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Abstract

The chemistry of interfaces differs markedly from that of the bulk. Calculation of interfacial 

properties depends strongly on the definition of the interface, which can lead to ambiguous results 

that vary between studies. There is a need for a method that can explicitly define the interfaces and 

boundaries in molecular systems. Voronoi tessellation offers an attractive solution to this problem 

through its ability to determine neighbors among specified groups of atoms. Here we discuss three 

cases where Voronoi tessellation combined with modeling of vibrational sum frequency generation 

(SFG) spectroscopy yields relevant insights: the breakdown of the air-water interface into clear 

and intuitive molecular layers, the study of the hydration shell in biological systems, and the 

acceleration of difficult spectral calculations where intermolecular vibrational couplings dominate. 

The utility of Voronoi tessellation has broad applications that extend beyond any single type of 

spectroscopy or system.
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Interfaces play a central role in biological, chemical, and industrial processes. Most 

biological processes occur in aqueous environments, and the interface between water and the 

protein or nucleic acid often plays an important structural and functional role.1–3 Moreover, 

electrochemical processes critical to energy conversion, such as carbon dioxide reduction 

and the oxygen evolution and oxygen reduction reactions, occur at metal-electrolyte 

interfaces.4–6 The air-water interface is particularly important in atmospheric chemistry 

that occurs on the surface of water droplets.7–8 Thus, developing both experimental and 

computational methods for probing interfaces has widespread applications.

One of the central challenges in vibrational spectroscopic approaches aimed at probing 

interfaces is identifying the sources of the vibrational signals, which is often achieved 

through simulation. Analysis of the simulations typically requires the dissection of 

the system into interfacial regions and boundaries. Although distance-based cutoffs are 

commonly used for this purpose, the cutoff definition can be arbitrary and therefore yield 

inconsistent results. Voronoi tessellation defines interfaces and boundaries unambiguously 

by dividing a space containing a set of points into cells (Figure 1a) and determining the 

neighbors of each cell (Figure 1b).9 A Voronoi cell consists of the area that is closer 

to its central point than to any other point. Once a Voronoi tessellation is computed, it 

becomes trivial to identify nearest neighbors of any set of points. Voronoi tessellation offers 

a computational scalpel that allows the atomic-level dissection of complex systems to help 

identify the sources of spectroscopic features.
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Vibrational sum frequency generation (SFG) spectroscopy is a second-order nonlinear 

spectroscopy that is surface-selective and thus is an excellent technique for probing both 

achiral and chiral interfacial systems.10–28 This technique involves overlapping infrared 

(IR) and visible pulses in space and time on the sample and measuring the sum frequency 

response. By manipulating the polarization of the IR and visible beams and that of the 

detector, individual elements or a subset of the 27 elements of the susceptibility tensor 

χIJK
(2)  can be isolated. Our group performs chirality-selective SFG (chiral SFG) using the 

polarization that isolates the element χZY X
(2) , which is sensitive to chirality at interfaces, 

including solvent chirality induced by a chiral solute.29–30 Our group also performs 

conventional SFG (or achiral SFG) using the polarization that isolates the element χY Y Z
(2) , 

which is sensitive to interfaces but not chirality.31 The SFG process is coherent, which 

allows for the extraction of the imaginary component of the response with heterodyne 

detection.24, 26–27, 32–33 In achiral SFG, the sign of the peaks corresponds to the z-direction 

orientation of corresponding dipoles, whereas in chiral SFG, the sign of the phase has no 

clear meaning. Our group has used chiral SFG, in conjunction with molecular dynamics 

(MD) simulations and spectral calculations using electrostatic frequency maps,34 to guide 

the interpretation of these spectra and study various biological systems.20–26, 31, 34–37

Herein, we combine Voronoi tessellation with computational modeling of SFG to reveal 

significant atomic-level properties of interfacial systems. We illustrate the power of this 

strategy for three diverse applications. First, we show how Voronoi tessellation can be used 

to divide the water at an air-water interface into well-defined layers, which then allows the 

calculation of the SFG response from each individual layer. This type of analysis provides 

insight into the hydrogen-bonding interactions between layers at the interface. Second, we 

show how Voronoi tessellation can be used to define the first hydration shell around a 

protein at an air-water interface, and further dissect the first hydration shell into water 

molecules near the protein backbone versus those near the sidechains. Simulation of the 

chiral SFG response from each subset of water provides insight into the different hydrogen-

bonding interactions between the protein and water and assists in the interpretation of the 

experimental data. Third, we show how the identification of the first hydration shell around a 

biomolecule can be used to speed up simulations of chiral SFG spectra without a significant 

loss of accuracy.

Although the pure air-water interface has been studied extensively, it is challenging to 

divide the interface into well-defined layers to calculate the vibrational response of each 

layer.10, 12, 17, 19, 38–48 In some cases, SFG calculations of the air-water interface contradict 

each other due to subtle differences in definitions of interfacial layers.46, 49 The popular 

instantaneous liquid interface method50 relies on coarse-graining of the atomic density of the 

system, which involves arbitrary parameters such as coarse-graining length and grid size. By 

contrast, Voronoi tessellation defines layers unambiguously regardless of their composition. 

We use this approach to computationally divide the interfacial water into well-defined 

molecular layers (see Figure 2a and Supporting Information (SI)). In brief, we first add 

virtual points above the surface, construct a Voronoi tessellation with a cell for each atom 

and virtual point, and then identify the atom neighbors of the virtual points. If any one of 

a water molecule’s atoms is a neighbor, the whole molecule is included in the first layer. 
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We repeat the procedure for subsequent layers using the previous layer’s atoms instead of 

the virtual points. We then calculate the achiral SFG response of each layer (Figure 2b) 

using two different water models, SPC/E and TIP4P-Ew.51,52 Future layer-by-layer SFG 

simulations might use a higher level of theory (i.e., ab initio MD), following previous 

work,38, 53–54 but this will most likely only allow convergence of the top few layers’ spectra 

due to sampling limitations (i.e., ab initio MD trajectories cannot be propagated for enough 

time to converge very weak signals). To obtain the necessary copious sampling, we use 

classical force fields for this study.

We find that the top layer (layer 1, Figure 2a, red) produces most of the observed signal 

(Figure 2b, red), as expected from previous analyses.46 There is a positive peak at high 

frequency (~3700 cm−1) corresponding to free OH groups pointing up into the vacuum and 

a negative peak at lower frequency (~3450 cm−1) corresponding to OH groups pointing 

down and interacting with the lower layer of water. Because red-shifting of the OH stretch 

away from ~3700 cm−1 is associated with stronger hydrogen bonding, this negative peak 

corresponds to hydrogen bonded OH groups. However, the SFG response of layer 2 (Figure 

2a, blue) is less obvious. Its lineshape is inverted compared to that of layer 1 (Figure 2b, red 

versus blue), with the strong hydrogen bonds being donated up into layer 1 rather than down 

into layer 3 (Figure 2a, orange). This indicates that layer 2 and layer 1 have a particularly 

strong attraction compared to those of other pairs of layers. Analysis of hydrogen bonds 

between the layers (Figure 2c) reveals that for both water models, the hydrogen bond length 

is 2.88 Å between all layers except that the water molecules donating hydrogen bonds 

from layer 2 into layer 1 have shorter hydrogen bonds of length 2.86 Å with a hydrogen 

bond angle slightly closer to the ideal 180°. This stronger hydrogen bonding corresponds 

to the water molecules pointing up from layer 2 into layer 1. This analysis demonstrates 

the exquisite sensitivity of SFG to the substructure of the interface as well as the utility 

of Voronoi tessellation in unraveling subtle molecular features when combined with SFG 

modeling. We note that our SFG results for the first few layers are similar to those obtained 

by Kaliannan et al. using a probe-based layer identification method.39 An advantage of 

Voronoi tessellation is that once the tessellation is done for a given configuration, identifying 

any number of layers is computationally trivial, as there is no need to probe each layer 

individually.

Although the SFG responses of layer 1 and layer 2 (i.e., the top ~5 Å) are significant, those 

of the lower layers are very small (Figure 2b). However, layer 3 (Figure 2a, orange) has a 

very well-converged SFG response that is very similar to that of layer 2 – molecules with 

OH groups pointing up have stronger hydrogen-bonding interactions. This layer extends ~10 

Å below the surface. Although our hydrogen bond analysis (Figure 2c) was unable to pick 

up any significant differences between molecules pointing up and down in this layer, the 

SFG response indicates a subtle asymmetry in this layer. This suggests that the orientations 

of water molecules in layer 3 are still influenced by the interface, however slightly. Even 

though we averaged over 10,000,000 frames and 100 ns of simulation, the layer 4 spectra 

(Figure 2b, magenta) are poorly converged. However, both water models show a lineshape 

curiously similar to that of layer 1 – molecules facing up have very slightly weaker hydrogen 

bonds than molecules facing down. Together all these results suggest a model where truly 
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bulk behavior is not reached even ~16 Å below the surface, contrary to past suggestions that 

only the first several Å are important.55–58

Although the SFG signal mostly originates within the first few water layers,46 some 

properties converge much less quickly. In particular, we calculated the average number 

of water molecules that move between adjacent layers (normalized per water molecule) 

over 1 ps and found that the value does not converge to the bulk value even four layers 

down (Figure 2c). The rate of interlayer water transfer increases with each subsequent layer, 

suggesting that the interface has slower diffusion in the z-direction than the bulk and that 

this property does not rapidly approach a bulk value. This implies that water molecules that 

are affected by the surface may not only include the top few layers but may also include 

deeper regions as well. Voronoi tessellation has enabled us to precisely define molecular 

layers and uncover hidden properties of the interface and reveals that the definition of the 

interface is dependent on the property used to define it.

In addition to defining molecular layers at interfaces, Voronoi tessellation can also 

unambiguously define the hydration shell of a biomolecule.59 Our group has used Voronoi 

tessellation to define the first and second hydration shells around the model system LK7β, 

an amphiphilic peptide that folds into antiparallel β-sheets at the air-water interface, which 

makes it an ideal benchmark system for SFG studies.27, 37 This system consists of leucine 

residues that point into the air and positively charged lysine residues that point into the 

water (Figure 3). LE7β contains negatively charged glutamate residues instead of lysine 

residues, but it is otherwise very similar to LK7β. We model each protein as a five-stranded 

antiparallel β-sheet at the vacuum-water interface. Together, Voronoi tessellation and chiral 

SFG reveal surprising differences between the hydration shells of the two similar proteins.

In a previous study, we used Voronoi tessellation to identify the first solvation shell but 

then used distance cutoffs to separate water molecules interacting with the backbone 

from those interacting with the sidechains. This involved rather convoluted selection 

criteria (see ref 27, SI) that ultimately did not perfectly remove the overlap between 

subsets, complicating spectral interpretation of the backbone- and sidechain-associated water 

molecule contributions. Here, we greatly simplify the selection by defining “backbone 

water” as those molecules that are direct neighbors of backbone atoms and “sidechain 

water” as those that are direct neighbors of the ends of the sidechains (the NH3
+ group in 

LK7β; the COO– group in LE7β) and are not also neighbors of the backbone (Figure 4a). 

Voronoi tessellation enables precise yet simple partitioning of the first hydration shell into 

components. The chiral SFG response of these subsets can then be calculated to reveal the 

components of the total SFG spectrum.

We have previously shown that the main NH stretch peak in the chiral SFG spectrum 

of LE7β is blue-shifted compared to the analogous peak in LK7β. We argued that this 

shift is due to significantly fewer backbone hydrogen bonds in LE7β compared to LK7β, 

which indicates weaker inter-strand hydrogen-bonding interactions in LE7β, but we did not 

analyze the OH stretch components of the spectrum.37 Figures 4b and 4c show that the 

first hydration shell and backbone water responses of LE7β are very different from those of 

LK7β, even though the systems appear similar. The OH stretch response of LE7β is both 
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much smaller and somewhat blue-shifted compared to that of LK7β. The blue shift might 

indicate that the hydration shell of LE7β is less strongly bound compared to the hydration 

shell of LK7β. However, hydrogen bond analysis reveals that this is not the case. Instead, 

protein-water hydrogen bonds are actually somewhat stronger in LE7β compared to LK7β 
(donor-acceptor distances of 2.74 ± 0.0002 Å vs. 2.87 ± 0.0002 Å and angles of 164.58 ± 

0.0083° vs. 162.56 ± 0.0110°, mean ± standard error). This analysis suggests that the key 

variable in determining the chiral OH stretch response and the integrity of the first hydration 

shell is the stability of the protein structure rather than the strength of the interaction 

between the protein and the surrounding water. LK7β forms a more stable antiparallel 

β-sheet structure,37 and therefore its hydration shell maintains a more rigid chiral structure. 

The blue shift and smaller response of LE7β compared to LK7β illustrates differential chiral 

induction – a different degree of imprinting of chirality on achiral solvent. Comparison 

of the two systems suggests that hydration water spectra can be used to infer relative 

biomolecule stability in some cases. In addition, we find that the backbone-associated water 

molecules contribute most of the lineshape in both systems (Figure 4c), and the sidechain 

responses (Figure 4d) are quite small. This observation is consistent with our previous 

work, where we found that water molecules hydrogen bonded to carbonyl groups on the 

backbone were significant contributors to the chiral SFG response of the first hydration 

shell, especially on a per-water-molecule basis.27

In addition to revealing the structure of molecular systems, Voronoi tessellation can also 

speed up the calculation of chiral SFG spectra. The SFG calculations presented thus far have 

taken advantage of an approximation where intermolecular couplings between OH groups 

are neglected. This approximation allows simple separation of water molecule subsets and 

makes the exciton Hamiltonian matrix block-diagonal and thus trivial to diagonalize.27,60–63 

However, in certain cases, intermolecular couplings are crucial to chiral SFG spectra, and 

these make the Hamiltonian expensive to diagonalize. In particular, our previous work 

showed that intermolecular coupling is critical to the modeling of the combined NH/OH 

stretch chiral SFG response of LK7β.37 If intermolecular coupling is neglected, a downward-

pointing peak appears that is not found in the experimental spectrum (Figure 5a). Our 

previous work also showed that almost all of the OH stretch signal and the most relevant 

NH/OH couplings arise between the biomolecule and the first hydration shell.27 Here we 

obtain the first hydration shell by Voronoi tessellation, as discussed above, and then only 

consider the protein and the first hydration shell in the exciton Hamiltonian to speed up the 

calculation.37

Figure 5a shows the result of the first-hydration-shell approximation along with the full-

system calculation for LK7β. All features found in the full-system spectrum are present in 

the first-hydration-shell spectrum. The agreement with experiment is good whether or not 

the approximation is applied, except for the low-frequency negative peak at ~3150 cm−1, 

which is missing in all the calculated spectra and is a focus of ongoing efforts by our 

group.37

Figure 5b shows the increasing speedup of including only the first hydration shell as 

a function of system size. Using Voronoi tessellation to unambiguously define the first 

hydration shell can significantly accelerate prohibitively expensive spectral calculations 
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and will enable modeling of vibrational spectra of large biological systems in the future 

without a significant sacrifice in accuracy. Modeling chiral SFG spectra of large systems will 

enable us to probe water-protein interactions of amyloids, antibodies, and other biologically 

relevant systems and learn how surrounding water molecules shape, and are shaped by, these 

systems.

We have shown a diverse set of three situations where Voronoi tessellation combined with 

SFG modeling yields insights. First, we demonstrated that Voronoi tessellation allows the 

dissection of the air-water interface at a high level of detail, yielding new findings about 

interface structure and thickness. We then showed that Voronoi tessellation enables detailed 

analysis of the differences between the first hydration shells of closely related protein 

systems. Finally, we used Voronoi tessellation and the knowledge that chiral SFG is largely 

selective to the first hydration shell27 to greatly simplify and speed up the calculation of 

vibrational spectra of highly coupled condensed-phase systems. Although we restricted 

our study to SFG, the Voronoi tessellation approaches developed here can potentially 

be applicable in a variety of molecular contexts, for example in the analysis of surface-

selective attenuated total reflectance IR spectroscopy (ATR-IR) experiments, protein-protein 

interactions, and biomolecule-lipid interactions. These approaches will also be applicable 

to the SFG study of charged aqueous interfaces relevant to electrocatalysis. Altogether, 

our findings demonstrate the remarkable power of combining Voronoi tessellation with 

modeling of vibrational spectroscopy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
a) A two-dimensional Voronoi tessellation, where each cell consists of the area closer 

to the central point than to any other points. b) Finding neighbors of a set of points is 

straightforward once the Voronoi tessellation has been made. Here, the dark blue cells are 

the neighbors of the red cells.
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Figure 2. 
a) Water surface separated into layers (layer 1 – red, layer 2 – blue, layer 3 – orange, layer 

4 – magenta) using Voronoi tessellation neighbor analysis. b) Computed achiral SFG spectra 

using two different water models, SPC/E (gray) and TIP4P-Ew (colors corresponding to 

those in part a). c) Analysis of hydrogen bonds and molecule diffusion between water layers 

for SPC/E (purple) and TIP4P-Ew (orange) systems. The arrows indicate either donation of 

a hydrogen bond from one layer to the adjacent layer or the transfer of water molecules from 

one layer to the adjacent layer over 1 ps. Values are shown as mean ± standard error.
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Figure 3. 
a) Structure and chemical properties of leucine (L), lysine (K), and glutamate (E). b) LK7β 
and LE7β peptides. c) These peptides form antiparallel β-sheets at the air-water interface, 

where polar residues lysine (K) or glutamate (E) point into the solvent while hydrophobic 

residues leucine (L) point into the air; top view of aqueous LK7β. d) and side view of 

aqueous LK7β.
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Figure 4. 
(a) Voronoi tessellation-based selections of water molecules near the backbone (red) and 

near sidechains (blue) of LK7β (transparent yellow). (b) Computed first hydration shell 

OH-stretch response for LK7β (black) and LE7β (red). (c) Computed backbone-associated 

water OH-stretch response for LK7β and LE7β. (d) Computed sidechain-associated water 

OH-stretch response for LK7β and LE7β.
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Figure 5. 
a) NH stretch / OH stretch chiral SFG spectra of LK7β and surrounding water, showing 

the modest effect of the first-hydration-shell approximation and strong effect of excluding 

intermolecular couplings between NH and OH groups. b) Speedup factor for the first-

hydration-shell method over full-system calculation for molecular systems of various sizes.
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