Skip to main content
. 2023 Jul 3;28(13):5180. doi: 10.3390/molecules28135180
import pyDOE2 as doe
from sklearn.preprocessing import MinMaxScaler
import pandas as pd
import random

boundary = pd.DataFrame({‘paramA’:[2,9],’paramB’:[0.4,3.2],’paramC’:[0.6,3.6],’paramD’:[0.5,6.5]})

lhs = doe.lhs(4, samples = 5, criterion = ‘center’, random_state = 1)

scaler = MinMaxScaler()
min_max = scaler.fit(boundary)

value = pd.DataFrame(min_max.inverse_transform(lhs), columns=boundary.columns)

print(value)