materials have been applied 
to assist the ball milling-induced exfoliation of graphite, such as waste fish deoxyribonu-
cleic acid and Acacia mangium tannin (AMT) [80,85]. As expected, the green exfoliating 
agent can not only enhance the exfoliation efficiency of graphite, but can also improve the 
dispersibility and flame-retardant capability. 

3.2.2. Boron-Nitride-Based Flame Retardants 
Boron nitride is another important layered compound, which is highly thermally 

conductive, but electrically insulated [51]. Different from graphene, boron nitride 
nanosheets are widely used to fabricate polymer nanocomposites with high thermal con-
ductivity, while maintaining electric insulation properties, which are promising in the 
field of thermal management with high fire risk [50,52]. Certainly, boron nitride 
nanosheets can be an efficient type of flame retardant, due to their high thermal stability 
and specific nano-size effect. Based on the same exfoliation mechanism, ball milling is 
often used to achieve the exfoliation of bulk boron nitride. Qiu and coworkers realized the 
scalable production of hydroxyl-functionalized BN (OBN) by simple ball milling and an-
nealing under air conditions, in the presence of sodium hydroxide [49]. The shear-force-
induced exfoliating and chemical peeling were believed to be the key points. The resultant 

Figure 2. Schematic representation of the mechanochemical cracking of a graphite flake in a ball-mill
crusher containing stainless steel balls (diameter 5 mm), in the presence of red phosphorus, and
subsequent exposure to air moisture to produce GPA. Reproduced from ref. [46] with permission
from the American Chemical Society.

For the efficient exfoliation of graphite, a combination of ball milling and other tech-
niques has been proposed, such as ball milling coupled with ultrasonication, reported by
Wang et al. [82], thermal shock combined with the ball milling method [83], and a combina-
tion of the ball milling and microwave-assisted methods [84]. Moreover, to meet the goal of
sustainable development, various green and biobased materials have been applied to assist
the ball milling-induced exfoliation of graphite, such as waste fish deoxyribonucleic acid
and Acacia mangium tannin (AMT) [80,85]. As expected, the green exfoliating agent can not
only enhance the exfoliation efficiency of graphite, but can also improve the dispersibility
and flame-retardant capability.

3.2.2. Boron-Nitride-Based Flame Retardants

Boron nitride is another important layered compound, which is highly thermally con-
ductive, but electrically insulated [51]. Different from graphene, boron nitride nanosheets
are widely used to fabricate polymer nanocomposites with high thermal conductivity,
while maintaining electric insulation properties, which are promising in the field of thermal
management with high fire risk [50,52]. Certainly, boron nitride nanosheets can be an
efficient type of flame retardant, due to their high thermal stability and specific nano-size
effect. Based on the same exfoliation mechanism, ball milling is often used to achieve the
exfoliation of bulk boron nitride. Qiu and coworkers realized the scalable production of
hydroxyl-functionalized BN (OBN) by simple ball milling and annealing under air condi-
tions, in the presence of sodium hydroxide [49]. The shear-force-induced exfoliating and
chemical peeling were believed to be the key points. The resultant OBN could be a platform
to load and graft various flame-retardant units, to improve the fire safety of EP resin. As a
result, the EP composites exhibited not only enhanced fire retardancy, but also an improved
friction performance.

Inspiringly, Han et al. included the conventional flame-retardant ammonium phos-
phate in the above-mentioned ball milling exfoliation process, as an assistant agent [51].
A synergetic action between the shear and chemical peeling of ammonium phosphate
and sodium hydroxide was observed. Density functional theory (DFT) calculations were
performed, to reveal the possible mechanochemical reaction mechanisms. As expected,
the resultant BN nanosheets endowed EP resin with exceptional fire retardancy, including
60.9%, 35.7%, 44.3%, and 38.8% reductions in PHRR, THR, SPR, and TSP, respectively. The
catalytic charring effect and physical barrier action of BN were highlighted in the improve-
ment of flame retardancy. Subsequently, the same group reported the fabrication of ionic
liquid-wrapped boron nitride nanosheets (BNNS@IL) using the ball milling process [52].
The exfoliation and functionalization were achieved via a similar mechanochemical action.
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Based on the BNNS@IL, a fire resistant EP-based thermally conductive layered film with
aligned BN nanoflakes was developed, which showed high anisotropic thermal conduc-
tivity (K‖ of 8.3 and K⊥ of 0.8 W m−1 K−1) and excellent flame retardancy, suggesting
new possibilities in electrical device and thermal management. Additionally, the nitrogen-
phosphorus-doped boron nitride (BN@APP) was prepared by Xu and coworkers via the
ball milling method [86]. The effect of BN@APP on the flame retardancy and thermal con-
ductivity of polybutylene succinate (PBS) was comprehensively studied. A 62.8% increase
in thermal conductivity, and a 44.8% decrease in TSP, were reported.

To improve the exfoliation efficiency of boron nitride, a sugar-assisted mechanochem-
ical exfoliation (SAMCE) method was developed by Chen’s group [50]. As shown in
Figure 3, the sugar (sucrose) molecules can be covalently grafted to BN nanosheets during
ball milling, which efficiently prevents restacking, and leads to the high exfoliation yield of
87.3%. The obtained BN can be uniformly dispersed in water and organic solvents, due to
the grafted sucrose molecules. As a result, the exfoliated BN can greatly reinforce the flexi-
ble and transparent poly(vinyl alcohol) (PVA) film, in terms of improved tensile strength,
thermal dissipation capability, and fire retardancy. It is believed that this SAMCE method
can be extended to the exfoliation of other layered materials, such as black phosphorus.
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3.2.3. Black-Phosphorus-Based Flame Retardants

Elementary phosphorus is an efficient flame retardant, including red phosphorus [87,88]
and black phosphorus [89,90]. Compared to amorphous red phosphorus, layered black phos-
phorus integrates not only the gas phase and condensed phase flame-retardant mechanism,
but also the physical barrier effect, similar to graphene, which has drawn much attention
in recent decades. Similarly, ball milling can be used to exfoliate black phosphorus into
few-layer nanosheets called phosphorene [53]. The difference is that black phosphorus
nanosheets are not stable in open air, and can rapidly degrade into phosphate compounds
upon oxidation and hydrolysis. Therefore, for black phosphorus, exfoliation and subse-
quent protection are of equal importance. Qu and coworkers reported the preparation
of aminated black phosphorene (BP-NH2) via the ball milling method [91], as shown in
Figure 4. The graphene oxide (GO) was covalently bonded to black phosphorus through
the reaction of -NH2 and -COOH in the presence of a catalyst. The obtained product was
assembled into a flexible film (RPNG) with ultrahigh thermal conductivity and remarkable
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flame retardancy, which exhibited a fantastic application in fire alarm sensors. Along the
same lines, they bonded the multi-walled carbon nanotubes (MWCNTs) to black phos-
phorus nanosheets via the -NH-CO- linkage [92]. The resultant nanofiller (BP-MWCNTs)
could endow cellulose nanofiber (CNF) with satisfactory thermal conductivity and fire
retardancy, specifically an in-plane thermal conductivity of 22.38 ± 0.39 W m−1 K−1, and a
cross-plane thermal conductivity of 0.36 ± 0.03 W m−1 K−1, UL-94 V-0 grade, and a LOI
value of 29.9%.
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Guo and coworkers reported the simultaneous exfoliation and functionalization of
black phosphorus via sucrose-assisted ball milling, with N-methyl pyrrolidone (NMP) inter-
calating for high efficiency [53]. They found that the sucrose molecules could protect black
phosphorus from oxidating, and promote the dispersion of black phosphorus nanosheets
in solvents. The sucrose-grafted BP dramatically enhanced the mechanical performance
and flame-retardant property of PVA, in terms of a 131.2% increase in tensile strength, and
a 52.5% reduction in PHRR. The encapsulation effect of sucrose was highlighted in the
exceptional air stability of PVA nanocomposite films. In Duan’s work, ball milling, liquid
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exfoliation, and electrochemical exfoliation were applied to prepare black phosphorus
nanosheets with different sizes, to clarify the size-dependent flame retardancy of black
phosphorus nanosheets [54]. EP resin was selected as the polymer matrix. They found that
the liquid ball milled BP (lb-BP) was the best at dispersing in the EP matrix, and endowed
the EP with the highest flame retardancy. The barrier and carbonization catalyst action of
lb-BP was believed to be the primary cause of the delayed combustion.

3.2.4. MoS2-Based Flame Retardants

Molybdenum disulfide (MoS2) consists of the elements Mo and S. Mo is a transition
metal and demonstrates catalytic ability and smoke suppression performance [93,94]; S is
also a flame-retardant element. MoS2 has a layered structure, and can be exfoliated into
nanosheets, the high specific area of which is in favor of improving catalytic performance.
Therefore, the exfoliation of MoS2 for developing high-performance flame retardant is
highly desirable. Qiu and coworkers exfoliated MoS2 into nanolayers via a ball milling
method. Subsequently, a high-temperature polymerization was conducted to obtain the
polyphosphazene nanoparticle (PPN) functionalized MoS2 nanosheets (MoS2@PPN) [95].
It was revealed that the loaded PPN could prevent the restacking of MoS2 nanolayers, and
improve the flame-retardant capability. Upon the incorporation of MoS2@PPN, the flame
retardancy and friction properties of the EP composite were improved. Based on the ball
milling-exfoliated MoS2 nanosheets, Zou’s group constructed a phosphorus/nitrogen-co-
doped MoS2/cobalt borate nanostructure as a flame-retardant and anti-wear additive [93],
as displayed in Figure 5. The GNDC and HCCP were used to assist in the exfoliation
and modification of the MoS2. After annealing, a two-dimensional cobalt borate (Co−Bi)
nanosheet could be generated onto the MoS2 nanosheets, resulting in a novel MoS2-based
flame retardant (PNMoS2@Co−Bi). With only 2 wt% addition of PNMoS2@Co−Bi, the
EP composite exhibited a much-decreased flammability, and the detailed mechanism
was clarified.
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3.2.5. Covalent-Organic-Framework-Based Flame Retardants

Covalent organic frameworks (COFs) have a layered structure and flame-retardant
action, due to their unique elementary composition [96,97]. Mu and coworkers explored
the exfoliation of COFs by ball milling, and demonstrated their flame-retardant perfor-
mance on thermoplastic polyurethanes (TPU) and polypropylene (PP) [98]. Firstly, they
proposed the preparation of novel melamine/o-phthalaldehyde COF nanolayers. De-
tails of the preparation, exfoliation, dispersion state, and flame-retardant performance
of melamine/o-phthalaldehyde COFs were discussed. Then, to improve flame-retardant
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ability and smoke suppression, the Co3O4/COF nanohybrids were prepared based on the
ball milling-induced exfoliation of the COFs [99]. The fire retardancy, smoke and carbon
monoxide (CO) suppression, and thermal stability of the PP composites were characterized.
A synergistic effect between Co3O4 and COFs was concluded.

3.2.6. Layered Oyster Waste

Most recently, Chen and his group have focused their attention to recycling layered
oyster wastes as flame retardants. The layered oyster consisted of 95% layered CaCO3,
and 5% organic adhesives. However, the flame-retardant action of the bare oyster waste
powders was unsatisfactory. Therefore, proper processing was highly desired in order to
achieve the deconstruction and modification of layered oyster waste [100]. Firstly, they
applied a simple ball milling of oyster powders, to obtain a phosphorus-free hybrid flame-
retardant (TOSP), as shown in Figure 6. The successful exfoliation of layered oyster waste
was confirmed. Moreover, the flame retardancy of the EP composite with the addition of
milled layered oysters was investigated. This work opened a concept-new way to upcycle
oyster waste, as high-value flame retardant, with the assistance of ball milling. To improve
the flame-retardant ability of oyster wastes, the same group successively used ammonia
phytate (PAA) [101] and chitosan-modified ammonium polyphosphate (CS@APP) [102]
in assisting the ball milling-induced exfoliation of layered oyster wastes. This revealed
that the resultant TOSP@PAA and TOSP@CS@APP were of a specific layer-crosslinking
structure, by the –NH3+–O–P– bonds. As a result, the flame-retardant actions of TOSP@PAA
for EP, and TOSP@CS@APP for cotton fabric, were higher than the common TOSP.
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3.2.7. Others

Besides the above-mentioned layered materials, some other layered flame-retardant
compounds can be exfoliated by the ball milling method, such as layered double hydroxide
(LDH) [103], Mxene [55], flake-NiNH4PO4·H2O (IL-ANP) [104], and kaolin [105]. The
primary thinking is the same for the processing of these compounds via the ball milling
method, including shearing for exfoliation, and in situ modification for improving dis-
persibility and flame-retardant performance. For example, Huang’s group ball-milled the
LDH and red phosphorus to prepare P-LDH flame retardants for TPU [103]. It is believed
that the anion substitution and high exfoliation of the LDH nanosheets greatly contributed
to the high performance of the TPU composites. He and his coauthors conducted the exfoli-
ation and functionalization of MXenes in the presence of poly(diallyldimethylammonium
chloride) (PDDA) by ball milling, to improve the flame retardancy of polyurethane [55].
Notably, the 3 wt% PDDA-modified MXene could efficiently reduce heat release and
smoke production.
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3.3. Ball Milling for Modification

Another important application of ball milling is achieving the surface modification
and functionalization of flame retardants for various purposes. For example, to enhance
the hydrophobic property of aluminum hypophosphite, a rare earth-based coupling agent
(REA) was utilized to modify the aluminum hypophosphite (AHP) through one-step ball
milling [106], as shown in Figure 7. This revealed that the AHP modified by 4 wt% REA
(RaAHP-4) had an outstanding hydrophobic performance, with a water contact angle of
94.6. Additionally, the EP/6RaAHP-4 composites behaved the best at reducing fire risk,
including a decreased heat release and CO production. Guo and coworkers applied the
titanate coupling agent NDZ-201, to modify the conventional IFRs composed of melamine
(MEL), APP, and pentaerythritol (PER), via ball milling, to enhance thermal stability and
dispersity. A cooperative effect on the fire retardancy of the PP composites was clarified. To
address the same problem, Yan and coworkers conducted the surface modification using
the silane coupling agent KH-550, via wet ball milling [38]. The resultant modified IFRs
were used as flame retardants for polyphenylene oxide (PPO). A synergistic effect was
observed between PPO and IFR in improving thermal stability and fire retardancy.
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Filler additives have drawn much attention in the development of polymer compos-
ites, due to the high length-diameter ratio. However, the interfacial compatibility always
limits the properties and applications of fiber-reinforced polymer composites. Członka and
coworkers modified the walnut shell filler with selected mineral compounds: perlite, mont-
morillonite, and halloysite, via ball milling [107]. The rheological properties, mechanical
properties, thermal properties, and fire retardancy of the fiber-reinforced polyurethane
(PUR) composites were comprehensively investigated. A considerable reduction in heat re-
lease and smoke production was observed. Similarly, the vermiculite fillers were modified
with casein, chitosan, and potato protein, with the assistance of ball milling, to reinforce
the flame retardancy of polyurethane foams [108]. Approximately 2 wt% of vermiculite
fillers were added. The rheological, thermal, and mechanical properties, and fire resistance,
were explored in detail. Additionally, to the same ball milling method, Członka et al.
reported the surface modification of lavender fillers with kaolinite and hydroxyapatite,
for developing flame-retardant PU composites [109]. Notably, the ball milling-assisted
surface modification could be extended to metal oxide flame retardants, such as Sb2O3 [110]
and ZnO [111].
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3.4. Ball Milling for Reaction

The heat and force generated by ball milling are sufficient for achieving some chemical
reactions, including the solvent-free solid–solid reaction. Although it is not a dominant
trend, there are indeed some reports on ball milling in the synthesis of novel flame re-
tardants. Chen and coworkers reported a solvent-free ball milling method of fabricating
phosphorus-containing hyper-crosslinked aromatic polymer (HCAP) from triphenylphos-
phine [112], as shown in Figure 8. Subsequently, nitrogen-rich graphitized carbon nitride
was added, to synthesize a series of phosphorus and nitrogen-containing heterojunction
flame retardants known as HCN. The molecular structures of HCAP and HCN were well
characterized through experimental and computational approaches. The flame-retardant
effect of HCN on EP resin was systematically investigated. It was found that the addition
of 5 wt% HCN could endow EP resin with a UL-94 V0 rating, and dramatically reduce heat
release and smoke production. Moreover, the machine learning method was performed, to
evaluate the combined scores of multiple flame-retardant properties. It was believed that
charring ability dominated the exceptional flame-retardant effect. This report displayed a
brand-new pathway for developing high-performance flame retardants.
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How to endow biobased materials (e.g., cellulose crystals) with a flame-retardant
effect is a critical problem when considering their high-value application. Apart from
the conventional solution method based on corrosive concentrated phosphoric acid, Fiss
and coworkers reported a phosphorylation process in cellulose nanocrystals, as well as
some polymers, via ball milling [113]. It provided a feasible method to develop various
flame retardants based on natural products, such as chitin nanofibril [39] and cellulose
nanofibril [114]. Zhang and coworkers successively prepared chitin nanofibril-based flame
retardants and cellulose nanofibril-based flame retardants, to improve the fire resistance
of papers [39]. The ball milling was conducted in the presence of chitin/cellulose and
P2O5. The degree of phosphorylation was examined in detail using X-ray photoelectron
spectroscopy (XPS). As for chitin nanofibril-based flame-retardant-treated papers, an LOI
of 30%, and a 62% reduction in PHRR, were obtained, compared to the control paper.
Therefore, ball milling has been proven to be an efficient technique in developing novel
flame retardants, which is likely to generate further interest.
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4. Ball Milling for Mixing Flame Retardants and Polymer Matrices

As well as the preparation of flame-retardant additives, ball milling is often used to
uniformly mix flame retardants and the polymer matrix, which is, namely, simply blending
different particles in solid form. For example, Xu and coworkers conducted the mechanical
ball mixing of montmorillonite (MMT), nano-Sb2O3, BEO, and PP by a high-energy ball
milling machine, to fabricate flame-retardant PP composites [115]. To achieve the process-
ing and improve compatibility, Liu and coworkers performed solid-state shear milling for
magnesium hydroxide (MH) flame-retardant PP [116]. Upon milling, the pulverization of
the PP, high-degree blending, uniform dispersion of MH, and chemical interaction between
PP and MH could be obtained at the same time. Compared to conventional melt mixing,
the milled sample exhibited better melt flowability, flame retardancy, and mechanical
strength. Following the same idea, Prabhakar and coworkers reported the fabrication of
flame-retardant thermoplastic starch/flax fabric green composites [117]. In this work, the
starch was first plasticized into thermoplastic starch, via a ball milling process. The starch,
flax fabric (FF), and APP were then mixed, to develop the flame-retardant composites. Pi
and coworkers studied the effect of high-energy ball milling on the poly(vinyl chloride)
(PVC)/zinc borate (ZB)/aluminum trihydrate (ATH) systems [118]. The first sample was
PVC with ZB, and the second was PVC with ZN-ATH. The third sample was PVC with a
mixture of ZB and ATH. It was found that high-energy ball milling induced the chemical
bonding between PVC and ZB or ZB–ATH. As a result, an enhancement in the LOI and me-
chanical properties was observed. Moreover, the PVC/ZB and PVC/ZB–ATH composites
exhibited better fire retardancy in terms of the suppressed release of aromatic compounds.

In addition to the ball milling-induced mixing, a subsequent hot pressing is always
performed to construct a flame-retardant polymer composite with a segregated struc-
ture, which is favorable for achieving high electrical conductivity and electromagnetic-
wave-shielding performance. Gao and coworkers developed segregated polystyrene (PS)
composites with exceptional flame retardancy and electromagnetic wave shielding (EMI)
properties, with the assistance of ball milling [119]. As shown in Figure 9, the PS particles,
silicon-wrapped ammonium polyphosphate (SiAPP), and MWCNT were ball milled first,
to obtain PS/SiAPP/MWCNT granules. It demonstrated that the SiAPP and MWCNT
were uniformly distributed onto PS spheres. After hot pressing, a segregated structure
s-PAC composite could be obtained, as displayed in the SEM image in Figure 9. Only 7 wt%
MWCNT endowed the composites with promising thermal stability and fire retardancy.
Specifically, a 60.5% and 33.9% reduction in PHRR and THR, respectively, was reported.
Additionally, the EMI shielding property could reach 11 dB. The synergistic effect between
MWCNT and SiAPP was believed to be the main contributor to exceptional fire safety, by
forming a compact protective char layer on the bottom PS materials. The detailed EMI
shielding mechanism was also clarified. Luo and coworkers followed the same strategy, in
developing electrically conductive and flame-retardant low-density polyethylene compos-
ites with phosphorus-nitrogen-based flame retardant and MWCNTs, using a ball milling
and hot-pressing method [120]. Notably, a dramatic decrease in PHRR (49.8%) and THR
(51.9%) was observed. Therefore, the combination of ball milling and hot pressing is feasible
to construct polymer composites with segregated structures, to achieve multifunctionality,
including fire retardancy, thermal and electrical conductivity, and EMI performance. It
is an up-and-coming technique for achieving the facile preparation of flame-retardant
polymer materials.
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5. Challenges and Prospects

Although progress has been made in the ball milling-promoted facile preparation
of flame-retardant polymer materials, some key points need to be addressed when con-
sidering its extensive application. Firstly, limited by the basic operation principle, the
products obtained by ball milling are not always homogeneous. Compared to conventional
wet-chemistry synthesis, the scalability and consistency of ball milling are always lim-
ited [121,122]. To avoid this problem, the ball milling procedures can be varied, including
changing the rotation direction appropriately. Sometimes, the impurities from the ball mill
tank and beads are nonnegligible, due to the violent collision. Selecting the milling con-
tainers and balls with higher hardness is preferable, to reduce the chance of contamination.
Furthermore, the ball milling process always lasts for a long time, which is time-consuming,
and produces flame retardants in batch mode [123]. To improve efficiency, a processing
additive is highly recommended. For example, the intercalators are efficient in assisting the
exfoliation of layered compounds using the ball milling method. The configuration of the
ball milling machine to achieve the preparation of flame retardants in flow mode is chal-
lenging, and of high importance. In addition, ball milling for the solid-state synthesizing of
new flame retardants is in its infancy at present, and requires extensive research work to
achieve its full potential and industrial value. Moreover, the mixing action of ball milling
for a flame-retardant additive and a polymer matrix can be multipurpose, rather than the
simple blending of various particles. Using the proper design, some promising polymer
composites could be fabricated, such as composites with segregated structures. More
customized and specific structures are highly desirable, with the assistance of ball milling.

6. Conclusions

In this paper, we review the progress in the development of flame retardants and
flame-retardant polymer composites using the ball milling method. Starting from the basic
concept and category of ball milling, two types of ball milling machine—planetary ball
milling, and high-energy ball milling—are introduced. Due to the generated impact and
shear forces, and the high-temperature surroundings, ball milling can achieve the crushing,
exfoliating, modification, and chemical reaction required in the preparation of flame retar-
dants. The simultaneous exfoliation and functionalization of layer-compound-based flame
retardants are clearly introduced. In addition, the mixing action of the flame retardants
and the polymer matrix using the ball milling approach is described, especially the part in
which segregated structures are constructed for multifunctional purposes. Flame-retardant
polymer composites with segregated structure have exhibited a promising application
in electric products, which always require electrical conductivity and an electromagnetic
shielding function, while facing high fire risk. Despite the rapid development of ball-milled
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flame retardants, some challenges and prospective developments are proposed, to promote
their practical applications, including heterogeneity issues, impurity problems, and the
process being time-consuming. Nevertheless, the authors believe that in the next 10 years,
many more flame retardants and flame-retardant polymer composite products prepared by
the ball milling method will be coming out of research labs, and will be commercialized
across industries.
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