Skip to main content
. 2023 Jul 3;28(13):5180. doi: 10.3390/molecules28135180
import numpy as np
import GPy
import GPyOpt

X = np.array ([[5.5, 2.36, 2.1, 1.1],
[2.7, 1.8, 3.3, 2.3],
[6.9, 0.68, 2.7, 3.5],
[8.3, 2.92, 0.9, 5.9],
[4.1, 1.24, 1.5, 4.7],
[6.7, 0.77, 2.7, 3.3],
[6.5, 1.36, 2.0, 2.2]])
Y = -np.array([67, 31, 68, 48, 66, 70, 78])[:, np.newaxis]

initial_x = X
initial_y = Y

bounds = [{‘name’: ‘current’, ‘type’: ‘continuous’, ‘domain’: (2,9)},
{‘name’: ‘Init_molarity’, ‘type’: ‘continuous’, ‘domain’: (0.4,3.2)},
{‘name’: ‘electrolyte’, ‘type’: ‘continuous’, ‘domain’: (0.6,3.6)},
{‘name’: ‘time’, ‘type’: ‘continuous’, ‘domain’: (0.5,6.5)}]



myBopt = GPyOpt.methods.BayesianOptimization(f=None,
domain=bounds,
X = initial_x,
Y = initial_y,
acquisition_type=‘EI’,


)

next_x = myBopt.suggest_next_locations()
print(next_x)