import pyDOE2 as doe |
from sklearn.preprocessing import MinMaxScaler |
import pandas as pd |
import random |
|
boundary = pd.DataFrame({‘paramA’:[2,9],’paramB’:[0.4,3.2],’paramC’:[0.6,3.6],’paramD’:[0.5,6.5]}) |
|
lhs = doe.lhs(4, samples = 5, criterion = ‘center’, random_state = 1) |
|
scaler = MinMaxScaler() |
min_max = scaler.fit(boundary) |
|
value = pd.DataFrame(min_max.inverse_transform(lhs), columns=boundary.columns) |
|
print(value) |