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Abstract

Specialized subpopulations of CD4+ T cells survey major histocompatibility complex class II–

peptide complexes to control phagosomal infections, help B cells, regulate tissue homeostasis 

and repair or perform immune regulation. Memory CD4+ T cells are positioned throughout 

the body and not only protect the tissues from reinfection and cancer, but also participate in 

allergy, autoimmunity, graft rejection and chronic inflammation. Here we provide updates on 

our understanding of the longevity, functional heterogeneity, differentiation, plasticity, migration 

and human immunodeficiency virus reservoirs as well as key technological advances that are 

facilitating the characterization of memory CD4+ T cell biology.

CD4+ T cells play diverse roles in the immune system. Vaccinologists often emphasize 

their ability to promote class switching, somatic hypermutation and memory differentiation 

among B cells1,2. CD4+ T cells also provide help to CD8+ T cells by supporting their 

expansion and differentiation into functional memory T cells3. However, CD4+ T cells are 

also important effectors, killers and potent communicators, they regulate tissue homeostasis 

and wound healing and sound the alarm upon microbial invasion4–7. CD4+ T cells also have 

an essential role in restraining inflammation and constraining adaptive immune responses8. 

These diverse roles are accomplished by developmental specification events that result in 

unique CD4+ T cell lineages and differentiation states, which are considered as distinct 

subsets. The destruction of CD4+ T cells, as observed in untreated human immunodeficiency 

virus (HIV) infection, highlights the critical role of CD4+ T cells in maintaining functional 

immunity.

CD4+ T cells principally mediate surveillance through their T cell antigen receptor (TCR) 

and are restricted to major histocompatibility complex class II (MHC-II) molecules that 

present peptides of extracellular or phagosomal origin. MHC-II is constitutively expressed 

by professional antigen-presenting cells (APCs) including dendritic cells, macrophages 

and B cells. Upon receiving three signals from APCs (cognate antigen through the TCR, 

co-stimulation through co-stimulatory receptors and cytokines) for full activation, naive 
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CD4+ T cells undergo a proliferative burst and differentiate into various effector subsets that 

each are tailored to different types of immune mechanisms or infections9–11 (Fig. 1). Most 

effector cells are short-lived, but a small fraction of T cells form long-lived memory cells 

that persist long beyond pathogen clearance. Memory CD4+ T cells mount an anamnestic 

response to reinfections that is quicker and of a higher magnitude than primary responses 

and can contribute to protective immunity12. We define CD4+ memory T cells as an antigen-

experienced population that persists after antigen is presumably absent from the organism. 

This Review focuses on memory CD4+ T cells that persist after acute stimulations, such 

as infections or vaccines, with limited discussion of chronic stimulation contexts (tumors, 

autoimmunity) or memory regulatory T (Treg) cells.

Memory CD4+ T cell longevity

In humans, memory CD4+ T cells longevity is best documented after viral infections or 

replicating vaccines. The most informative scenarios are those in which the pathogen in 

question is unlikely to be encountered naturally, so that memory T cells would not have an 

opportunity to be boosted. In a defining study, blood samples were assessed for interferon-γ 
(IFNγ)-producing CD4+ T cells upon in vitro restimulation with ‘smallpox vaccine’-derived 

overlapping peptides using an ELISpot assay13,14. Memory CD4+ T cells could be detected 

75 years after vaccination with an estimated t1/2 of 8–12 years. Memory CD4+ T cells 

can be detected for at least 34 years after measles vaccination, and measles is rarely 

encountered in societies with high vaccination rates that achieve herd immunity15. Total 

mumps-specific CD4+ T cell immunity to measles, mumps and rubella (MMR) vaccination 

lasts at least 21 years16. More recently, memory CD4+ T cells were reported to persist 

for at least 11 years after severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) 

infections, 2 years after Zika virus, and several months after SARS-CoV-2 infection or 

mRNA vaccination17–20.

Even with these landmark reports, we still have limited clinical information on memory 

CD4+ T cell longevity, despite the importance of the question. Complicating a general 

consensus, mouse studies suggest that CD4+ T cell memory may be less stable over time 

compared to CD8+ T cell memory21. Challenges in defining memory CD4+ T cell longevity 

may relate to the historic difficulty in quantifying antigen-specific T cells, the need for 

longitudinal or cross-sectional samples, the time it takes to acquire longitudinal samples and, 

in humans, the need to focus on infections that are not often reencountered. This latter issue 

arises, for example, when assessing the longevity of pertussis-vaccine specific immunity. 

While CD4+ T cell memory appears to persist for at least 5 years, periodic environmental 

exposures are likely22. Of note, all the above-mentioned longevity studies rely on cytokine 

secretion from peripheral blood mononuclear cells restimulated with peptides or virus 

to quantify the pathogen-specific memory CD4+ T cells. When considering the nature 

of certain memory CD4+ T cell subsets, this approach has its limitations and can only 

detect a small fraction of the pathogen-specific CD4+ T cell population. However, recent 

technological advances broaden the available tools to generate a more complete picture of 

the memory CD4+ T cell response.
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Tools to study memory CD4+ T cells

Measuring pathogen-specific antibody titers has been feasible for about a century23. 

Quantifying antigen-specific T cell immunity is a recent innovation and rendered much 

more difficult due to MHC-restricted mechanisms of antigen detection, breadth of peptide 

epitopes that vary by MHC-II polymorphism and relevance of lymph nodes and tissue-

localized T cells that are not represented within more easily sampled blood.

The development of the ELISpot assay in the 1980s allowed the detection of pathogen-

specific restimulated memory CD4+ T cells24. However, human memory CD4+ T cell 

subsets, which are limited cytokine producers, are poorly detected with this technique. 

Moreover, analyses are usually restricted to blood samples, which may underrepresent 

important subsets. Sampling of lymph nodes through fine-needle aspiration or tissues 

through biopsies has become increasingly common. In combination with a recently 

developed cytokine-independent approach to identify pathogen-specific memory CD4+ T 

cells, these advances facilitate the detection of a broader variety of CD4+ memory subsets25. 

The ‘activation-induced marker’ (AIM) assay takes advantage of the fact that OX40 and 

CD25 are specifically upregulated upon antigen stimulation and is especially useful in 

situations where the exact CD4+ T cell epitope is unknown. In such cases, for example, 

during the emergence of SARS-CoV-2, T cells can be restimulated with peptide megapools 

covering the whole breadth of possible epitopes26. A disadvantage of the AIM assay is that 

reactivation of memory CD4+ T cells induces transcriptional and phenotypic changes and 

thus impairs the characterization of long-lived memory CD4+ T cells in a quiescent state.

TCR-transgenic mice, in which monoclonal T cells express a TCR specific for an epitope 

of interest, have served as a valuable tool. Adoptive cell transfer of naive TCR-transgenic 

T cells allows tracking of pathogen-specific CD4+ T cell responses without the need for 

restimulation27. Curiously however, TCR-transgenic CD4+ T cells often fail to model 

important aspects of ‘normal’ polyclonal endogenous responses and do not recapitulate 

the breadth and heterogeneity of effector and memory CD4+ T cells28–30. Specific TCR-

transgenic cells may exhibit intrinsic subset differentiation biases (OT-II and SM1 cells may 

be biased toward follicular helper T (TFH) cells, whereas TEa and SMARTA cells may 

be biased toward the TH1 subset of helper T cells) or differ from polyclonal endogenous 

populations with respect to longevity.

MHC-II-restricted tetramers enable the direct detection of endogenous polyclonal CD4+ T 

cells, without the need for restimulation and functional assays27,31. Tetramer reagents are 

composed of four monomeric biotinylated MHC-II molecules, which are oligomerized using 

fluorescent streptavidin and loaded with a peptide of interest. Of importance is the avidity 

afforded by the polyvalency of the reagent, as monomeric MHC-II–peptide complexes fail 

to identify epitope-specific T cells32. In contrast to MHC-I-restricted tetramers for CD8+ 

T cells, MHC-II-restricted tetramers have low sensitivity, detecting only 5–30% of total 

responding CD4+ T cells to a given antigen33. Possible explanations include decreased 

peptide–TCR affinity of CD4+ T cells compared to CD8+ T cells and/or decreased affinity of 

the co-receptor CD4+ to the MHC-II protein in comparison to the CD8–MHC-I interaction. 

The detection of low-affinity CD4+ T cells can be improved by further increasing the 
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valency, as demonstrated by dodecamers34. Recently developed tetramers contain MHC-

II molecules engineered for enhanced CD4 binding, allowing up to a fourfold increase 

in sensitivity of detecting antigen-specific CD4+ T cells35. An important advantage of 

tetramers over AIM assays is that tetramer-binding CD4+ T cells can be enriched for using 

magnetic beads, which facilitates detection of rare cell populations27.

With the rise of next-generation sequencing, new possibilities to identify epitope-specific 

CD4+ T cells will emerge. Algorithms for predicting dominant MHC-II-restricted epitopes 

contained with protein antigens, such as the Immune Epitope Database (IEDB; https://

www.iedb.org/), have improved enough to be reasonably accurate. New approaches attempt 

to go even further by predicting epitope specificity based solely on TCR sequencing. 

This is based on structural predictions and may also leverage sequencing similarity of 

previously characterized clones36. As the databases of known epitopes and TCRs expand, 

the technology should only get more powerful. We anticipate that these newly developed 

tools will further enable research on CD4+ T cells.

Differentiation and memory

Following activation of naive CD4+ T cells, differentiation is informed by the nature of the 

pathogen and associated innate alarm signals9,11. Type 1 immune responses are elicited by 

intracellular infections that induce the expression of the transcription factor T-bet in CD4+ 

T cells, and subsequent TH1 cell differentiation through interleukin (IL)-12-mediated and 

IFN-γ-mediated STAT1 and STAT4 signaling (Fig. 2). TH1 cells are characterized by their 

capacity to secrete IFNγ. Type 2 immune responses are triggered by extracellular parasites, 

certain allergens, or weak immunogens that promote Gata3-expressing TH2 cells that are 

functionally defined by their ability to synthesize IL-4, IL-5 and IL-13 through IL-4-induced 

STAT6. Type 3 immune responses develop in response to fungal and extracellular bacterial 

infections and are driven by induction of the transcription factor RORγt, which promotes 

TH17 differentiation. TH17 cells secrete IL-17 through STAT3 signaling triggered by IL-6, 

IL-23, IL-1β or transforming growth factor-β. Type 1 cytokines promote CD8+ T cell and 

macrophage responses, type 2 cytokines attract mast cells, basophils and eosinophils, and 

type 3 responses preferentially induce the influx of neutrophils to the focus of inflammation 

(Fig. 2)9,11.

Type 1, 2 and 3 responses are all associated with parallel differentiation of Bcl6-expressing 

TFH cells that help B cells and fine-tune humoral effector mechanisms (Fig. 2)2. TFH cells 

are induced in a two-step differentiation process37. Firstly, dendritic cells induce expression 

of CXCR5 on activated CD4+ T cells, allowing ‘pre-TFH’ cells to sense CXCL13 and to 

migrate to the T cell–B cell border of secondary lymphoid organs (SLOs). The signals 

that initiate the TFH cell program are still under investigation, but they include STAT3 

signaling likely induced through IL-6, IL-21 and the co-stimulatory receptor inducible T 

cell co-stimulator (ICOS)1. Secondly, further stimulation by B cells reinforces the TFH 

program and enables their migration into germinal centers located in B cell follicles. Here, 

TFH cells select pathogen-reactive B cell clones to promote plasma cell and memory B 

cell differentiation, and long-lived antibody responses1. Germinal center B cells and their 

progeny with the highest affinity for antigen receive the most sustained TFH cell help, thus 
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TFH cells promote affinity maturation1. TFH cells provide help to B cells through IL-21 

secretion and cell-contact-dependent co-stimulation through CD40L, which interacts with 

CD40 on B cells and in return receive help through ICOS, which interacts with ICOSL on 

B cells10. Like non-TFH cells, TFH cells take on flavored characteristics based on the nature 

of the pathogenic insult and associated innate response mechanisms38. For this reason, a 

revised nomenclature has been proposed to refer to the three flavors of TFH cells as the 

TFH1, TFH2 or TFH17 subset38. All three TFH flavours promote some IgG. However, while 

TFH1 cells predominantly promote the generation of IgG responses,TFH2 cells can induce 

isotype class switching toward IgE and TFH17 cells are associated with antibody-skewing 

toward an IgA isotype38. This nomenclature is not rigid and may be influenced by the 

environment. For example, in response to lung influenza infection, TFH1 cells may also 

promote local IgA through IL-21 secretion to local B cells39,40.

The intrinsic factors or extrinsic cues that guide differentiation into TFH versus non-TFH 

effector cells have not been fully elucidated. Data suggest that this decision is initiated 

within the first two cell divisions37. Some findings have indicated a link between TH1 versus 

TFH cell differentiation and cumulative TCR signal strength29,41–50. Early in vitro work 

showed that TCR-transgenic cells stimulated with low antigen doses preferentially produce 

IL-4, which was associated with a TH2 response51–53. High antigen doses triggered IFNγ 
production, and thus TH1 differentiation. Yet, very high doses induced IL-4 production51,52. 

Several in vivo studies reported that cells receiving the strongest TCR signal preferentially 

differentiate into TFH cells29,43,46. However, others found that TFH cells can be induced 

by weak TCR signals, and that strong TCR stimulation preferentially induces TH1 cell 

differentiation41,42,44,45,47,48. The variable results might be explained by the use of different 

experimental models, antigen doses and persistence, and myriad other variables, so a clear 

picture has not yet emerged. Cues may be multifactorial, including exposure to distinct 

cytokine microenvironments or dendritic cell subsets, although a recent study found no 

evidence for the latter44. There may also be intrinsic regulation of diversity (for example, 

asymmetric division) contributing to the TFH and non-TFH effector fate54. A recent model 

suggests that the decision is centered around IL-2 signaling55.

Once pathogens are eliminated, most effector CD4+ T cells undergo cell death. However, 

~5–10% of antigen-specific CD4+ T cells persist and form memory cells. In contrast to 

naive CD4+ T cells, memory CD4+ T cells do not require stimulation through MHC-II for 

survival, are more abundant for a given antigen and elicit an anamnestic response that is 

quicker and higher in magnitude12,56. Several mouse studies implied that memory CD4+ 

T cell numbers might be less stable over time compared to memory CD8+ T cells, or 

that certain subsets within the CD4+ T cell memory compartment are less stable21,57,58. 

However, this might depend on the nature of the pathogen in question rather than a 

generalizable phenomenon, as studies in humans indicate that while memory CD4+ T cells 

are less stable than their CD8+ T cell counterparts in response to measles vaccination, the 

opposite is true for smallpox vaccination13–15.
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Memory CD4+ T cells in secondary lymphoid organs

In line with previously identified memory CD8+ T cell subsets, the CD4+ T cell memory 

compartment has traditionally been subdivided into CD62L+CCR7+ central memory T 

(TCM) cells and CD62L−CCR7− effector memory T (TEM) cells59. TEM cells are further 

partitioned into TH1, TH2 or TH17 memory cells and have been well described in mice 

and humans14,57,60–64. These populations are poised to secrete effector cytokines rapidly 

upon reactivation and foster enhanced secondary responses to reinfections. TCM cells are 

functionally defined by their ability to synthesize IL-2 and have less potential for rapid IFNγ 
or IL-4 secretion59. TCM cells also exhibit enhanced proliferation potential and provide a 

less differentiated backup reservoir for TEM cells. It has been debated whether TFH cells 

persist as a distinct memory cell subset, and what role memory TFH cells might play in 

humoral immunity65.

Addressing TFH cell memory has been hindered by phenotypic commonalities between TFH 

cells and TCM cells, including expression of TCF1, ICOS, Stat3 and ID3, and the apparent 

gradual waning in expression of the TFH cell hallmark proteins CXCR5 and PD-1 (refs. 

57,66–69). Reactivation of primary memory CD4+ T cells results in accelerated antibody 

responses compared to naive mice and the formation of secondary TFH cells70. This 

suggested that TFH effector cells could feed into the TCM cell pool and, upon reactivation, 

differentiate into secondary TFH effector cells. Several differentiation schemes feature either 

TCM or TFH cell memory but often do not include both populations within the same 

model as two distinct subsets66,71,72 (Fig. 3). Increasing evidence supports the concept of 

memory TFH cells as a distinct memory population, and recent studies in mice identified 

the simultaneous presence of both TCM and TFH memory cell populations with distinct 

transcriptional programs (Fig. 3)28,68,69,73–75. Using a nanobody that prevents NAD-induced 

cell death during isolation from tissues, TFH cells were shown to persist for >400 d after 

an acute lymphocytic choriomeningitis (LCMV) infection, well after antigen is putatively 

cleared28. Here, long-lived TFH cells maintained elevated expression of CXCR5 and PD-1 

compared to non-TFH cells (but lower than TFH effector cells) and high expression of 

a receptor that is also expressed during the effector phase, the folate receptor FR4 (ref. 

76). FR4hi memory TFH cells are also generated upon Listeria monocytogenes infection or 

mRNA vaccination, but for unclear reasons are absent in TCR-transgenic memory CD4+ T 

cell populations28,77.

Nevertheless, the relationship between precursor TCM cells, TCM cells with TFH potential, 

TFH effector cells and memory TFH cells is far from clear. During CD4-dependent 

extrafollicular B cell responses initiated at the T cell–B cell border, CD4+ T cells that 

express intermediate levels of CXCR5 during an effector response have been referred 

to as TFH cells29,78. However, after LCMV infection, CXCR5+ cells include precursor 

CCR7+ TCM cells that depend on the transcription factor Thpok and are transcriptionally 

distinct, but closer to TH1 cells than TFH cells69. At a memory timepoint, CCR7+CD4+ T 

cells often express CXCR5, but in certain contexts can also be found within the CXCR5− 

fraction79. Transfer of CXCR5intCCR7+ cells 10 d after infection into naive mice revealed 

preferential homing to T cell zones, persistence, retention of a TCM cell phenotype and 

IL-2 production upon reactivation, thus meeting previous definitions of TCM cells, despite 
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expression of CXCR5 (ref. 57). CXCR5 is a target of Bcl6, and Bcl6-deficient CD4+ T 

cells fail to generate CXCR5-expressing effectors at the peak of the response80. Bcl6 acts 

as a transcriptional suppressor and competes with Blimp1 for the induction or suppression 

of TFH and non-TFH programs81,82. That said, initiation of CXCR5 expression early in 

the immune response can be independent of Bcl6, and CD4+ T cells deficient for both 

Bcl6 and Blimp1 were unexpectedly able to form CXCR5+ T cells; however, they did 

otherwise lack much of the stereotypic TFH cell gene expression program73,80,83. Human 

circulating CXCR5+ memory TFH1 cells, but not circulating memory TFH2 or TFH17 cells 

were shown to be poor promoters of B cell responses84,85. Thus, CXCR5 expression is not 

the sole defining criterion for functional TFH cells, but resolving phenotypic and ontogenetic 

relationships remain challenges for the field.

Serum antibody is maintained by long-lived plasma cells in the bone marrow, which persist 

independently of CD4+ T cell help86. Therefore, a legitimate question is what are the 

memory TFH cells needed for. Evidence suggests that memory TFH cells might provide 

survival signals to long-lived plasma cells that localize in organs other than the bone marrow 

under homeostatic conditions28. Or upon reinfection, memory TFH cells might accelerate 

differentiation of memory B cells into plasma cells or promote secondary germinal center 

reactions70,87,88. Better characterization of where memory TFH cells localize and which cell 

subsets are in close proximity might better inform function. Speculatively, high expression 

of CXCR5 in combination with absence of CCR7 expression might allow some memory 

TFH cells to stay positioned within the B cell follicle or colocalize with memory B 

cells in the subcapsular sinus89,90. The existence of antigen-specific memory TFH cells 

in human SLOs has not been reported yet. While germinal centers in humans can persist 

for up to a year, the same microstructure is generally shorter-lived in mice, or persisting 

germinal centers seemingly change their antigen specificity over time91. This makes it 

more difficult to discriminate late effector TFH cells from bona fide memory TFH cells in 

the human setting. Perhaps sequencing of measles-specific and smallpox-specific memory 

CD4+ T cells from vaccine-draining lymph nodes will allow assessment of the persistence 

of human antigen-specific long-lived TFH cells in the likely absence of natural boosting, 

as has recently been executed for smallpox-specific memory B cells92. Lastly, it should 

be noted that the distinction of TEM, TCM and memory TFH cells underrepresents the 

heterogeneity of the CD4+ memory compartment in SLOs, as these three major subsets can 

be further subdivided. We discussed heterogeneity solely through the prism of functional and 

phenotypic attributes, but heterogeneity can be further expanded to different axes including 

localization, migration properties, proliferation potential and developmental plasticity (Fig. 

3).

Developmental plasticity of memory CD4+ T cells

Epigenetic analyses revealed that memory TH1 cells exhibit increased IFNγ, but not IL-4 

promoter accessibility, whereas the opposite was found for memory TH2 cells93. Although 

culturing in vitro differentiated TH2 cells in TH1 conditions can upregulate T-bet and 

IFNγ, ex vivo isolated effector memory TH2 cells display little plasticity93. In contrast, 

TH17 cells appear to have a less-fixed epigenetic state than memory TH1 or TH2 cells, 

potentially allowing differentiation into IFNγ-secreting TH1 cells94. Indeed, memory TH17 
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cells produce both IL-17 and IFNγ in nasal tissue upon reinfection with Streptococcus 
pyogenes95. Additionally, memory TH17 cells express stem-associated proteins like CD27 

and TCF1, implying a less differentiated state61.

CD27 and TCF1 are also expressed on TCM cells, albeit not as highly as on TFH cells28,67,69. 

After LCMV infection, memory Ly6C−PSGL1+CD4+ T cells, which contain TCM cells, 

show greater expansion upon reactivation than Ly6C+ TEM cells, and generate both Ly6C− 

and Ly6C+ effector T cells67. When the Ly6C−PSGL1+CD4+ T cells and Ly6C−PSGL1− 

memory TFH cells were adoptively transferred and raced against each other, both generated 

similar numbers of TH1 cells and precursor TCM cells, but memory TFH cells were more 

efficient in generating secondary TFH effectors28. Influenza-specific memory TFH cells 

also exhibit exceptional plasticity65. In conclusion, memory TFH cells appear to retain 

considerable developmental plasticity and enhanced potential to produce TFH cell progeny.

Maintaining developmental plasticity within a response may be important. In the case of 

tuberculosis (TB), IFNγ-producing TH1 cells are crucial for providing protection96. To 

improve the existing Bacillus Calmette–Guerin (BCG) vaccine, a modified vaccinia Ankara 

vector expressing a TB antigen was generated97. Despite the successful establishment 

of memory TH1 cells, the clinical trial showed that the vaccine does not elicit any 

protection98 and left unclear if this was a failure of concept or execution. A mouse study 

showed that memory-like TH1 cells get efficiently reactivated but disappear quickly upon 

adoptive transfer and subsequent TB infection, indicative of a short-lived population99. 

In contrast, memory-like PD1+ICOS+CD4+ T cells seemed to persist longer, exhibited 

increased developmental plasticity and provided superior protection. One interpretation of 

these data is that an ideal TB vaccine would generate a balanced, heterogenous memory 

compartment consisting of terminally differentiated memory TH1 cells and memory CD4+ T 

cells that maintain developmental plasticity and proliferative capacity to optimally respond 

to TB over a prolonged period.

Memory CD4+ T cells in nonlymphoid tissues

Memory CD4+ T cells can be segregated by their migration properties. Under homeostatic 

conditions, TCM cells recirculate through blood, lymphatics and SLOs, whereas TEM cells 

are mostly restricted to the blood and upon reactivation preferentially migrate to inflamed 

tissues59. Based on their transcriptional profile, the majority of antigen-specific memory TFH 

cells within SLOs appear to be resident28. Nonlymphoid tissues (NLTs) are surveilled by 

abundant populations of memory CD4+ T cells, comprising largely tissue-resident memory 

T (TRM) cells but also equilibrating populations6,100–106 (Fig. 4). CD4+ TRM cells share 

properties with CD8+ TRM cells, including downregulation of the transcription factor KLF2 

and the tissue egress molecules S1PR1 and CCR7, and upregulation of CD69 (refs. 6,107).

CD4+ TRM cells in mice have been described in numerous tissues, including lung, skin, 

female reproductive tract, salivary glands, small intestine, large intestine, liver, kidneys, 

bone marrow and nasal tissue among others6,101,108–110. CD4+ TRM cells are generated 

in numerous infection modalities such as viral, bacterial, fungal, helminth or parasitic 

infection, or vaccination settings such as live attenuated vaccines, inactivated vaccines, 

Künzli and Masopust Page 8

Nat Immunol. Author manuscript; available in PMC 2023 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



acellular vaccines or mRNA vaccines, and can play protective roles77,105,109,111–120. CD4+ 

TRM cells are also engaged in pathogenic roles in autoimmune diseases such as asthma, 

inflammatory bowel disease or glomerulonephritis121–123. In humans, CD4+ TRM cells 

have been shown to persist for years in the small intestine, lung and liver upon organ 

transplantation124–126. Identification of human TRM cells in non-transplant situations is 

difficult and relies on surface markers, most prominently CD69. Of note, CD69 is an 

imperfect marker because in mice, parabiosis experiments revealed the existence of CD69− 

TRM cells and CD69 is also an early T cell activation marker127–129. Nevertheless, 

transcriptional profiling of human CD69+CD4+ T cells from tissues identified a partial 

overlap with mouse CD8+ TRM cells107. Combined TCR and single-cell RNA sequencing 

revealed expanded CD4+ T cell clones uniquely present in NLTs, providing further 

opportunities to refine TRM cell signatures130.

In contrast to CD8+ TRM cells, CD4+ TRM cells often lack expression of CD103 (ref. 6). 

CD103 facilitates interaction with E-cadherin-expressing epithelial cells and promotes T cell 

adhesion in epithelial layers. Ectopic expression of Runx3 in CD4+ T cells increased CD103 

expression and preferential localization to epithelial layers in the skin and small intestine131. 

Thus, CD4+ TRM cells can adapt the Runx3-CD103 residency program, but why it is mainly 

restricted to CD8+ TRM cells is unclear. Indeed, epithelial cells in various NLTs including 

lungs, small intestine or skin can express MHC-II132–135. In a Streptococcus pneumoniae 
infection model, absence of MHC-II expression in lung epithelial cells resulted in a 

redistribution of CD4+ TRM cells and dysregulated barrier immunity upon reactivation135.

CD4+ TRM cells take on TH1, TH2 or TH17 effector functions, recruit and support 

various innate and adaptive cells at sites of infection and perform sensing and alarming 

functions upon reactivation6,7,30,79,105,109,111,113,117,121,136,137. But they do more than that. 

For example, CD4+ TRM cells can be involved in tissue remodeling via secretion of 

amphiregulin or can induce mucus metaplasia and airway hyperresponsiveness in an allergic 

asthma model114,121,138. However, compared to CD8+ TRM cells, CD4+ TRM cells are still 

understudied due to technical challenges.

An FR4+CXCR5+ TFH-like TRM cell population that promotes local antibody and CD8+ 

TRM cell responses through IL-21 secretion was identified in lungs of influenza-infected 

mice30,137,139. TFH-like TRM cells preferentially localize near B cells within inducible 

bronchus-associated lymphoid tissues, whereas TH1-like TRM cells are positioned at the 

outer boundaries of these structures30. Thus, the formation of TFH-like TRM cells in 

NLTs upon acute stimulations might require induction of tertiary lymphoid structures 

(TLSs). In humans, SARS-CoV-2-specific CD4+ TFH-like cells have been identified in 

lungs; however, their stimulation history is unknown140. Circulating IgG antibodies exudate 

into tissues and mucosal compartments. Nevertheless, local memory TFH cells might be 

important to induce rapid plasma cell differentiation upon reinfection to increase local 

antibody titers or fine-tune tissue-specific antibody responses, such as promoting dimeric 

IgA within mucosae141,142. Moreover, blood-borne antibodies poorly access some sites 

under homeostatic conditions, including olfactory tissues143. However, infections and 

vaccination with mucosal adjuvants can establish humoral protection of the olfactory 

epithelium through locally produced antibodies that are dependent on CD4+ T cell help. 
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Conceptually, the decentralization of cellular immunity from SLOs to NLTs has become 

well established144–146. Identification of TFH-like TRM cells and resident memory B (BRM) 

cells in NLTs provides evidence that decentralization of immunity extends to the humoral 

arm as well.

Secondary lymphoid organ CD4+ TRM cells

Memory CD4+ T cells also take up permanent residence in SLOs. Data from human 

lymph nodes revealed that a surprisingly large proportion (~70%) of CD4+ T cells express 

CD69 without downregulating IL-7R, indicative of a resting memory population147. Using 

photoconvertible proteins, it was shown that 7 d after photoconversion, a substantial fraction 

of antigen-experienced CD4+ T cells in lymph nodes and Peyer’s patches retained the 

label, indicative of a resident population148. Tracking of antigen-specific memory CD4+ T 

cells using either a photoconvertible system or parabiosis further confirmed the existence 

of SLO TRM cells6,149,150. Of note, the resident population is not restricted to a TFH cell 

phenotype (TFH cells make up ~7%) but exhibits substantial heterogeneity148. Differences in 

migration attributes might allow for a refined subdivision of TEM cells. For example, Ly6C+ 

memory TH1 cells might be mostly restricted to the blood. However, a Ly6C− memory 

TH1 counterpart has been described with decreased expression of Klf2 and S1pr1 mRNA. 

This subset might take up permanent residence in a lymph node after leaving NLTs6,28. At 

this point, little is known about the ontogeny of CD4+ SLO TRM cells and their anatomic 

localization and function upon reactivation.

CD4+ TRM cells as a reservoir for HIV

CD4+ T cells are the major reservoir of HIV. Antiretroviral therapy (ART) suppresses 

replication of HIV in CD4+ T cells from the blood to undetectable levels but does 

not eradicate the virus in infected cells. Thus, infected people undergo lifelong therapy. 

Subsequent viral rebound is thought to occur in a small fraction of latently infected long-

lived memory CD4+ T cells151. A drug concentration-dependent spatial model argues that 

ongoing viral replication may occur in pharmacologic sanctuaries within lymphoid tissues 

because ART drug levels are below the threshold to efficiently suppress replication in 

non-activated CD4+ T cells152. Importantly, viral DNA molecules in CD4+ T cells were 

increased in the cervix, ileum and bronchoalveolar lavage compared to blood samples 

years after suppressive treatment, suggesting that NLTs might be sites of viral persistence 

too153–155. Analysis of cellular reservoirs in the cervix of aviremic women revealed that 

CD4+ TRM cells express markers associated with susceptibility for HIV infection and make 

up >95% of infected CD4+ T cells154,156. Furthermore, the overall frequency of CD4+ TRM 

cells decreased in ART-treated versus uninfected women. Studies in macaques have shown 

that initiating ART 3 d after infection is too late to prevent viral rebound after 24 weeks 

of continued therapy, suggesting that the viral reservoir is seeded in nonlymphoid tissues as 

early as 1–2 d after infection157,158. In addition, limited tissue penetration of antiretroviral 

drugs might lead to subtherapeutic concentrations at the sites of infection159. Quantitative 

studies in mice indicate that CD8+ TRM cells constitute perhaps the most abundant subset 

of antigen-experienced CD8+ T cells, and the same may be true for CD4+ T cells127. Thus, 
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CD4+ TRM cells may represent a quantitatively relevant HIV reservoir that will not be 

sampled in blood and could in theory provide sanctuaries for reemerging infection.

Memory Treg cells

There have been increasing investigations into the durability of Treg cells, many of which 

are specific for constitutively expressed self-antigens and non-self-antigens, and whether 

Treg cell maintenance exclusively depends on tonic TCR stimulation. Analyses of putative 

memory Treg cells are technically challenging due to limitations in defining antigen 

specificity, low abundance and lack of unstimulated memory-specific markers160–162.

By using an elegant mouse model in which expression of a self-antigen in the skin was 

turned off, established Treg cells were shown to persist in the absence of antigen163. 

Subsequently, fetus-specific Treg cells were identified in the SLOs of pregnant mice, and 

these Treg cells persisted after delivery164. In a viral infection model, Treg cells were shown 

to persist in the lung, rapidly expand upon reinfection, and potently suppress effector 

CD4+ T cells to mitigate tissue damage without negatively impacting viral clearance, 

providing further evidence for memory165,166. In contrast, inducible genetic tracing 

approaches indicated that inflammation-experienced Treg cells lack functional memory, 

potentially avoiding generalized host immunosuppression167. Thus, memory Treg cells may 

be contextual, although more investigations are needed.

Chronic antigen stimulation and exhaustion

The persistence of antigen has a profound effect on CD4+ T cell differentiation, although 

this varies by the type of infection, tumor or autoimmune context. Compared to mouse 

naive CD4+ T cells, memory CD4+ T cells that persist after clearance of acute LCMV 

Armstrong infection largely share patterns of gene expression with CD4+ T cells exposed to 

chronic LCMV Cl13 (ref. 168). However, persistent LCMV antigen stimulation eventually 

induces CD4+ T cell exhaustion, which is characterized by a lower magnitude of cells, 

decreased cytokine production and upregulation of inhibitory receptors including PD-1, 

Lag3 and CTLA-4. These inhibitory markers are also expressed by TFH cells, and CD4+ T 

cell differentiation upon chronic LCMV infection is skewed toward a TFH phenotype168–170. 

However, exhaustion markers, such as TOX, are much higher on a per-cell basis in 

chronically stimulated TH1 and TFH cells compared to acutely stimulated TFH effectors42. 

A memory-like TCF-1+Bcl6lo progenitor T cell population that shares similarities with 

TCM or TFH precursor cells was proposed to sustain both TFH and TH1 effector responses 

during chronic viral infection171. However, a shift toward TFH cell differentiation is not a 

generalizable feature of chronic antigen stimulation. For instance, TH1 cells become the 

dominant subset in response to chronic phagosomal infections, such as Mycobacterium 
tuberculosis or Salmonella enterica172,173. Tumor-infiltrating CD4+ T cells kill cancer cells, 

destroy tumor vessels and sustain leukocyte responses mainly through the secretion of 

IFNγ, TNF and IL-2 (ref. 174). While most CD4+ T cells within the tumor environment 

are TH1-like cells, tumor-draining lymph nodes and tumor-associated TLSs also contain 

TFH-like cells, reminiscent of the heterogeneity and spatial distribution of influenza-induced 

pulmonary CD4+ TRM cells175 (Fig. 4). However, in contrast to the well-established role of 
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TFH cells in vaccination and infection, the role of TFH in antitumor immunity is less clear, 

and might include contributions to forming TLS through CXCL13 secretion, promotion of 

CD8+ T cell and B cell responses through production of IL-21 (ref. 175).

CD4+ T cells participate in numerous autoimmune conditions including allergic asthma, 

inflammatory bowel disease, psoriasis, multiple sclerosis and rheumatoid arthritis176,177. 

Although TH2-like cells are implicated in asthma, autoreactive CD4+ T cells often display a 

TH17 or a TH1–TH17 hybrid phenotype79,176,177. In comparison to CD4+ T cells responding 

to foreign antigen, the affinity of self-reactive CD4+ T cells is typically lower, because 

high-affinity clones usually get deleted in development or differentiate into Treg cells178. In 

an elegant mouse study, engineered CAR T cells eliminated specific autoimmune-reactive 

CD4+ T cells179. CAR T cells that only depleted high-affinity self-reactive CD4+ T cells 

failed to ameliorate established experimental autoimmune encephalomyelitis, a model of 

multiple sclerosis179. However, CAR T cells that also depleted low-affinity self-reactive 

CD4+ T cells reversed disease179. It seems likely that low-affinity CD4+ T cells may better 

maintain function in contexts of chronic antigen stimulation, whether it be derived from self, 

tumor or infection.

Conclusion

The diverse biology of memory CD4+ T cells, the sequestration of subsets in tissues outside 

of blood, the complexity of assays for their identification and scarcity of antigen-specific 

populations all provide challenges to their study. However, substantial strides have recently 

been made, resulting in increasingly sophisticated models that describe divisions of labor 

and ontogenetic relationships among highly specialized memory CD4+ T cell subsets. Issues 

that are critical to address in the future include a better description of memory CD4+ 

T cell heterogeneity, including transcriptional regulation, migration properties and spatial 

distribution of memory CD4+ T cells within lymphoid and nonlymphoid tissues. A better 

understanding of how memory CD4+ T cells communicate with various immune and non-

immune cellular networks within distinct microenvironments could help inform strategies to 

manipulate harmful autoimmune-reactive memory CD4+ T cells, reprogram memory CD4+ 

T cells to fight cancer and to foster new vaccination strategies that induce the right subsets 

at the right location to efficiently harness the protective potential of memory CD4+ T cells. 

Thus, gaining a more complete grasp of memory CD4+ T cell biology should have broad 

implications.
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Fig. 1 |. Dynamics of a CD4+ T cell response.
1. Naive CD4+ T cells quiescently recirculate through blood (dark red) and lymphoid (light 

green) tissues. Upon infection, for example by a respiratory pathogen, APCs migrate from 

infected barrier sites (magenta) to the draining lymph nodes through afferent lymphatics and 

present peptides from the pathogen on MHC-II molecules. 2. Recognition of the peptide–

MHC-II complex through TCR in combination with co-stimulation and cytokine signals 

lead to the activation, differentiation and expansion of naive CD4+ lymph node T cells. 3. 

CD4+ T cells proliferate and differentiate into various effector subsets that each become 

poised to make specialized contributions to immunity. 4. Many proliferated T cells leave the 

lymph nodes and migrate to the infected tissue through blood to assist in pathogen control at 

sites of infection. 5. Once the infection is cleared, most pathogen-specific CD4+ T cells die 

resulting in contraction of the population. 6. However, a few survive to establish long-lived 

memory and stay widely distributed across the body. 7. Upon reinfection, memory CD4+ 

T cells can mount anamnestic responses that are quicker and of higher magnitude than a 

primary response.
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Fig. 2 |. CD4+ T cell differentiation is tailored to specific classes of immunogens.
Naive CD4+ T cells differentiate into specialized effector subsets that support cell-mediated 

or humoral responses. Intracellular pathogens induce T-bet-expressing T helper (TH) 1 

cells that secrete IFNγ to potentiate CD8+ T cell and macrophage responses. Extracellular 

parasites induce GATA3-expressing TH2 cells that secrete IL-4, IL-5 and IL-13 to recruit 

and activate mast cells, eosinophils or basophils. Extracellular bacteria or fungi trigger 

the formation of RORγt-expressing TH17 cells that produce IL-17 to trigger neutrophil 

responses. In parallel, immunogens induce Bcl6-expressing TFH cells that receive help from 

B cells through ICOS and in turn promote humoral responses by providing CD40L and 

cytokines to B cells through direct cell-to-cell interaction, triggering isotype switching, 

affinity maturation and differentiation into memory or antibody-secreting cells. TFH cells 

take on some characteristics of their cell-mediated response counterparts, expressing low 

levels of T-bet, GATA3 or RORγt, leading to biased secretion of IFNγ, IL-4 or IL-17 and 

skewing the antibody response toward specific isotypes.
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Fig. 3 |. Memory CD4+ T cell heterogeneity and ontogeny.
a, Memory CD4+ T cells exhibit heterogeneity in many parameters, including function, 

migration, location, developmental plasticity and proliferative potential. This makes 

categorization of defined subsets challenging. b, Existing memory CD4+ T cell 

differentiation schemes. Left, excludes memory TFH cells. Middle, specifies memory TFH 

cells, but excludes the concept of TCM cells. Right, includes both memory TFH cells and 

TCM cells. TFH cells might differentiate directly from activated naive CD4+ T cells, or come 

from a common TCM cell precursor.
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Fig. 4 |. Immunosurveillance by CD4+ T cells.
Memory CD4+ T cell immunosurveillance strategy after a respiratory viral infection that 

elicits a type I response. Although we focus on memory TH1 cells, both memory TH2 

and memory TH17 cells have been well documented to take up permanent residence in 

NLTs. In contrast to TH1 TCM cells, which express CD62L, many memory TH1 cells cannot 

access lymph nodes (LN) through high endothelial venules. These memory TH1 cells in 

lymph nodes might represent TH1 cells that recirculate constitutively through NLTs and 

enter lymph nodes through afferent lymphatics (‘backdoor entry’) from upstream NLTs, or 
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SLO-resident memory TH1 cells. Memory TH1 cells in the blood comprise blood restricted 

cells, NLT recirculators and TCM cells. FR4hi memory TFH cells populate SLOs and may 

reside at the outer boundaries of B cell follicles. TFH-like CD4+ TRM cells have been 

identified in lungs of influenza-infected mice. In contrast to resident TH1 cells, resident TFH 

cells seem locally restricted to TLSs.
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