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Abstract: Endometriosis is an estrogen-dependent common chronic inflammatory disease defined by
the presence of extrauterine endometrial tissue that promotes pelvic pain and fertility impairment.
Its etiology is complex and multifactorial, and several not completely understood theories have been
proposed to describe its pathogenesis. Indeed, this disease affects women’s quality of life and their
reproductive system. Conventional therapies for endometriosis treatment primarily focus on surgical
resection, lowering systemic levels of estrogen, and treatment with non-steroidal anti-inflammatory
drugs to counteract the inflammatory response. However, although these strategies have shown
to be effective, they also show considerable side effects. Therefore, there is a growing interest in
the use of herbal medicine for the treatment of endometriosis; however, to date, only very limited
literature is present on this topic. Polyphenols display important anti-endometriotic properties; in
particular, they are potent phytoestrogens that in parallel modulates estrogen activity and exerts
anti-inflammatory activity. The aim of this review is to provide an overview on anti-inflammatory
activity of polyphenols in the treatment of endometriosis.

Keywords: endometrium; anti-inflammatory activity; polyphenols; NSAIDs

1. Introduction

Endometriosis (EMS) is a common estrogen-dependent gynecological disease [1]
characterized by the growing of endometrial cells outside the uterus (commonly known as
“endometriosis implants”), especially in the pelvic area including the ovaries, ligaments
and peritoneal surfaces as well as bowel and bladder [2,3]. Implants promote inflammation,
which in more aggressive endometrial stages (III and IV) result in a band of scar tissue, also
called endometrial adhesions. EMS affects 10–15% of women in reproductive age and it is
associated with different symptoms such as infertility, chronic pelvic pain, dyspareunia,
dysmenorrhea and abnormal uterine bleeding [1,2]. The American Society for Reproductive
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Medicine (ASRM) classifies EMS into four different stages according to the size of the
endometriotic lesions in the ovaries, peritoneum, and fallopian tubes, and the severity of
adhesion at each of the aforementioned sites: minimal (Stage I), mild (Stage II), moderate
(Stage III) and severe (Stage IV) (Figure 1) [4].
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EMS diagnosis occurs in 2 to 11% of asymptomatic women, 5 to 50% of infertile
women, and 5 to 21% of women hospitalized for pelvic pain. It is interesting to note that
EMS occurs also in a small percentage (9%) of adolescents who experience chronic pelvic
pain, with the majority of them (75%) not responding to medical treatments [5]. This
condition, which heavily impacts the patient’s quality of life, is identified through surgical
or laparoscopy exploration, followed by histopathological analyses [6,7].

It is widely known that genetic, immunological, and environmental factors play a
pivotal role in the onset of EMS [8–10]. Although its etiology is unknown, different studies
confirm that it is characterized by changes in the activity of estradiol (E2) and proges-
terone (P4) receptors, which impairs their dependent pathways and results in P4 resistance
and E2 dependence. These events seem to be strongly correlated with pain and infer-
tility in EMS-affected women [10,11]. Indeed, it has been demonstrated that metabolic
alterations of sex steroids E2 and P4 affect the ability of endometriotic cells to proliferate,
migrate, and infiltrate the mesothelium. Furthermore, they promote the release of pro-
inflammatory factors, playing a critical role in disease progression [12,13]. Several studies
showed that pro-inflammatory mediators, such as cytokines, metalloproteinases (MMPs)
and prostaglandins (PGs), enhance sex steroid receptor down-regulation, increasing aro-
matase activity (encoded by CYP19A1 gene), the enzyme mainly responsible for estrogen
biosynthesis [14–17]. Inflammation can activate the eicosanoids pathway through enzy-
matic and non-enzymatic oxidation of arachidonic acid (AA) produced by phospholipase
A2 (PLA2) from the membrane phospholipids. AA is, in turn, metabolized by cyclooxyge-
nases (COXs), lipoxygenases (LOXs) and nitric oxide synthase (NOS), giving rise to different
oxidation products such as PGs, thromboxanes (TXs), leukotrienes (LTs) and lipoxins (LXs).
Cytokines trigger the up-regulation of COX-2 expression; as result, the COX-2-dependent
prostaglandin E2 (PGE2) biosynthesis is higher in the peritoneal fluid of EMS patients
compared to normal endometrium [16,18–21]. This inflamed micro-environment strongly
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sustains the proliferation and invasion of the endometrium epithelial and stromal cells,
reducing apoptosis and enhancing angiogenesis [22]. As a consequence, the therapeutic
inhibition of COX-2, PGE2, and/or their receptors—prostaglandin E receptor 2 (PTGER2)
and prostaglandin E receptor 4 (PTGER4)—decreases the survival and invasive ability of
endometriosis cells [22].

Currently available non-steroidal anti-inflammatory drugs (NSAIDs) can be classi-
fied into two main families: (i) non-selective NSAIDs, such as ibuprofen (IBF), naproxen
(NAP) and aspirin (ASA) that inhibit COXs-dependent PGs production; and (ii) selec-
tive COX-2 inhibitors, such as celecoxib (CXB), mainly used as first-line treatment for
EMS-affected women [23,24].

However, these therapeutic agents show short- and long-term adverse effects, espe-
cially on the gastrointestinal and cardiovascular systems [24–28], which limit a lot their use
in EMS patients.

Considering this, and the always-high incidence of this pathology, there is an increas-
ing interest to explore additional and alternative approaches. From this point of view,
several studies have demonstrated the critical role of some non-nutrient compounds such
as polyphenols in counteracting EMS-related pro-inflammatory events [29,30] as promising
alternative strategies. Furthermore, some natural compounds, such as polyphenols like
resveratrol (RESV), might also potentially minimize the adverse effects of NSAIDs [31–36],
thus potentially exploitable for co-treatment approaches.

This narrative review aims to summarize the current knowledge on the anti-inflammatory
properties of natural compounds, focusing on their potential use as NSAID alternatives for
the treatment of EMS.

2. Materials and Methods

Case reports, original studies and recent reviews published between 2010 and 2023
were collected in scientific databases available online, e.g., PubMed, Web of Science, Google
Scholar and Science Direct.

The study was carried out according to the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) scheme. The selection process, inclusion, and
analysis are shown in (Figure 2).
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Article titles were double-checked and duplicates were excluded. Overall, 905 articles
were identified, of which 524 were excluded after two reviewers’ provisional assessment of
titles and abstracts, and 209 after full-text screening. In the end, 124 articles relevant to the
topic were selected, including 29 original articles, 81 reviews, and 13 case reports.

3. Current and Alternative Treatments of Endometriosis

The therapeutic strategies adopted for EMS patients are strictly dependent on different
criteria such as age, side-effect profile, lesion extent and locations, as well as prelimi-
nary treatments [37,38]. Nevertheless, the surgery to remove the ectopic endometriosis
lesions represents the treatment of first choice, generally followed by long-term phar-
maceutical therapy with NSAIDs and oral contraceptives [39–41]. Generally, in order
to avoid EMS-dependent PGs formation, NSAID-dependent treatment foresees the ad-
ministration of the drug a few days before the menstruation, thus reducing pain and
swelling. NSAIDs inhibit PGE2 production through a reversible blockade of COX-1 and
COX-2 enzymes, which mainly catalyze the conversion of AA into PGs. Non-selective
NSAIDS, like IBF or NAP, block both of these enzymes, while other NSAIDs, such as
CXB, only block the COX-2 enzyme.

Oral contraceptives induce hypoestrogenemia in addition to the inhibition of tissue
proliferation and inflammation [42]. Progestins plus gonadotropin-releasing hormone
agonists (GnRH) that cause amenorrhea is another method for reducing systemic estrogen
levels [43], alleviating disease-related symptoms [44]. However, the conventional medical
procedures outlined above may result in limited efficacy for the majority of patients due to
the onset of several side effects, including perimenopausal stage symptoms, osteoporosis,
lipid profile changes, and liver dysfunction [40,41]. Therefore, in order to counteract
EMS, many women are using non-pharmacological alternatives mainly based on natural
substances that, in addition to a healthy lifestyle characterized by exercise, health nutrition,
osteopathy and relaxation techniques like autogenic training and meditation [3,44], allow
to properly control and sometimes revert the EMS symptoms.

Polyphenols, which include different classes of flavonoids and stilbenes, are natural
substances that have been extensively investigated for their anti-inflammatory properties.
They may provide an important alternative to NSAIDs because of their anti-inflammatory
activity, the fact that they are often COX-2 selective, and by accelerating the healing process,
decreasing the side effects that EMS patients currently experience [3,45].

4. Dietary, Nutritional and Molecular Aspects in Endometriosis

Diet is crucial in the development and management of EMS [3,27,46,47] given its
ability to control the metabolism of steroid hormones, inflammation, muscle contraction,
menstrual cycle and PG metabolism [48]. Interestingly, poor eating habits and deficiency of
several nutrients such as folic acid, vitamin B12, zinc and choline may also interfere with
the DNA methylation process affecting gene expression, that, in turn, affects the devel-
opment of EMS [9,48,49]. For example, reduced methylation of the ERβ gene promoter
region in endometriotic cells with respect to the healthy endometrial cells results in ERβ
over-expression. Similarly, aberrant methylation on the promoter of the gene encoding for
steroidogenic factor 1 (SF1), a transcription factor controlling estrogen production, leads to
its over-expression and increases E2 levels in the microenvironment surrounding endometri-
otic cells [9,14,50–52]. Additionally, various animal and plant dietary derivatives such as
AA and omega-6 polyunsaturated fatty acid (ω-6) can influence the pro-inflammatory
effects of prostaglandin PGE2 as well as leukotrienes (LTB4) [47,48]. For example, red
meat containing AA andω6 contributes to the inflammation increase in EMS. Due to high
amounts of E2 and estrone (E1), a red meat-rich diet might also boost estrogen levels, and
it is therefore not recommended in case of EMS [53].
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Furthermore, food of animal origin can also contain some chemical contaminants
that act as endocrine disruptors (EDs) leading to hormonal homeostasis unbalance [54,55].
Since PGs are thought to be the primary factors for EMS progression, the suggested diet
should work to lower their concentration [28,56]. Among the recommended food there
are fish, chia and flaxseed oils, containing the omega 3 (ω-3) compound, eicosapentaenoic
acid, and docosahexaenoic acid, which inhibit the conversion of AA to PGE2 and LTB4,
leading to inflammation inhibition [57]. Other highly recommended foods are those rich
in phytochemicals such as carotenoids, flavonoids, and isothiocyanates, with well-known
anti-proliferative and anti-inflammatory properties [3,47,57].

4.1. Endometriosis Hormonal Imbalance (E2 and P4) and Nuclear Receptors

E2 and P4 regulate the homeostasis and function of the human uterus and its en-
dometrium, ensuring efficient menstrual cycles and fertility [3,10,58]. E2 regulates prolif-
eration of endometrium and supports the growth of endometrial gland before ovulation,
preparing the endometrium for P4 activity [9]. P4 inhibits E2 activity, triggering the decidu-
alization process [15]. These hormones act by binding their intracellular nuclear receptors
(NRs), the estrogen receptors (ERs) and progesterone receptors (PRs). Two main estro-
gen receptors (ERs), ERα and ERβ, encoded by two different genes (ESR1, ESR2) are
known [15,59]. On the contrary, the P4 endometrium cells responsiveness is mediated
by the coordinated actions of two PRs isoforms, PR-A and PR-B, transcribed from two
different promoters of the same gene and sharing a common structure, with only additional
164 amino acid domains at the amino terminus of PR-B [60]. PR expression is induced by
E2 trough ERα, and, in turn, PR inhibits ERα expression, creating a feedback system to
balance downstream effects [61].

EMS is mainly characterized by high E2 levels and resistance to P4. Loss of P4 re-
sponsiveness leads to both increased growth of endometriotic lesions and a non-receptive
endometrium, as its signaling is required to counteract E2-induced proliferation and pro-
mote decidualization [62]. This imbalance also enhances the recruitment of immune cells
promoting inflammation and allowing angiogenesis [11,15,63]. The altered expression of
several enzymes involved in E2 biosynthesis contributes to increase the estrogen levels in
EMS. Among them, aromatase, which catalyzes the conversion of androgens into estrogens,
is over-expressed, while 17β-hydroxysteroid dehydrogenase type 2 (HSD17β2), which is
normally induced by P4 and triggers the conversion of E2 in the less potent sex steroid
hormone E1, is reduced [63,64]. Furthermore, the steroidogenic acute regulatory protein
(StAR), which triggers the ex-novo synthesis of E2 from cholesterol, is upregulated [14,65].
E2 over-production triggers the recruitment of immune cells which further produce inflam-
matory mediators in endometriosis lesions. This modified microenvironment is in turn
able to increase COXs and aromatase expression, further increasing the production of E2
and PGs, leading to severe inflammation. Moreover, the over-expression of COXs and the
increased synthesis of PGs is influenced by over-expression of ERβ [59,66]. In a normal
endometrium, PR-A and PR-B are expressed both in stromal and epithelial cells, but the
loss or down-regulation of either one or both isoforms may cause endometrial lesions [67].
Indeed, in EMS, the PR-B expression is significantly reduced while the PR-A expression is
significantly higher [68,69], causing P4 resistance and improper retinoid synthesis [9,70].

In normal cells, P4 pathway increases retinoic acid (RA) synthesis in endometrial
stromal cells leading to an increase in HSD17β2 expression in endometrial epithelial
cells [70]. Although P4 levels are similar in healthy and EMS-affected women, in the
presence of bioavailable P4, the P4 resistance hinders PR activation and transcription
of P4 target genes [13,41,70]. Then, the inability of endometriosis epithelial cells to ex-
press HSD17B2 may decrease the PR-B level in stromal cells, contributing to excessive
estradiol production [71].
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Accordingly, endometriotic epithelial cells, which do not express HSD17β2, cannot
inactivate estradiol [70,72]. Since endometriosis stromal cells show lower ERα and higher
ERβ expression with respect to healthy cells, PR-B is completely absent and it is not able to
induce HSD17β2 [73].

The increased ERβ expression is strictly associated with the hypomethylation of its
promoter, while the decrease in ERα occurs due to the hypermethylation of its promoter
and the direct inhibition by ERβ [11]. The increased E2/ERβ ratio can be associated to
enhanced lesion survival and inflammation [3] that, by a positive feedback mechanism,
stimulates COX-2 and increases PGE2 production. Concluding, estrogens, initializing the
PGs production, strongly impact EMS progression, since the inhibition of the PGs biosyn-
thesis decreases the pathology incidence as well as EMS-related inflammatory conditions,
chronic pelvic pain and infertility [9].

4.2. Inflammatory Pathways in Endometriosis

EMS is now well recognized as an inflammatory disease [15], and increased inflamma-
tory responses in ectopic endometrial implants are thought to be responsible for EMS patho-
genesis. Endometriosis implants are characterized by the activation of pro-inflammatory
factors and signaling pathways, as well as by the increased infiltration of immune cells such
as macrophages. These elements support the lesion survival by enhancing EMS-related
inflammation and, as a consequence, increased levels of MMPs, PGs, chemokines, and
cytokines are detected in the peritoneum, endometrium and serum of patients [74–76].
Among the cytokines, IL-1β may be responsible for the increased proliferation of en-
dometriosis cells, while it does not affect healthy endometrial cells [77]. Moreover, IL-1β
enhances IL-6 and IL-8 production; they act synergistically to boost proliferation and
decrease the apoptotic rate of endometriosis cells [75,78]. Inflammation also influences
the endometriosis lesion vascularization. For instance, increased levels of IL-1β boost
the shedding of intercellular adhesion molecule-1 (ICAM-1) from peritoneal mesothelial
cells indicating a role in the neovascularization mediated by IL-6 and vascular endothelial
growth factor (VEGF) [79,80]. IL-1β also regulates COX-2 expression; indeed, the ectopic
endometriosis cells are more sensitive to the cytokine stimulation in terms of COX-2 ex-
pression with respect to normal cells (Figure 3) [22]. As discussed above, COX-2 is highly
expressed in EMS, and COX-2-derived PGE2 biosynthesis is closely related to EMS. This
pathway may be involved in the regulation of ectopic implantation and growth of the
endometrium as well as in the angiogenesis and immunosuppression [22,81]. Notably, the
COX-2/PGE2 are targeted by NSAIDs [15].

The increase in TNFα levels in EMS may stimulate adhesion and proliferation of
endometrial cells on ectopic sites. Moreover, TNFα and IL-1β activate the NK-κB signaling
pathway [80], which in turn controls the expression of cytokines and chemokines such as
IL-1, IL-6, IL-8, TNF-α, as well as ICAM-1 [81,82] able to boost inflammation and COX-2
expression in endometriosis implants. NF-κB signal transduction stimulates macrophage
recruitment [15,22,81]. Furthermore, it is interesting to note that macrophages have been
abundantly associated with EMS, enhancing the establishment, progression and angiogene-
sis in endometriosis implants and promoting the release of different cytokines/chemokines
and growth factors (e.g., VEGF) [83–85]. Lesion resident macrophages derive from eutopic
endometrial tissue, but EMS continuously recruits monocyte-derived macrophages [86].
These cells also play a pivotal role in lesion innervation and nerve fiber sensitization, thus
contributing to the pain condition [87,88]. Chemokines, like C-C motif chemokine ligand
2 (CCL2) and 5 (CCL5) which play a pivotal role in macrophage recruitment, are signifi-
cantly increased in endometriosis lesions [89]. Accordingly, Hogg et al. 2021, demonstrated
that endometrial macrophage depletion decreases the endometriosis lesion size in mice [86].
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5. Natural Substance Anti-Inflammatory Properties

NSAIDs, which act by inhibiting the COX-1 and COX-2 activity and, consequently,
by decreasing the PGs levels, are commonly used for EMS treatment [22,90]. These drugs
are classified in COX-2-selective and -non-selective NSAIDs [91]. However, both drug
categories exhibit advantages and disadvantages. Indeed, the use of COX-1 inhibitors
has been associated with severe side effects, such as gastrointestinal bleeding and gastric
mucosa damage [91], whereas COX-2-selective NSAIDs, which do not show the above side
effects, have been associated with cardiovascular toxicity [92]. In light of this, an increasing
attention has been recently focused on the use of alternative natural substances such as
polyphenols to treat the EMS pain and inflammation [3,93].

5.1. Flavonols

One of the most abundant flavonols in fruits and vegetables such as onion, cauliflower,
apple, berry and chili pepper is quercetin (QRC, 3,3′,4′,5,7-pentahydroxyflavone), well
known for its anti-cancer, anti-allergic and anti-inflammatory properties [57,94]. The most
common flavonols in plants are glycosides, although aglycones are generally also present
(Figure 4).
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The phosphoinositide 3-kinase (PI3-K)/Akt/mammalian target of the rapamycin
(mTOR) pathway has a pivotal role in tumorigenesis, angiogenesis, tumor growth and
metastasis [95,96]. It has been found that QRC inhibits the AKT/mTOR pathway ex-
erting anti-cancer effect by reducing cancer cell viability and enhancing apoptosis and
autophagy [97]. Moreover, QRC inhibits cell proliferation and induces cell cycle arrest and
apoptosis in endocervical cell lines VK2/E6E7 and End1/E6E7. QRC has anti-inflammatory
activity correlated with the inhibition of AA and the production of inflammatory mediators
such as PGs and leukotrienes that are also involved in the regulation of uterine contractile
activity [98]. Accordingly, Signorile et al., by using a QRC-based dietary supplement to
treat EMS patients for three months, found considerably lower serum PGE2 levels [99].

5.2. Flavones

Luteolin (3′,4′,5,7-tetrahydroxyflavone, LUT) is a natural flavone which can be found
in different plants, nuts, and herbs [100,101]. Chemically, it is composed of a C6-C3-C6
carbon skeleton with two benzene rings linked by a heterocyclic ring [102] (Figure 5).
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The absence of the hydroxyl group on C3 distinguishes flavones from flavonols [103].
Dietary sources rich in LUT include several vegetables, such as carrot, broccoli, parsley,
olive, thyme and clove. The active metabolites or derivatives of LUT, such as luteolin-
glucuronide and luteolin 7-glucoside, are known to have anti-oxidant, anti-tumoral, anti-
apoptotic, anti-microbial and anti-inflammatory properties [101,104]. The anti-inflammatory
activity of LUT is achieved at micromolar concentrations by inhibiting the expression of
COX-2 and the production of several pro-inflammatory mediators such as TNF-α and
IL-6, hindering macrophage activation and release of excessive amounts of PGs [101,105].
Moreover, LUT can also regulate several signal transduction pathways, including NF-κB,
AP1 and JAK–STAT [106], and it can inhibit macrophage recruitment to the endometriotic
lesions by suppressing the secretion of CCL2 and CCL5 by endometriosis cells [101]. In a
recent molecular docking study, it has been shown that LUT inhibits inflammation in EMS
acting on signal transducer and activator of transcription 3 (STAT3), phosphoinositide-3-
kinase regulatory subunit 1(PIK3R1), and mitogen-activated protein kinase 1 (MAPK1),
also regulating MAPK, PI3K, TNF, and NF-κB signal transduction [107].

5.3. Isoflavones

Genistein (5,7-dihydroxy-3-(4-hydroxyphenyl) chromen-4-one, GEN) is an isoflavone
found in soybeans, soy-derived foods and other legumes (Figure 6).
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Interestingly, GEN has a molecular structure comparable to that of mammalian estro-
gens and has a 20-fold stronger affinity for ERβ than for ERα [108].

The chemical structure of GEN consists of 15 carbons arranged in two aromatic rings
(A and B) and linked by another carbon pyran ring composed of the 3-phenylchromen-
4-one nucleus [109]. Moreover, the structure of GEN presents a double bond between
positions two and three, and possess an oxo group at position four of ring C, together
with three additional hydroxyl groups at positions five and seven of the A ring and
position four of the B ring [110]. GEN has pharmacological activities and works as an
anti-angiogenic, anti-proliferative, anti-oxidant and anti-inflammatory drug, which can
exert several health effects on human health. It is a pleiotropic molecule able to interact
with different cellular targets involved in inflammation [111]. The GEN anti-inflammatory
properties are exerted through several pathways such as the down-regulation of NF-κB,
which promotes the reduction of IL-6, IL-1, TNF-α, TNF-β [35,112,113]. AMP-activated
protein kinase (AMPK) is known to inhibit inflammation by decreasing NF-κB levels and
pro-inflammatory markers [114]. GEN also reduces inflammation through AMPK activation
and subsequent NF-κB suppression [115]. Moreover, GEN inhibits the effect of MAPK
pathways [109], which is activated by most of inflammatory stimuli [109]. In addition, the
down-regulation of the cytokine-induced signal transduction pathways in the immune
system cells can be affected by GEN [116]. A link between GEN and the COX-2/PGE2
pathway has also been found. Indeed, GEN can inhibit LPS-induced COX-2 expression
and PGE2 production in macrophages [22,113]. Therefore, this compound potentially could
inhibit EMS development and it can be potentially used as an anti-inflammatory natural
treatment for EMS.

5.4. Stilbenoids

RESV(trans-3,4,5-trihydroxystilbene) is a natural polyphenol belonging to the family
of stilbenoids, highly concentrated in grape, wine, tea, peanut and berry, and playing
an important role in a wide range of biological activities [117]. RESV has anti-tumor
and anti-inflammatory properties, as well as exhibits anti-oxidative, anti-microbial, and
estrogenic activities [117,118]. The molecule presents two aromatic rings linked to each
other by a double ethylene bridge and two aromatic rings linked to each other by a double
ethylene bridge. This chemical structure can be therefore present in two isomeric forms,
cis-resveratrol and trans-resveratrol, respectively (Figure 7) [119].
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RESV anti-inflammatory activity has been well documented in different cancer cell
lines, and it is based on different mechanisms by which it inhibits different inflammatory
pathways such as COX-2, NF-κB and activator protein 1 (AP1) [117,120]. Particularly, RESV
inhibits NF-κB pathway blocking the activation of several pro-inflammatory cytokines
such as IL-1β [31]. Moreover, RESV decreases the secretion of pro-inflammatory cytokines
(e.g., IL-6, IL-8, and TNF-α) and the expression of adhesion proteins, such as intercellular
adhesion molecule (ICAM)-1 [121,122]. RESV is also able to induce, in a concentration-
dependent manner, the suppression of IL-1α, IL-6 and TNFα, and the down-regulation
of both mRNA expression and IL-17 protein levels [123]. In EMS, AP1 is involved in the
transcription of various biomolecules and pro-inflammatory cytokines (e.g., IL-2, IL-3, IL-4,
IL5-, IL-13). RESV-dependent AP1 reduction promotes the indirect inhibition of COX-2
activity [31]. Furthermore, RESV interacts with the AA pathway, suppressing the COX-2
effects through the inhibition of PMA-induced COXs transcription in mammary epithelial
cells due, in turn, to the protein kinase C pathway inhibition [31,117]. Finally, RESV inhibits
COX-2 promoter activity which is mediated by ERK-1 and c-Jun. Therefore, in EMS, the
anti-inflammatory activity of RESV is exerted by the PGs synthesis inhibition for a direct
COX enzyme synthesis down-regulation activity, as well as by the direct inhibition of
activated immune cell sand pro-inflammatory cytokine release [31,117,124].

6. Conclusions

The developing pathogenic and physiologic processes that involve the mechanisms of
endometriosis are extremely heterogeneous and have not yet been fully elucidated. This
implies that the therapeutic approaches of intervention to treat this pathology are limited.
Therefore, the use of new therapeutic agents for the treatment of endometriosis turns
out to be necessary. Their anti-inflammatory action and their potential phytoestrogenic
effect can modulate estrogen networks without causing serious adverse effects unlike
conventional anti-estrogenic therapy. Polyphenols may represent new therapeutic agents
for the treatment of endometriosis aimed at improving the living conditions of women
affected by this disease. The use of polyphenolic compounds for endometriosis treatment
have no negative effects on fertility, reproductive organs and development of offspring;
moreover, it is more convenient than the use of conventional treatment and turns out to be
more suitable for long-term treatment.
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