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A B S T R A C T   

With the ability to produce components with complex and precise structures, additive 
manufacturing or 3D printing techniques are now widely applied in both industry and consumer 
markets. The emergence of tissue engineering has facilitated the application of 3D printing in the 
field of biomedical implants. 3D printed implants with proper structural design can not only 
eliminate the stress shielding effect but also improve in vivo biocompatibility and functionality. 
By combining medical images derived from technologies such as X-ray scanning, CT, MRI, or 
ultrasonic scanning, 3D printing can be used to create patient-specific implants with almost the 
same anatomical structures as the injured tissues. Numerous clinical trials have already been 
conducted with customized implants. However, the limited availability of raw materials for 
printing and a lack of guidance from related regulations or laws may impede the development of 
3D printing in medical implants. This review provides information on the current state of 3D 
printing techniques in orthopedic implant applications. The current challenges and future per
spectives are also included.   

1. Introduction 

Additive manufacturing (AM), also known as rapid prototyping (RP) or Three-Dimensional printing (3D Printing), was invented in 
the 1980s, with Charles Hull developing the world’s first commercial 3D printer in 1986. In 2009, 3D printing was defined by the 
ASTM International Committee as the “process of joining materials to make objects from 3-dimensional (3D) model data, usually layer 
by layer, as opposed to subtractive manufacturing methodologies” [1,2]. 

It is an advanced manufacturing process that is distinct from conventional manufacturing techniques like casting, forging, and 
machining. For 3D printing, the original data required can be gathered from Computed Tomography (CT) scanning or Magnetic 
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Resonance Imaging (MRI), and 3D modeling design can be achieved with the aid of 3D Computer-Aided Design (CAD) software. Once 
the preparation procedures are completed, the printing process can be done bottom-up in one step. Unlike conventional 
manufacturing, 3D printing is a material-specific and design-specific system, thus making it possible to fabricate components with 
complex geometric shapes without requiring tooling or molds when printing. Other advantages like cost-effectiveness, freedom of 
design, and controllable precision have attracted considerable attention in both industry and consumer markets [3,4]. In the past few 
decades, 3D printing has reached significant advances in printing methods as an emerging fabrication technique [5–7]. The cost of 3D 
printing has decreased with technological developments over time. It provides manufacturers with great design freedom for printed 
products while lowering customization costs compared to conventional manufacturing methods. In the 1990s, the advent of tissue 
engineering led to the application of biomedical scaffold implants with appropriate structural design for repairing or replacing injured 
or diseased tissues [8]. However, manufacturing scaffolds with complex geometric structures for individual patients using traditional 
machining methods was challenging. The possibility of using medical images to create customized implants with controlled gradient 
structure, porosity, and pore size demonstrated the potential of 3D printing technology in biomedical applications, especially in or
thopedic surgery. Today, many clinical trials have been conducted with 3D printed implants in orthopedic applications. Surgeons and 
engineers are attracted to this technology and have made considerable efforts to improve clinical outcomes. 

In this present review, our primary goal is to summarize clinical examples of 3D printing applications in orthopedic implants. 
Additionally, we provide a brief overview of the data acquisition or implant design processes. We also discuss the current challenges 
and future prospects in this field. Our intention is to inform both surgeons and engineers and inspire them to further promote the use of 
3D printing techniques in clinical applications. 

2. Fabrication procedure of 3D printed orthopedic implants 

The use of 3D printing for orthopedic implant applications typically involves four basic procedures: acquiring raw medical data, 
preprocessing, printing the components, and post-processing. Once the finished components have been properly sterilized, they can be 
applied in the desired clinical applications. Fig. 1 provides a brief illustration of the typical process for biomedical applications. 

2.1. Data acquisition and processing 

Before printing orthopedic implants, the first step is to create printing models using clinical images. These images, derived from X- 
ray imaging, CT, MRI, and ultrasound (Fig. 2a), should have appropriate resolution for generating 3D printing models. Images with low 
resolution may produce inaccurate geometry parameters in the resulting models. Nowadays, images with ultra-high spatial resolution 
of 400–600 μm can be achieved for clinical use [9]. 

After obtaining the initial radiological scan images in raw digital imaging and communications in medicine (DICOM) format, they 
are converted into a CAD file using various 3D software programs such as Osirix, MeshLab, and 3D Slicer. These programs support 3D 
reconstruction of the images. Additionally, advanced post-data processing algorithms are developed to improve reconstruction results 
for low-resolution or non-enhanced images [10]. 

The converted image files undergo segmentation and surface preparation processes to select or isolate the region of interest (ROI) 
(Fig. 2b) and generate the surface mesh (Fig. 2c), respectively. Once the segmentation and mesh generation processes are complete, 
these data are usually saved in standard tessellation language (STL) file format (Fig. 2d) in order to be used by 3D printers. Different 
printing techniques and 3D print machines can then be used to print the desired components. In situations where 3D reconstruction of 
raw images for implantation sites is unavailable, the unaffected contralateral side can be mirrored to generate the STL files [11,12]. 
Additionally, in some cases, raw images are not necessary, and the intended implant models can be directly created from CAD software 
[13–15]. 

The conventional CAD-to-STL based pipeline is suitable for fulfilling the demand for 3D printed implants with simple geometries 
where the number of mesh triangles is below 1 million. However, for implants with highly complex structures and intricate details, the 
number of triangles can become tremendously large, resulting in significant time and computer memory consumption for processing 
and printing. To address this issue, Ding et al. proposed a STL-free method which integrated implicit solid remodeling for design and 
direct slicing for printing without any STL-related representation or intermediate steps related to STL meshes. This approach reduces 

Fig. 1. Typical process for the design and application of 3D print implants in biomedical application.  
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both the memory usage and processing time. The new digital pipeline provides a novel way to design and print 3D printed implants 
[16]. 

As mentioned above, there are still multiple procedures that need to be completed before the implants can be printed. These 
processes, including printing hardware quality, reconstruction, segmentation, and surface extraction algorithms, can eventually in
fluence the geometric accuracy of the final printed implants. Inaccuracies in different procedures can accumulate. A maximum length 
error of 2.3 mm (4.1%) was found in medical imaging acquisition and the end-use implant [17]. Liu et al. conducted a preliminary 
investigation on the geometric accuracy of 3D printed dental implants [18]. According to their results, the accuracy for the printed 
versus actual tooth, segmented versus actual tooth, and segmented versus printed tooth groups were 68.70 ± 5.63, 66.91 ± 10.51, and 
90.59 ± 4.75, respectively. Thus, quality control during the entire procedure is important. Kopsacheilis et al. developed a simple, 
in-situ, automatic, vision-based, real-time monitoring system to detect errors during the 3D print process using a low-cost RGB-Depth 
camera and accelerometer [19].Improved segmentation and refinement algorithms can also be applied to balance accuracy and model 
complexity to improve model quality [20]. When compared to CT scan and computer numerical control (CNC) milling, cone beam 
computerized tomography (CBCT) segmentation showed the least distortion for printing the root analog implant [21]. 

2.2. Implants design 

Bone is a natural reinforced concrete-like composite material with complex hierarchical porous structure, and act as load bearing 
tissue in human body. It consists of two main components: organic compounds such as collagen and fibrillin and inorganic minerals, 
predominantly hydroxyapatite (HA) [23]. Bone can be further categorized as cortical or cancellous bone. The cortical bone exhibits 
compact or solid state with a porosity of 3–5%, and the cancellous bone exhibits a porous network with a porosity ranging from 50 to 
90% [24]. In the case of 3D printed bone implants, they should not only provide basic mechanical support but also promote regen
eration of the injured bones. The design of architecture plays a crucial role in in vivo behavior. Successful 3D printed implants must 
meet several requirements, including biocompatibility, an optimal surface for cell attachment, a connected porous structure for cell 
ingrowth, and comparable mechanical properties to natural bone to minimize the stress shielding effect [25–27]. 

2.2.1. Pore size, porosity and interconnectivity 
Bone exhibits a complex and heterogeneous porous anatomy structure with pore sizes ranging from macro to nano scale. Therefore, 

3D printed implants should have similar porous structures in order to better mimic natural bones. When compared to traditional solid 
implants made from materials such as Ti, stainless steel, or Co–Cr, the macro or micro pore in 3D printed implants provide the space 
where cells, tissues, blood vessels and nerves can grow in. The interconnected pore network also facilitates sufficient permeability for 
the exchange of nutrients and metabolic waste between cells and the extracellular matrix (ECM), which favors the process of osteo
genesis, including cell colonization, proliferation, differentiation, and ECM deposition [28,29]. It is widely recognized that pore size 
and porosity significantly affect the progression of osteogenesis [29,30]. Therefore, the pore size and porosity of 3D printed implants 
should be carefully designed to achieve optimal in vivo biological responses. 

The optimal pore size for orthopedic implants is still a matter of controversy. It had been reported that the optimal pore size for 
mineralized bone ingrowth for porous scaffolds was 100–400 μm. However, Itala er al [31] found that there was no threshold value for 
new bone ingrowth for pore sizes ranging from 50 to 125 μm, as observed in non-loading conditions in rabbit bone regeneration 
models. According to Kuboki et al. [32], the optimal pore size for bone-forming efficacy in HA porous blocks is 300–400 μm and 
different pore sizes exhibit different functions. Smaller pores with a diameter of 90–120 μm tend to induce cartilage formation followed 
by new bone formation, while larger diameter (350 μm) induce direct bone formation. Taking the cell size into consideration, Kar
ageorgiou et al. [24] suggested that the minimum requirement for pore sizes should be ~100 μm, and larger pore size like >300 μm 

Fig. 2. Medical images acquiring and 3D model regeneration. a) DICOM images from CT scanning, b) segmentation of the RIO, c) 3D meshes of the 
ROI, d) slicing for printing [22], reprinted with permission. 
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were recommended in order to improve new bone formation as well as the formation of capillaries. Taniguchi et al. [33] fabricated 
porous Ti scaffolds with pore size of 300, 600, 900 μm and porosity of 65%. After 2 weeks of implantation, scaffolds with a 600 μm pore 
diameter demonstrated a significantly higher fixation ability. After 4 weeks of implantation, bone growth in scaffolds with a 300 μm 
diameter was lower than that in the other implants. They concluded that scaffolds with 600 μm pore diameters were suitable for 
orthopedic implants. Similar results had also been reported in Ref. [34]. 

Ti6Al4V scaffolds printed via SLM (Selective Laser Melting) technique with proper mechanical property comparable to natural 
bones can be achieved (Fig. 3a and b). Although, small pore size (401 ± 26 μm) can facilitate cell seeding efficiency, it was observed 
that cell differentiation was not significantly affected by pore size (Fig. 3(b5-d5)). In order to improve bone ingrowth and bone-implant 
fixation stability, implants with an actual pore size of 607 ± 24 μm were found to be optimal based on in vivo studies (Fig. 3(b1-e1,b2- 
e2,b3-d3,b4-d4,b6-d6)) as illustrated in Fig. 3. Biodegradable scaffolds, on the other hand, researches suggested that smaller pore size 
can also suitable for bone ingrowth [35–37]. 

Bone regeneration in porous scaffolds relies on the recruitment and infiltration of cells from surrounding bone tissues and ECM. The 
porosity of the scaffolds determines the available space for cells and tissues to grow in [38]. Higher porosity generally facilitates the 
recruitment of cells, promotes the bone ingrowth and implant fixation with surrounding tissues [29,39,40]. Porosity can also affect the 
cellular response and tissue integration by changing the absorption of proteins and fluid shear forces [41,42]. However, a higher 
porosity does not guarantee more bone formation or vascularization because if the pores of the scaffold have limited interconnectivity, 
cellular migration and vascularization may be hindered [24]. In general, porosity of scaffolds should be more than 40% in order to 
ensure good biocompatibility [43]. Pore interconnectivity, also known as permeability, is another critical parameter for 3D printed 
scaffolds. Interconnected pores facilitate the transport of cells, nutrients, growth factors and flow of blood within the scaffolds. 
Permeability had also been reported to influence both in vitro and in vivo osteogenesis [44]. Kemppainen et al. [45] found that scaffold 
permeability affects the chondrogenic performance of chondrocytes and bone marrow stromal cells (BMSC) in opposite ways: the 
cartilaginous matrix production increased with the decrement of scaffold permeability, while the differentiation of BMSCs increased 
with an increment of permeability. Mitsak et al. [46] reported similar results. They observed that the poly-ϵ-caprolactone scaffolds 
with higher permeability showed enhanced bone penetration with blood vessel infiltration in immune-compromised mice four weeks 
after implantation. 

It is important to note that there may be deviations between the designed nominal implants and the printed real implants. During 

Fig. 3. Effect of pore size on in vivo osteogenesis of 3D printed scaffolds with different pore size [34]: a: 3D printed scaffolds for different tests, b: 
pore size 401 ± 26 μm, c: pore size 607 ± 24 μm, d: pore size 801 ± 33 μm; μ-CT analysis of inner bone formation after implantation for 4 (b1-d1) 
and 12 weeks (b2-d2), e1: quantitative analysis of inner new bone volume and outer bone formation after implantation for 4 (b3-d3) and 12 weeks 
(b4-d4), e2: Quantitative analysis of outer new bone volume; osteoblast adherence on the scaffolds on day 14 (b5-d5); Von-Gieson staining of 
osseointegration after implantation for 12 weeks (b6-d6), reprinted with permission. 
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the printing process, some of the designed pores may become closed or densified. Consequently, the porosity, pore size and the strut 
thickness of the printed implants may undergo slight changes [47] In other cases, with improper printing parameters, the raw materials 
may unintendional accumulate on the edges of the print cells, and cracks can also be found, resulting in the change of mechanical 
behavior [48–50]. To address this issue, higher laser or electon beam energy density, finer focusing spot and optimized printing 
parameters can be employed to fabricate implants with improved dimensional accuracy and surface morphology [51]. 

2.2.2. Topological optimization 
Structure and geometry design are key factors in meeting clinic requirements for the 3D printed scaffolds. Due to the fact that pore 

shape, pore size and porosity may apparently affect the mechanical behavior, biocompatibility of the scaffolds, topological optimi
zation is an effective method for identifying an optimal structure in comparison to traditional design techniques [38]. Up to now, 
numerous mathematical methods and CAD software have been used to design the optimal structures of porous scaffolds for orthopedic 
implants, with consideration given to mechanical properties and biocompatibility [52–54]. Although traditional dense metallic or
thopedic implants have been widely accepted in clinic applications, the mismatch in mechanical properties between the implants and 
natural bones is prone to induce stress shielding, which may cause bone resorption and even implant failure [55]. Young’s modulus 
and compressive strength are considered to be the most significant characteristics for orthopedic implants [56]. In comparison to dense 
metallic implants, 3D-printed porous implants have demonstrated promising adaptability to the mechanical properties of natural 
bones [57,58]. 

Structure design plays a critical role in determining the pore size, strut size, and porosity of 3D printed implants, allowing for 
customization of the mechanical behavior of the implants. Building units with regular cubic, pyramid, and polyhedral structures have 
been extensively studied for this purpose. Fig. 4a-c illustrated a series of building unit cells design for 3D printed porous implants. Bael 
et al. [59] systematically evaluated the effect of pore geometry on the SLM Ti6Al4V bone scaffolds. They fabricated six different types 
of scaffolds with distinct unit cells. The unit cells were designed into triangular, hexagonal and rectangular shape with pore size 
ranging from 500 to 1000 μm. Compression test showed that scaffolds with hexagonal unit cells exhibited the highest compression 
stiffness, with stiffness decreasing significantly as pore size increased from 500 μm to 1000 μm. Wang et al. [60] evaluated the in
fluence of pore shape and distribution on the mechanical properties of Ti6Al4V scaffolds. All the four scaffolds in their study had an 
average pore size and strut size of 500 μm and 400 μm, respectively, with an average porosity and permeability of 70% and 100%, 
respectively. Under a vertical loading of 100 N, scaffold (Ti-r) with regular distribution of diamond crystal lattice cells showed 
significantly lower equivalent stress peak and elastic strain, however, the max force that the scaffolds can bear and the Young’s 
modulus were higher for Ti-r scaffolds. Scaffolds with a regular distribution of diamond crystal lattice cells demonstrated better 
performance than other scaffold designs in terms of mechanical behavior and suitability for clinic applications. 

Fig. 4. A series of building unit cells for 3D printed implants. a: from left to right, cubic structure, diagonally orientated struts and modified 
truncated pyramid [61]; b: examples of five polyhedral units [62]; c: triply periodic minimal surfaces (TPMS) porous units, the bottom rows are 
resultant blocks or printed scaffolds [63], reprinted with permission. 
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In order to better imitate the hierarchical structures of native bones, 3D printed porous scaffolds with spatially varying porosity, 
pore size, or stiffness are particularly desirable [64]. It have been reported that successful implants should compose pore gradient to 
support the regeneration of natural bones [65–70]. Various solutions have been proposed for fabricating implants with gradient 
structures, such as changing the types and dimensions of printing unit cells. However, the easiest way is to change the thickness of the 
struts either in the axial (Fig. 5a,c,e) or radial directions (Fig. 5b,d,f), as shown in Fig. 5. Gradient scaffolds not only stimulate new bone 
penetration but also minimize the stress shielding effect after implantation [71,72]. To optimize elastic properties and simulate the 
structures of trabecular bone, Surmeneva et al. [73] developed model structures with layered regular unit cells. The triple- and 
double-layered porous Ti6Al4V based scaffolds with different pore size for inner and outer holes were successfully printed. The 
gradient porosity can be ranged from 21 to 65%, while compressive plastic strain and elastic modulus can be tailored from 31 to 212 
MPa and 0.9–3.6 GPa, respectively. 

Han et al. [74] manufactured continuous functionally graded porous scaffolds based on Schwartz diamond unit cell by SLM. The 
pore size increased continuously from the distal layer to the proximal layer. By adjusting the graded volume fraction, the elastic 
modulus and yield strength can be customized within the range of 0.28–0.59 GPa and 3.79–17.75 MPa, which were close to those of 
cancellous bones. Nune et al. [75] printed interconnected porous functionally gradient Ti6Al4V mesh structure with pore size of 200, 
400 and 600 μm by EBM (Electron Beam Melting) and investigated the response of osteoblasts. Their results demonstrated that the 
expression of actin and vinculin were higher in Ti6Al4V mesh with 200 μm pore size, however, cell nuclei decreased from 600 μm pore 

Fig. 5. Porous 3D printed components with gradient structure design. Gradual changes in porosity in the vertical direction (a [83], c [84], e [85]) 
and in the diagonal directions (b [86], d [84], f [73]), reprinted with permission. 
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size to 200 μm pore size. After 14 days of incubation, the mesh structure was covered with a thin sheet of cells. The mesh struts were 
wrapped by cells and the pores were bridged with their filopodia. Compared to larger pore size areas, a number of porous areas where 
the confluent layer was partially present were observed. They concluded that the gradient mesh structure can be a potential route to 
minimize mechanical mismatch between bone and Ti-based implants. 

In recent years, triply periodic minimal surface (TPMS) has become a popular choice in AM due to its ability to provide various 
porous structures [76]. TPMS is described by the parametric equation and exhibits high surface area and uniform stress distribution 
under load-bearing conditions. The structure’s shape, porosity, and pore size can be precisely modified by altering characteristic 
parameters in the function expressions, making it possible to fulfil diverse mechanical requirements in different orthopedic applica
tions [77,78]. There are various TPMS configurations available, such as Primitive, I-Wrapped Package (I-WP), Gyroid, Neovius and 
Diamond. It has been reported that the Gyroid structure possesses a higher fatigue life and permeability [79,80]. Meanwhile, the I-WP 
and Neovius structures exhibit higher uniaxial compressive modulus, compressive strength, and energy absorption than Primitive 
structure [76,81].However, Viet et al. reported that the I-WP structure demonstrated the highest effective yield strength for a given 
porosity level [82]. 

2.2.3. Postprocessing 
For metal 3D printed implants, metal powder particles may undergo partial re-melting, resulting in an undesired rough surface 

(Fig. 6b). This rough surface, along with internal defects and insufficient layer bonding, may serve as the crack initiation site when 
under load-bearing conditions if no further processing procedure is performed [87]. Additionally, residual stress may be caused by 
thermal fluctuations during the printing process [88], which can lead to decreased fatigue behavior of the implants under fatigue 
loading [89–91]. Since the implant surface serves as a bridge between the implants and surrounding cells and tissues, their interactions 
are crucial for better clinic outcomes. Therefore, postprocessing would be necessary to achieve better mechanical properties and 
biological performance for the 3D printed implants. 

Post-processing typically involves removing the supporting part, if necessary, as the first step. Subsequently, grinding or machining 
polishing can be applied to obtain a smoother surface, as depicted in Fig. 6a [92]. In order to further improve the in vitro and in vivo 
behavior of the implants, heat treatment can be applied. Heat treatment eliminates the surface defects and improves the surface 
hydrophilic. Consequently, the early cell attachment, proliferation and osteogenesis differentiation can be promoted [93]. Addi
tionally, the heat treatment process can eliminate residual stress and consolidate the implants, thereby increasing their ductility, 
strength, and fatigue resistance [94,95]. With further processing using hot isostatic press (HIP) processing and surface polishing, the 
fatigue life of SLM printed Ti6Al4V components can be one or two orders of magnitude higher than of as-printed and wrought Ti6Al4V 
components [96–98]. Due to the rapid melting and solidification rates during 3D printing process, the existence of non-equilibrium 
phases can impair the corrosion resistance property of the Ti-based implants. And proper post-heat treatment can decrease the 
corrosion rate and eliminate pitting corrosion by transforming non-equilibrium phases into equilibrium α and β phases [99]. 

Recent research has highlighted the importance of surface roughness in promoting osteointegration and bone regeneration in 3D 
printed scaffolds [101,102]. Surface roughness has been found to not only impact osteoblast adhesion on the scaffolds [103], but also 
alter cell morphology and osteoblastic differentiation [104]. In preparing heat-treated Ti6Al4V scaffolds, Li et al. [105] demonstrated 
that increasing the heating temperature resulted in higher surface roughness (Ra = 7.55 ± 0.83 nm, Rq = 9.46 ± 0.92 nm), which 
improved cell adhesion, proliferation, and bone ingrowth. Other study has shown that cellular proliferation increases when surface 
roughness is increased from 0.16 μm to 2.19 μm [38]. Ponader et al. [106] reported that cell viability significantly decreased when Ra 
was higher than 56.9 μm. However, the osteogenic differentiation marker expression did not differ more than twofold for different Ra. 
The underlying mechanism has been discussed, with the Wnt5A pathway being implicated in osteoblast response to surface roughness, 
and integrin α2β1 being regarded as responsible for osteoblast response to surface microtopography [107,108]. Except for cell 
interaction, the roughness of the surface can also act as a collection site for mineral nucleation, such as calcium phosphate precipitation 
and HA [109,110]. In order to achieve better biocompatibility, other surface modification techniques such as microarc oxidation and 
surface coating have also been applied to 3D printed scaffolds [111–115]. 

Fig. 6. Surface morphology of: (a) hip joint printed by SLM after polishing and (b) as -printed acetabular cup printed by EBM without any further 
processing [100], reprinted with permission. 
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3. 3D printing for orthopedic implants 

In addition to its use in anatomy education and surgical planning, 3D printed implants have become increasingly prevalent in bone 
replacement and fixation. The advantages of these implants, such as customized design and precision control make them superior to 
conventional implants [116]. The trend towards individualized treatment approaches in modern medicine has led to the widespread 
acceptance and utilization of customized 3D printed orthopedic implants in patient-specific prostheses [117]. As a result, the number 
of clinical trials involving 3D printed implantable medical devices has significantly increased in recent years. 

3.1. Maxillofacial and oral application 

Due to the inherent complex anatomy structure, craniomaxillofacial regeneration or fixation is difficult especially with irregular 
defects when seldom available implants were suitable for all patients [118,119]. There is a great need for the fabrication of 
patient-specific craniomaxillofacial implants for clinical use that are both cost-effective and can be produced quickly [120]. For the 
early applications of scaffolds in maxillofacial bone tissue engineering, polymer [121], calcium phosphate [122–124] and bioglass 
[122,125] were selected due to their osteoconductive property. However, these scaffolds were lack of load-bearing capacity as they 
were fabricated as cements, or pastes [126]. Fernandes et al. [127] reported the first 3D printed implants which was employed as a 

Table 1 
A brief summary of the 3D printed implants in maxillofacial and oral applications.  

Clinic cases Prosthesis Type Material Printing 
techniques 

Outcome Country/ 
year 

Ref 

Asymmetric face, collapse of the 
right face, masticatory 
problems, malocclusion, and 
TMJ clicks after mandibular 
outer cortex split ostectomy 
(MOCSO) 

Titanium mandibular mesh Titanium / Perfect fit the position; 
correction of facial 
asymmetry; decreased mouth- 
opening deviation; 
disappearance of TMJ pain 

China/ 
2012 

[136] 

Complex reconstruction of the 
craniomaxillofacial area 

Titanium plate Titanium SLS Well fitted; individual 
aesthetic well maintained; no 
implant-related 
complications 

Germany/ 
2017 

[137] 

Anterior maxillary region injury 
with loss of upper front teeth 
along with bone 

Implant model for visual 
inspection and Basal 
Osseointegrated implant 

PLA for 
model and 
Ti64 for 
implant 

FDM for 
model and 
SLS for 
implant 

All the dentures functionality 
and aesthetics were restored 
to that of a health individual 

India/ 
2017 

[138] 

Severe maxillofacial trauma, 
extensive swelling of 
maxillofacial area, loss of 
normal occlusal contacts 

Ti6AI4V cellular mesh tray Ti6Al4V SLM Discharged at the 3rd 
postoperative week, no 
obvious clinical signs of 
inflammation, implant 
partially covered by bone 
callus 

China/ 
2017 

[139] 

Case 1: mandibular corpus 
ameloblastoma, Case 2: 
squamous cell carcinoma 

Grade II titanium Titanium SLM Recovery to oral feeding; 
returned to a normal diet 
without any need for 
analgesics; no pain or visible 
scar 

France/ 
2017 

[140] 

Unilateral end-stage TMJ 
osteoarthrosis 

Fossa component: ultrahigh- 
molecular-weight 
polyethylene condylar head 
component: cobalt-chromium- 
molybdenum alloy mandibular 
component: 3D printed 
titanium alloys 

Ti6Al4V / Wound healed well without 
serious scars; no prosthesis 
displacement, breakage or 
loosening 

China/ 
2019 

[141] 

Post-traumatic zygomatic fixation medial-lateral 3.5 cm orbital 
floor defect. 

Ti6Al4V 
(Grade 23) 

Metal 
powder bed 
fusion 

Precise restoration and robust 
anatomical fitting with no 
issues 

UK/2020 [142] 

Temporomandibular joint (TMJ) 
OA/TMJ synovial 
chondromatosis 

Fossa backing/Ti–6Al–4V 
ramus and Co–Cr–Mo condylar 
head 

Ti6AL4V/ EBM No prostheses displacement, 
breakage or loosening, no 
severe infection, no swelling 
and scars, VAS for pain or diet 
and mandibular function 
reduced, increased maximal 
interincisal opening (MIO) 

China/ 
2021 

[143] 

Recurrent ameloblastoma in the 
left mandible 

patient-specific implant plate Ti6Al4V 
(Grade 5) 

SLM Perfect facial symmetry, 
normal facial expression 
movements, normal opening 
and closing movements, good 
fit positioning of the implants 

Syria/ 
2021 

[144]  
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facial prosthesis. The patient suffered a complete maxillectomy, rhinectomy, and resection of the upper lip and aspects of the left and 
right cheeks. After the failure of four zygomatic oncology implants, an anatomically customized Ti6Al4V implant was manufactured by 
3D printing. The facial implant was then placed intraoperatively and fixated with 21 cortical screws. After the operation, the patient 
adapted well to the facial implants and remained tumor-free for half a year. Roos et al. [128] implanted a Ti6Al4V Direct Metal Laser 
Sintering (DMLS) frame in a patient with a significant midfacial defect after subtotal maxillectomy. Three years after the operation, the 
patient was satisfied with mastication, deglutition, and had achieved excellent speech. The Ti6Al4V frame was able to reconstruct large 
midfacial defects in terms of functional and cosmetic results. However, reconstruction of other large orbital defects remains a challenge 
in clinical applications [129]. It has been reported that orbital fractures that are operated within 48 h after trauma can reduce 
postsurgical diplopia and improve prognosis [130]. 3D printed orbital plates with variable thickness have provided optimal functional 
and aesthetic results for delayed reconstruction of large orbital floor defect [131]. For some complex surgeries, 3D printed implants are 
extremely useful in saving operation time and reducing the risk of complications and patient morbidity [132–135]. A brief summary of 
3D printed implants in maxillofacial and oral applications is shown in Table 1. 

3.2. Joint application 

In the last few decades, conventional orthopedic implants have been widely accepted for joint replacement occasions [145]. 
However, these implants are in pre-designed geometry and may not be the best choice for all patients with differing joint anatomies. 
Additionally, some patients with special injuries, such as revision surgery, may require additional extension of the incision or increased 
bone amount to ensure the stability and matching of the implants. The traditional implants may not meet the clinic requirements in 
these cases [146]. The mismatch between conventional implants and bone structures may lead to implant failure [147]. 3D printed 
joint prostheses with patient-specified designs provide an alternative choice for these situations [38]. 

3.2.1. Shoulder joint 
It was doctor Jules-Emile Pean that conducted the first shoulder arthroplasty in 1893 for a patient who suffered from tubercular 

arthritis. The prosthesis, composed of a rubber head and platinum stem, was removed after two years due to tubercular infection [148]. 
Over the centuries, shoulder arthroplasty has developed and is now considered the fastest growing procedure among all other or
thopedic joint replacements [149]. In clinic situations, shoulder arthroplasty is often a result of tumor resection, and the main goal of 
shoulder reconstruction is to preserve adequate basic functions for the daily life of patients [150]. Over the past few decades, autograft, 
allograft, customized, and modular prosthesis have been widely applied in shoulder arthroplasty. However, there is still a need for 
optimal implants [151]. Although 3D printed total shoulder prostheses are not yet available, other 3D printed implants such as gle
noids, clavicles and scapulas have been reported [146,152]. Instead of wide resection of the middle third of the clavicle followed by 
autologous bone graft reconstruction and radiotherapy in a male patient who suffered from langerhans cell histiocytosis (LCH) on his 
left shoulder, Diego et al. [153] printed a porous titanium pseudo-prosthesis to accomplish clavicular reconstruction after tumor 
resection. No pain on palpation or mobilization were occurred with complete range of motion of the left shoulder at 3 months after 
operation. 2 years after operation, the left shoulder recovered normal function without any limitation. The authors concluded that the 
3D printed titanium pseudo-prosthesis allow for full resection of the oncological margins, without the need for local radiotherapy or 
systemic chemotherapy for the patient. Daniel et al. [154] successfully implanted a 3D printed glenoid implant into a 56-year-old 
woman who had suffered a severe glenoid defect 12 years after total shoulder replacement, resulting in almost total destruction of 
the glenoid. The immediate postoperative X-ray images indicated that the implant was successfully implanted in the right position. 
Only six weeks after the surgery, the patient was able to resume household activities. Her constant score improved to 51 points after 2.5 

Table 2 
A brief summary of the 3D printed implants in shoulder joints applications.  

Clinic cases Prosthesis Type Material Printing 
techniques 

Outcome Country/ 
year 

Ref 

Case 1: clavicle porous clavicle prosthesis 
and porous scapular 
prosthesis 

Ti6Al4V EBM Proper placement of implant. No 
neurovascular bundle injury. No local 
recurrence or metastasis. Shoulder motion 
recovery 

China/ 
2015 

[152] 
ES, case 2: right scapular ES 

Case 1: extraskeletal ES; case 
2: subscapularis muscle 
synovial sarcoma 

porous scapular prosthesis Titanium / No neurovascular bundle injury or other 
complications. No local recurrence or 
metastasis. No implant breakage and joint 
collapse. 

Italy/ 
2018 

[150] 

Revision of total shoulder 
arthroplasty (TSA) with 
severe bone defects 

macro-porous shoulder 
prosthesis 

Ti6Al4V EBM Anatomically satisfying reconstruction, 
accurate prosthesis placement, improved 
shoulder function for daily activities and 
increased quality of life. 

China/ 
2018 

[156] 

Primary malignancies in the 
proximal humerus 
underwent intra- 
articular en bloc 
resection 

proximal humeral 
prosthesis with glenoid 
component and 
intermediate segment 

Ti6Al4V EBM No aseptic loosening, breakage, fracture, or 
infection, but two cases experienced 
detachment of the taper. Tight 
osseointegration at the bone-prosthesis 
interface. New bone formation in porous 
structure 

China/ 
2022 

[157]  
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years of follow-up. According to Fan et al. [152], three porous Ti–6Al–4V prosthesis manufactured via EBM have been applied in 
shoulder joints reconstruction. A 21-year-old woman with clavicle Ewing’s sarcoma (ES) was diagnosed with a large expandable 
osteolytic lesion affecting the entire clavicle. The printed prosthesis not only matched the excised clavicle well but also reduced the 
modulus of the implant. Proper placement and clavicular symmetry were evident in X-ray images taken 2 years after the surgery. A 
size-matched scapula prosthesis was implanted in 35-year-old woman who diagnosed with right scapular ES. The major blood vessels 
and nerves to the upper extremity were preserved. After 21 months of implantation, proper articulation of the scapular prosthesis was 
observed. Beltrami et al. [150] reported on two patients who received 3D printed custom-made porous Ti scapular prostheses. Twenty 
and sixteen months after operation, respectively, no local recurrence or metastasis was found, and motion scores for the shoulder were 
87% and 63%, respectively. No implant breakage or joint collapse occurred. Another 3D printed honeycombed titanium segmental 
scapula prosthesis was also applied in the reconstruction of an irregular bony defect following limb salvage surgery for chon
drosarcoma tumor resection [155]. At the 28-month follow-up, the prosthesis was in good position with no tumor recurrence. At the 
final 32-month follow-up, the patient was also in good condition with no discomfort in the surgically treated shoulder. A brief summary 
of the 3D printed implants applied in shoulder joints reconstruction application is shown in Table 2. 

3.2.2. Wrist joint 
Severe injury or tumor resection of the wrist often requires either arthrodesis or arthroplasty to restore the function of the wrist 

[158]. Therefore, wrist replacement surgeries have been increasing. Although previous wrist prostheses were claimed to be suitable for 
clinic application with preserving basic joint functions [159–162], implants failure ascribed to prosthesis loosening, dislocation, or 
infections may compromise clinic outcomes [162]. Nowadays, 3D printing techniques are able to produce upper limb orthoses utilized 
for fixation or regeneration of the wrist to support injured limbs [163]. Lu et al. [164] proposed a custom-made 3D printed prosthesis 
with a best-fit articular surface for wrist joint arthrodesis after giant cell tumor resection. During 2015 and 2017, they conducted 
eleven implantations for giant cell tumor patients. Prior to their operation, all patients claimed painful, after the operation, seven 
patients reported no pain, while four other patients continued to suffer from moderate pain. The range of motion was significantly 
improved after the operation and the grip strength also increased from 17 mmHg to 23.6 mmHg. During the two years follow-up, no 
deaths, tumor recurrences, metastases, or amputations were observed. In terms of the implanted prosthesis, no aseptic loosening, 
subluxation, or breakage were found. They suggested that 3D-printed prosthetic reconstruction can be a suitable alternative option for 
recurrent distal radius tumor resection. In cases of large structural defects after tumor resection at the distal end of the right radius, a 
3D printed tantalum implant was applied to preserve the normal appearance and function of the wrist. 24 months after the operation, 
only slight pain was occasionally occurred, and no local recurrence or metastasis was found. However, slight bone resorption between 
the tantalum prosthesis and radius was observed according to CT results [165]. Xie et al. employed mirror technology and data 
registration technology to design and print a lunate prosthesis for a 41-year-old patient with lunate collapse [166]. After implanting 
the 3D printed lunate prosthesis in its original anatomic position, the wrist was fixed with plaster for 4 weeks. 12 months after surgery, 
the patient was able to use the wrist in sports activities with mild pain, and no weakness or numbness were observed. Additionally, 
during the last evaluation, the wrist exhibited nearly full range of motion and grasp force. Xu et al. [167] claimed to have conducted 
the first comprehensive clinical guide for the application of 3D printed prostheses. They designed and manufactured a novel 3D printed 
prosthetic hand for a child who suffered a severe acute mangled injury of right hand after a mincing machine accident. 4 weeks after 
surgery, the wound had healed successfully, and stitches were removed. After personalized prosthetic training and rehabilitation 
program, the child’s parents were satisfied with the prosthesis. The child was able to complete various daily activities such as eating, 
writing, self-dressing, and even riding a bike with the prosthesis. A brief summary of the 3D printed implants in wrist joints appli
cations is shown in Table 3. 

Table 3 
A brief summary of the 3D printed implants in wrist joints applications.  

Clinic cases Prosthesis Type Material Printing 
techniques 

Outcome Country/ 
year 

Ref 

Lunate density was uneven 
and the height and width 
of lunate were collapsed 

lunate prosthesis / / Able to use wrist with mild pain during sport 
activities after 12 months. No weakness and 
numbness. Nearly full range of motion and grasp 
force. No degenerative arthritis and prosthetic 
dislocation. Prosthesis placed in original anatomic 
position 

China/ 
2018 

[166] 

Distal radius giant cell tumor 
(GCT) 

uncemented shaft 
and stem coated 
with HA 

Titanium EBM No tumor recurrence, metastasis or amputation. 
No degenerative changes or complications. 
Reliefed from pain. Improvement in ROM and 
Mayo wrist score, decrese in DASH score. 

China/ 
2018 

[168] 

Lunate replacement 
arthroplasty with 
Kienböck’s Disease in 
Different Stages 

3D printed lunate 
prosthesis 

Ti6Al4V EBM No prosthesis dislocation or subluxation. 
Significantly increment in extension range and 
flexion range. No incision infections, cysts, or 
synovitis in the radial or carpal bones. 

China/ 
2020 

[169] 

Osteosarcoma of distal radius 3D printed porous 
tantalum prosthesis 

Tantalum / Fast recovery with occasional slight pain. No local 
recurrence and lung metastasis, slight bone 
resorption between prosthesis and radius 24 
months after operation 

China/ 
2021 

[165]  
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3.2.3. Hip joint 
Osteoporosis related hip fracture is one of the most common public health issue, especially for elder individuals. Other hip fracture 

caused by trauma can result in hip dislocation or acetabular facture. In such situations, hip arthroplasty is commonly applied to restore 
hip function [170–173]. Due to their superior mechanical properties and biocompatibility, Ti and its alloys have been used in hip 
arthroplasty for many years. However, such Ti-based prostheses are in a fixed shape and additional adjustment is required before 
implantation. Hence, in emergency situations, this can waste valuable time and may also create additional risks for patients [174,175]. 
Over the years, new manufacturing techniques such as 3D printing have been applied to total joint arthroplasty [176]. In a 2-year 
follow-up study, Wang et al. [177] compared conventional hip replacement with 3D printed replacement in a total of 74 patients 
who had severe hip deformiies. For the 3D printing group (n = 17), patients exhibited a shorter time (1.5 ± 0.2 vs 2.1 ± 0.3 days, p <
0.001) to postoperative weight bearing. Meanwhile, the postoperative Harris hip scores (HHS, 93.5 ± 3.2 vs 91.4 ± 2.9, p = 0.013) 
were higher than the conventional group. However, in terms of postoperative infection and prosthesis loosening, the 3D printing group 
also exhibited significantly higher infection (n = 4 vs n = 2) and loosening (n = 4 vs n = 1) rates. They believed the 3D printed 
prosthesis with tailored high precision may be a good solution to improve operation success rates of complex and difficult surgeries. 
They also stated that more cases should be conducted in the future to evaluate their effectiveness and safety. Nine more patients were 
reported to have received total hip arthroplasty (THA) with a 3D printed custom acetabular component to correct extensive acetabular 
defects, with an average follow-up time of 28.8 months [178]. The final implants were matched to the patients’ individual anatomy. 
The overall implant-associated survival rate was about 88.9%, with only one patient requiring revision surgery due to implant failure 
after 13 months. The HHS increased significantly from 22.1 at admission to 58.7. Nonetheless, the authors believed that the 
manufacturing process should be faster as the present custom prosthesis takes several weeks to complete. Baauw et al. [179] reported a 
similar clinical trial where 12 patients with failed acetabular reconstruction and large bone defects were recruited. Although four 
patients had complications, there were no infections or need for additional surgery. All the patients were satisfied with the 
custom-made implant and daily functioning was improved in most patients. While for a patient who suffered from periprosthetic joint 
infection (PJI) and femoral defect after THA, a 3D printed antibiotic spacer was initially placed, followed by PJI debridement. Then, a 
3D printed proximal femur prosthesis (PFP) was applied to reconstruct the large, atypical segmental femoral bone defect after the PJI 
was eliminated. 20 months after the surgery, no infection recurrence and prosthetic loosening can be found. The 3D printed PFP 
exhibited near-perfect anatomical reconstruction of the hip with a near-normal range of hip movement [180]. A brief summary of the 
3D printed implants in hip joints applications is shown in Table 4. 

3.2.4. Knee joint 
As the load-bearing joint, the knee is highly susceptible to osteoarthritis (OA) or trauma. Total knee arthroplasty (TKA) has been 

widely accepted as the most useful solution in treating end-stage osteoarthritis worldwide [182]. With increasing aging problems in 
developed countries, TKA is rapidly becoming more prevalent [183,184]. Although TKA is a reliable surgery with implant revision 
rates about 5% at years, prosthesis loosening, dislocation and instability still need to be resolved [185,186] and nearly 19% of patients 
remain dissatisfied post TKA [187]. Conventional knee prostheses may not be appropriate for patients with severe bone defects in the 
distal femoral or proximal tibia, and large bone loss also limites the use of standard knee prostheses [188]. As TKA plays a vital role in 
knee replacement, improving the long-term outcomes of knee implants is necessary for both surgeons and engineers. Porous structured 
3D printed knee prostheses seem to be a new candidate for TKA [38,189,190]. It has been reported that the initial mechanical stability 
of the 3D printed porous Ti revision metaphyseal cone implants was either equivalent or better than conventional tantalum cones, as 
measured by micromotion under physical loading situations [191]. Patient-specific 3D printed cones for revision TKA can be easily 
placed in the defect after minimal adaption of the host bone with no technical difficulties, thus facilitating the surgical procedure 
[192]. In the case of unicondylar femoral defects reconstruction caused pathological fractures induced by GCTs, the use of 3D printed 
custom-made prostheses not only reduces blood loss but also shortens operation time. In terms of Musculoskeletal Tumor Society 
(MSTS) scores and range of motion of the knee, the 3D printed group perform much better than the total knee replacement (TKR) group 
[193]. Ma et al. [194] implanted 3D printed personalized Ti plates in 12 patients (7 cases of osteosarcomas, 3 cases of GCTs, 1 case of 
ES and 1 case of chondrosarcoma after microwave ablation of tumors around the knee. The customized plates were matched well with 

Table 4 
A brief summary of the 3D printed implants in hip joints applications.  

Clinic cases Prosthesis Type Material Printing 
techniques 

Outcome Country/ 
year 

Ref 

Severe hip deformity caused by 
either hip tuberculosis (TB) 
or developmental dysplasia 
of the hip (DDH) 

3D printing hip 
arthroplasties 

Titanium EBM Shortened time to postoperative weight 
bearing. Improved postoperative HHS 

China/ 
2017 

[177] 

Total hip arthroplasty 3D printed acetabular cup 
with a porosity of 50%– 
80%, pore size of 600–800 
μm 

Titanium EBM No prosthesis related complications. 
Improved average HHS. New bone 
formation in the porous cup. 

China/ 
2021 

[181] 

Chronic periprosthetic joint 
infections (PJI) and 
segmental femoral defect 

3D printed personalized 
proximal femur prosthesis 

/ / Significantly improvement in HHS, no 
sign of implant loosening, significant 
symptomatic improvement with a near- 
anatomical hip joint 

China/ 
2021 

[180]  
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the bone surface. Knee gait analysis revealed that all the patients had good status for knee functions during their daily activity. They 
also suggested that the design of several small holes on the distal plates allowed the maximum retention of the knee joint, due to the 
mechanical construction. 3D printed porous implants combined with bone grafting in subchondral GCT of the proximal tibia was also 
reported [195]. The personized porous implant is utilized to mechanically support the graft and subchondral area. The VAS score 
decreased from 7 to 0 after surgery. At 29 months after surgery, knee motion was within a normal range with no detectable difference. 
Furthermore, no degenerative, fracture or collapse was found. The shape and thickness of the porous plate, strut length, pore size and 
porosity are the main factors in achieving superior clinic outcomes. A brief summary of the 3D printed implants in knee joints ap
plications was shown in Table 5. 

3.2.5. Feet and ankle joints 
Total ankle replacement (TAR) has been approved for clinical applications in treating ankle related injuries, but satisfactory clinical 

outcomes have been difficult to achieve compared to other joints [199,200]. Due to the limitation of treatment options, ankle arthritis, 
avascular osteonecrosis, and osteomyelitis remain a surgical challenge in foot and ankle treatment [201–205]. Furthermore, the 
compact size of ankle joints and the higher resultant moment and compressive force they experience make it complicated to develop 
ankle replacements [200]. Consequently, ankle replacement has received less attention from clinical and industrial sectors, and only a 
small number of sizes are currently available [206]. The irregular morphology of the ankle joint further complicates the development 
of traditional plates, which may not match the bone surface [207]. Recent studies have shown that patient-specific designs of ankle 
prostheses are expected to achieve better results in TAR [208–211]. In an ankle osteoarticular infection patient who requring pain 
relief and ankle fusion, the 3D printed titanium talus was superior than proximal trabecular tibial cone [212]. In order to improve the 
clinical performance of 3D printed plates for foot and ankle joints fusing, finite element analysis (FEA) can be applied to optimize the 
stress distribution of the implants [207].Wardhani et al. [200] analyzed 3D printed ankle implant models (both solid and porous 
structure) and the effects of ankle postures on the biomechanical performance of the implants via FEA. The study found that implant 
models with a flat tibial component shape exhibited lower tibial bone stress when compared to the curved or tilted shapes, while tibial 
component shape had little influence on talus bone stress. The implant models with a medium pore size (0.8 mm in width and 1.0 mm 
in depth) had lower talar component stress. Dekker et al. [213] conducted a retrospective study on patients who underwent tibia, 
ankle, or hindfoot reconstruction with a patient-specific 3D printed Ti prosthesis by a single surgeon. Of the 15 patients, 13 were 
successfully implanted with the 3D printed prosthesis. One failure was due to deep infection, and the other due to nonunion at ankle 
arthrodesis. American Orthopedic Foot and Ankle Score (AOFAS) improved from 28.4 to 64.8, and the Foot and Ankle Ability Measure 
Activities of Daily Living score (FAAM ADL) also increased from 23.5 to 62.8. Meanwhile, the 100-mm VAS pain scores significantly 
decreased from 89.0 to 23.9. Belvedere et al. [209] claimed to have fabricated and tested a custom-made total ankle prosthesis for joint 
arthritis using 3D printing for the first time. They also proposed a comprehensive procedure for custom-made total ankle replacement. 
After implantation in cadaver specimens, physiological motion was well restored, and load-displacement curves exhibited that joint 
stability was also well restored by the custom-made artificial joint. Hamid et al. [214] successfully implanted a Ti6Al4V prosthesis in a 
woman who sustained a left open distal intra-articular tibia fracture with substantial distal tibia bone loss. 6 months later, the patient 
could walk on her feet all day without any ambulatory aids. Heel pain at the nail insertion site appeared at 13 months after 

Table 5 
A brief summary of the 3D printed implants in knee joints applications.  

Clinic cases Prosthesis Type Material Printing 
techniques 

Outcome Country/ 
year 

Ref 

Campanacci Grade II GCT 
with no pulmonary 
metastasis 

3D printing porous implants 
with porous plate and shrut to 
mechanically support the graft 
and subchondral area 

/ / VAS score decreased to 0. Normal range 
of knee motion reached. No degenerative 
changes, no fracture or collapse. No local 
recurrence or lung metastasis. 

China/ 
2019 

[195] 

Revision total knee 
arthroplasty 

3D printed patient-specific 
metaphyseal and diaphyseal 
cones 

Titanium 
powder 

/ No technical difficulties in positioning 
and implanting the cones. No indications 
for revision surgery. No complications. 
Significantly improvement of Knee 
Society Score, Western Ontario and 
McMaster Universities Osteoarthritis 
Index and Forgotten Joint Score. 
Osteointegration achieved within the 
first 6 month after surgery. 

Russian/ 
2021 

[196] 

Joint-preserving 
prosthetic 
reconstruction after 
low-grade 
osteosarcoma 
excision 

3D printed tibial plate coated 
with hydroxyapatite 

Ti6AL4V 
(ISO 5832- 
3) 

/ Good alignment and no implant 
loosening. The patient can walk 
independently without aid or pain 10 
month after surgery. No tumor 
recurrence. The range of motion for the 
affected knee reached 100◦. 

Turkey/ 
2021 

[197] 

Giant cell tumor in 
proximal tibia 

a porous truncated ellipsoid 
cone-shaped plate and a 
porous square frustum-shaped 
strut 

titanium 
alloy 

EBM No surgical-related complications. No 
degeneration of the knee joint. No aseptic 
loosening or breakage. Improved 
Musculoskeletal Tumor Rating Scale and 
VAS decreased. 

China/ 
2021 

[198]  
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implantation but resolved two months later. Bone penetration into the talus, calcaneus and 3 of 4 cortices of the tibia were proved by 
CT scanning at 13 months after implantation. A brief summary of the 3D printed implants in feet and ankle applications is shown in 
Table 6. 

3.3. Spine application 

The incidence of spinal related diseases, such as degenerative disc, spinal deformities, tumors, and other injuries, is on the rise. To 
meet the clinical requirements, a lot of different spinal implants and devices have been designed and fabricated to accelerate fusion, 
restore deformity, provide fixation, and reconstruction or strength the spine [216]. Due to the complex anatomy structure of the spine, 
spinal surgery is a complicated and risky procedure. However, in vivo animal models have demonstrated the feasibility of 3D printed 
prosthesis in spine applications [217]. Recently, several reports have suggested that 3D printed spinal implants can yield better clinical 
results for complex spinal surgeries [210,218–221]. Notably, tt was professor Zhongjun Liu and his team who all came from China 

Table 6 
A brief summary of the 3D printed implants in feet and ankle applications.  

Clinic cases Prosthesis Type Material Printing 
techniques 

Outcome Country/ 
year 

Ref 

Left open distal intra- 
articular tibia fracture 
with substantial distal 
tibia bone loss 

custom 3D printed scaffold with 
patented truss structure 

Ti6Al4V / By 6 months, the patient returned 
to work without ambulatory aids 
and with regular shoe wear. 15 
months after surgery, the VAS for 
pain is 0. 13 months, a focal area of 
no radiographically identifiable 
bony bridge at the proximal 
anterior junction of the residual 
tibia and the custom implant 

USA/ 
2016 

[214] 

Mesenchymal sarcoma of the 
talus 

total talar prosthesis with upper 
modular component made of ultra- 
high molecular weight 
polyethylene (UHMWPE) for 
articulation with the tibia and 
fibula, and lower component made 
of 3D printed titanium alloy for 
articulation with the calcaneum 
and navicular 

Titanium 
alloy 

/ Patient was disease free 6 months 
after surgery, walk almost 
normally without any aid or pain. 
Roentgenograph showed that the 
prosthesis and the screws were in 
stable position, and no 
abnormalities 

China/ 
2018 

[205] 

Foot drop 3D printed personalized plate Ti6Al4V 
powders 

EBM Short operation time and minimal 
blood loss. No infection or fracture 
of the internal plate. Well-matched 
to the bone surface. Significant 
improvement in AOFAS and Short- 
Form 36 (SF-36) scores 36 months 
after surgery. 

China/ 
2021 

[207] 

Talar necrosis and collapse 
(TNC) 

3D printed talar prosthesis with 
porous talonavicular and subtalar 
articular structures and screw 
fixation channel 

Titanium 
alloy 
powder 

EBM No degenerative arthritis and 
prosthetic dislocation. The talar 
arc length, talar height, talar 
width, tibiotalar alignment angle, 
talar tilt angle, Bohler’s angle, 
Meary’s angle were all improved. 
Satisfaction with the implantation, 
normal activities can be done one 
month after operation. 

China/ 
2021 

[215] 

Osteoarticular infection of an 
ankle 

titanium talus Titanium / Fusion was achieved 4 months 
after surgery, function 
improvement 15 months after 
surgery, apparent signs of 
osseointegration, capable of 
walking without external aids 

Spain/ 
2021 

[212] 

Foot drop in both feet personalized plate (P-Plate) for 
tibiotalocalcaneal arthrodesis 

Ti6Al4V 
powder 

EBM Plate was well-matched to the 
bone surface 3 months after 
surgery. No complications. The 
gait and AOFAS and SF-36scores 
improved. 

China/ 
2021 

[207] 

Chronic osteoarthritis of left 
ankle after a failed 
tibiotalar arthrodesis 
with an anterior plate. 
Active fistula on the 
external region of the 
ankle 

3D printed custom-made talus 
implants 

Titanium / Fusion was achieved 4 months 
after surgery. Obvious functional 
improvement and partial 
osteointegration of the implants at 
a 15 month follow-up. No 
displacement or rupture. 

Spain/ 
2022 

[212]  
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implanted the first personalized 3D printed porous Ti-based vertebral body into a patient to reconstruction the upper cervical spine in 
the world [222]. To facilitate bone infiltration, both the pore size and shape of the implant were carefully designed based on their 
previous studies [223]. One year after surgery, implant osseointegration was confirmed by the newly formed bone in the built-in 
vertical slit in the center, and no subsidence or displacement of the implant was observed. Lumbar interbody fusion is a common 
case in spinal surgery. Zhang et al. [224] conducted a study to evaluate the biomechanical performance of transforaminal lumbar 
interbody fusion with 3D printed PEEK and Ti6Al4V cages. Both PEEK and fully porous Ti6Al4V cages reduced the maximum stresses 
in the cage and endplate in all motion modes compared to the solid and partially porous cages. Moreover, when compared to PEEK 
cages, fully porous Ti6Al4V cages not only reduced stress but also increased the range of motion. The authors suggested that fully 
porous Ti6Al4V cages with a porosity between 65% and 80% would be a better choice than conventional solid PEEK cages. Similar 
results had also been reported by Tsai et al. [225]. They suggested that porous 3D printed cages with a pillar diameter of 0.4 mm, a 
pillar angle of 40◦, and a porosity between 69% and 80% exhibited better mechanical behavior. Spetzger et al. [226] reported the 
implantation of an individualized cervical Ti cage for cervical fusion. The cage was fabricated with a porosity and pore size of 80% and 

Table 7 
A brief summary of the 3D printed implants in spine applications.  

Clinic cases Prosthesis Type Material Printing 
techniques 

Outcome Country/ 
year 

Ref 

C2 ES, staged as IIB according to the 
Weinstein-Boriani-Biagini 
classification, with no metastasis 

3D printed self- 
stabilizing artificial 
vertebral body 
(SSAVB) 

Titanium 
alloy 

EBM Implant osseointegration 1 year after 
surgery, no subsidence or 
displacement of the construct, no 
local recurrence of the tumor. 
Improved neurological function. 

China/ 
2016 

[222] 

T9 pseudo-myogenic- 
hemangioendothelioma, and 
extension into the paravertebral 
region and ribs 

The custom 3D 
printed vertebra cage 
prosthesis with 
fixation holes for 
pedicle screws 

Titanium / Patient returned to full schooling 3 
month after surgery, paracetamol 
was required for release pain, the 
patient can return to netball and 
school sports. Implant was well 
positioned and had integrated with 
the adjacent end plates 6 months 
after surgery 

Australia/ 
2017 

[231] 

Papillary thyroid carcinoma with very 
large lytic lesion involving C2–C4 
vertebrae 

columnar structure 
Self-stabilizing 
Artificial Vertebral 
Body (SSAVB) with 
bilateral shoulders 

Ti6Al4V / Quick improvement in neurological 
function and Japanese Orthopaedic 
Association (JOA) score. Good 
cervical vertebrae sequence and 
implant position at the 12-month 
follow-up point. The JOA score was 
16/17 and the patient can 
independently engage in daily 
activities. 

China/ 
2017 

[232] 

Complete spinal cord injury below T11 
with exacerbated infectious 
spondylitis, and spine fusion 
failure and screw loosening 

3D printed cages with 
4 arms to fix the 
screws 

medical 
grade 
Ti6Al4V 

EBM 2 weeks after surgery, the back pain 
became tolerable and ambulation in 
wheelchair. No further signs of 
infection, mechanical complication, 
or newly developed neurologic 
symptoms. The fusion of the bone 
around the implants was stable. No 
loosen of the pedicle screws. 

Korea/ 
2019 

[233] 

Renewed symptomatology after 
anterior cervical discectomy and 
fusion 

porous titanium cages Ti6Al4V 
ELI Powder 

SLM The cage revealed white tissue, 
similar to bone, lamellar bone can be 
found in the cage surface, the bony 
tissue infiltrated in the anterior 2/ 
3rd of the cage, no fibrous tissue 
interface between the newly formed 
bone and the cage struts, no 
inflammatory cells or tissue reactions 

Germany/ 
2020 

[234] 

Posterior vertebral column resection 
(PVCR) due to Kümmell’s Disease 
complicated by neurological 
deficits 

3D-printed artificial 
vertebral body (pore 
size: 800 ± 200 μm, 
80% porosity) 

Ti6AL4V EBM Significantly lower operative 
duration and blood loss, no implant 
related complications 

China/ 
2020 

[235] 

Cervical spondylotic myelopathy 3D-printed interbody 
fusion cages 

Titanium 
alloy 
powder 

EBM No spinal cord injury, esophageal 
fistula, cerebrospinal fluid leakage, 
cervical hematoma or wound 
infection. Improved JOA, cervical 
curvature index (CCI) and SF-36 
score. 

China/ 
2021 

[236] 

Reconstruction of cervical lateral mass 
to maintain cervical stability 

3D-printed lateral 
mass prosthesis 

Ti6A14V 
ELI 

EBM No implant-related complications 
such as prosthesis loosening, 
displacement, and compression were 
observed at the last follow-up 

China/ 
2022 

[237]  
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0.65 mm, respectively. It can also self-locate into the correct position and impossible to move from the implantation site from any 
direction after suspending distraction. The superior structure design provided an ideal environment for excellent secondary bony 
fusion without additional bone graft. In another study, 3D printed patient-specific implants were used for vertebral body replacement 
(VBR) in cervical spondylotic myelopathy (CSM), with six patients showing excellent clinical outcomes three months following the 
procedure [227]. 3 months later, all the 6 patients were satisfied with the clinic result and they progressed from Grade II to Grade I or 
regained normal functions of the neck. During the 3 months’ follow-up, the Neck Dysfunction Index (NDI) and VAS scores were all 
decreased. 3D printed customized prostheses can also help to reconstruct spine functions after tumor resections [228–230]. A brief 
summary of the 3D printed implants in spine applications is shown in Table 7. 

3.4. Pelvic application 

Pelvic fracture treatment and reconstruction after pelvic tumor surgery remain challenging issues for surgeons due to the complex 
and irregular anatomy structures in the region and the presence of important vessels and nerves in the vicinity [238]. This often leads 
to unsatisfactory clinical outcomes, which can result in high disability or fatality rates [239,240]. Despite the fact that traditional 
off-the-shelf prostheses have been used for fixation or structural support, the implants and surrounding tissues usually poorly matched, 
leading to the need for additional adjustment [241]. Furthermore, the use of mismatched prostheses may lead to complications, such as 
implant loosening [242]. In order to solve these limitations, patient-specified pelvic prostheses have been proposed and developed 
with 3D printing techniques [243–245]. FEA result revealed that customized Ti6Al4V pelvic prostheses printed via EBM are reliable in 
terms of mechanical behaviour under the most common daily activity (such as waking, going up stairs or stumbling) [246]. When 
compared with conventional allograft implants, the individualized 3D printed porous Ti6Al4V prosthesis has exhibited better clinic 
outcomes in terms of surgery incision length, surgery time, and blood loss for bone defect reconstruction after pelvic tumor resection 
[247]. Furthermore, the 3D printed patient-specific prosthesis can be navigated to the pre-planned position during reconstruction 
surgery after pelvic tumor resection with the help of an image-guided surgical navigation system [243]. Wang et al. [248] reported a 
complete case in which a pelvic prosthesis was designed, printed, and implanted successfully. The pelvic bone plate was successfully 
implanted with a minimal incision of only about 7 cm, and both the operation duration and bleeding loss were reduced. The pelvic 
fracture exhibited favorable recovery according to CT scanning. However, the follow-up results were not presented. A 3D printed 
modular hemipelvic prosthesis for pelvic reconstruction after tumor resection was also reported [249]. After the implantation, the hip 
joint exhibited good range of motion and stability, with good joint function and HHS improving from 42 to 81. The patient could live 

Table 8 
A brief summary of the 3D printed implants in pelvic applications.  

Clinic cases Prosthesis Type Material Printing 
techniques 

Outcome Country/ 
year 

Ref 

Left-side acetabular fracture completely-attached, 
customized, titanium 
alloy bone plates 

Ti6Al4V SLM Reduced implant numbers for patients, 
minimized surgery incision, reduced 
operation time, well matched with the 
fracture block 

China/ 
2016 

[248] 

Recurrence of 
chondrosarcoma, 
loosening of the semi- 
pelvic prosthesis and a 
broken screw 

pelvic prosthesis with 
sacrum component and 
acetabulum component 

Ti6Al4V EBM Prosthesis in good position, good ROM 
and stability, HHS increased from 42 
preoperatively to 81 postoperatively. 

China/ 
2018 

[249] 

Chondroblastic osteosarcoma 
with no neurological 
dysfunction 

sacral implant Ti6Al4V 
medical 
grade 
powder 

EBM Visual Analog Scale (VAS) score 
decreased from 8 immediately after 
surgery to 3 a year after surgery. No 
complications observed one year after 
surgery. Prosthesis well maintained at 
one year after surgery. Bone ingrowth 
into the titanium porous structure and 
bone fusion between medial side of right 
sacrum 

Korea/ 
2017 

[252] 

Bone reconstruction after 
pelvic tumor resection 

reconstruction 
prosthesis with porous 
structure 

Ti6Al4V EBM Better performance in terms of average 
incision length, duration of surgery, 
blood loss during operation and MSTS 
score compared with conventional nail- 
rod fixation system. No incision infection, 
no implants loosening or breakage, no 
tumor recurrence 

China/ 
2021 

[247] 

Bony defect reconstruction 
after pelvic tumor 
resection 

3D-printed anatomically 
conforming pelvic 
prosthesis 

Ti6Al4V / No local recurrence or distant metastases, 
no sign of hip dislocation, prosthetic 
loosening, no delayed wound healing or 
periprosthetic infection. 

China/ 
2020 

[245] 

Reconstruction after pelvic 
bone tumor resection 

3D-printed mesh-style 
titanium spacer/ 
anatomical plate 

Ti6Al4V ELI 
Powder 

EBM Normal gait with mild or no pain, 
improved MSTS score 

South 
Korea/ 
2021 

[253]  
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independently five months after surgery. Further FEA results suggested that the peak stress at the hemipelvic prosthesis and fixation 
screws were safe enough. Liang et al. [250] implanted 35 cases of 3D printed Ti alloy pelvic prostheses to reconstruct the pelvic 
function after different pelvic tumor resections (type I and type I+IV). A higher average MSTS was achieved than with conventional 
prosthesis [251]. An EBM printed Ti6Al4V pelvic implant was applied in a patient with pelvic chondrosarcoma. After tumor resection, 
the pelvic implant was fixed to the remaining pelvic and sacrum with screws. 16 months after surgery, the implant was stably fixed in 
the right position, and no screw loosening or implant breakage were observed [152]. A brief summary of the 3D printed implants in 
pelvic applications is shown in Table 8. 

4. Current challenges and future perspectives of 3D printing in orthopedics 

Combined with imaging techniques and FEA remodeling or simulation, 3D printing is now increasingly being adopted in clinical 
orthopedic applications. Compared to traditional solid implants, 3D printed implants with porous structure not only minimize the 
stress shielding effect but also promote new bone infiltration and implant stability [254,255]. It is believed that 3D printed implants 
will bring revolutionary changes to the future orthopedic practice. Although a large number of clinical results have been reported thus 
far, challenges and perspectives still need to be addressed before extensive clinic trails can be conducted for 3D printed implants, as 
shown in Fig. 7. 

4.1. Current challenges 

4.1.1. Raw materials 
Currently, the most commonly used raw materials for 3D printed implants are Ti and Ti-based powers. Although, Ti and Ti-based 

alloys demonstrate good biocompatibility and osteoconductivity, pit corrosion in a physical fluid environment under load-bearing 
conditions may result in implant failure. Additionally, the mismatch in stiffness and elastic modulus between Ti-based implants 
and natural bone remains a problem that must be addressed. β-phase Ti alloys with a comparable elastic modulus to bone can be 
considered as an alternative. By combining with 3D printing techniques, the modulus of high strength (~800 MPa)/low modulus (49 
GPa) Ti–24Nb–4Zr–8Sn alloy was significantly reduced to 4.36 GPa, which is close to that of cancellous or trabecular bone [256]. 
Similar results were also observed for Ti–35Nb–2Ta–3Zr alloy. A 3D printed porous Ti–35Nb–2Ta–3Zr implant with a pore size of 0.48 
mm exhibited a modulus of about 3.1 GPa [257]. 

With shape memory effect (SME), superplasticity (SE), low Young’s modulus (40–60 GPa), and good biocompatibility, Nickel- 
titanium (NiTi) alloys are widely used as orthopedic implants. However, NiTi alloys are inherently reactive and ductile, which 
makes their fabrication and processing challenging [258]. In comparison to conventional casting or powder metallurgy methods, AM 
provides a solution to these challenges as it allows for the printing of near-net-shape NiTi implants without requiring additional tooling 
[259]. By adjusting the ratio of Ni and Ti powders, it is possible to print NiTi alloy implants with desired properties. Implants printed 
with Ti-rich powders tend to exhibit SME property, while those printed with Ni-rich powders exhibit SE property at room temperature 
[260–262]. Although the Young’s modulus of NiTi is higher than that of natural bone, it can be reduced to 11–20.5 GPa for porous NiTi 
implants using 3D printing techniques [263,264]. 

Fig. 7. Illustration of challenges and perspectives of the 3D print implants for orthopedic applications.  
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With biodegradability in body fluid environment, the biodegradable materials such as iron (Fe)-based alloys [86,265–268], 
magnesium (Mg)-based alloys [267,269–272] and zinc (Zn) based alloys [273–278] have attracted significant interest due to their 
superior biocompatibility and biodegradability in vivo. It is essential to continue exploring new materials for 3D printing in order to 
meet the evolving needs of medical applications and improve patient outcomes. 

Fe-based alloys have sufficient strength for use in bone implants, but it is important to increase their in vivo corrosion rate to align 
with the healing process of bone tissues. Chou et al. [279] utilized the inkjet 3D printing technique to produce Fe–35Mn scaffolds. The 
porous scaffolds maintained similar mechanical property to natural bone, with an open porosity of 36.3%. They also demonstrated a 
desirable corrosion rate compared to pure iron, and the open pores allowed for cell infiltration. They suggested that Fe–Mn scaffolds 
were promising materials for craniofacial applications. Addition of Ca or Mg in the Fe–Mn scaffolds may further increase the corrosion 
rate without changing the biocompatibility [280]. Surface modification [281] and topological design [282] can also be conducted on 
3D printed Fe scaffolds to improve osteogenesis property. Other printing materials with good biocompatibility can also be selected to 
fabricate iron-based implants [283]. 

Compared to Fe, Mg shows faster in vivo degradation rates and lower strength. However, the use of raw Mg powders for 3D printing 
is difficult and dangerous due to their high explosivity. To solve this issue, new methods such as mechanical crushing, atomization of 
motten metal, evaporation-condensation, and electrolysis have been employed for the fabrication of Mg powders. The powder size can 
also impact the quality of Mg-based depositions. A powder size less than 26 μm can lead to aggressive oxidation by raising the 
temperature of the melt pool, whereas large powder size (75–150 μm) may result in failing to form molten or sintered positions [284]. 
Small powder size increases the surface energy of Mg powder, which can cause powder splash during the printing process. Conse
quently, cracks, pockets, or cavities may appear on the printed implants [285]. Additionally, challenges such as highly affinity to 
oxygen and evaporation during heating hindered the manufacturing of Mg-based components using 3D printing techniques. However, 
recent advances, such as rapid, facile and extensible inkjet-based 3D printed methods have been successful in fabricating 3D printed 
Mg alloys [272,286–290]. By optimizing printing parameters (e.g., laser power, laser power density, laser scanning speed, layer 
thickness, and powder size), techniques such as SLM and wire arc additive manufacturing can also be applied to produce Mg-based 3D 
printed implants [285,291] This allows for Mg components to be fabricated with zero process contaminants. Moreover, the mechanical 
properties of Mg components can be tailored by the design of porous structures to match the mechanical properties of various types of 
bone. 

Zn has also been regarded as a promising biodegradable metal material for orthopedic implants due to its proper degradation rate, 
which falls between that of Fe and Mg. However, with small difference between its low melting and boiling point, high vapor pressure, 
it is challenging and dangerous to fabricate porous Zn-based implants with 3D printing techniques. Nevertheless, a combination of 3D 
printing and traditional casting method has been successfully employed to produce Zn-based porous scaffold with varying porosity for 
bone tissue engineering. In this approach, 3D printing is utilized to produce a negative scaffold template, followed by lost salt suction 
casting to generate a pure Zn-based scaffold, without the need for advanced air circulation systems [292]. In recent developments, with 
optimal printing and gas flow parameters over the powder bed, laser powder bed fusion (LPBF) had been successfully applied to print 
Zn-based porous implants. Similar to Mg powders, the fabrication of Zn powders also has become one of the significant obstacles in 
LPBF for Zn implants [293]. Various fabrication methods have been proposed during the past years [294–296]. Fine Zn powders are 
more likely to be influenced by input laser energy. A high oxygen content can form on water-atomized Zn powders, making it difficult 
to print high-density implants [297]. Nonetheless, with appropriate printing parameters, high-density 3D printed Zn implants can 
achieve densities of about 99% [298]. In order to further improve the quality of Zn implants, Chen et al. have developed an optimized 
gas flow system that eliminates the negative effect of Zn metal evaporation on the processing of LPBF through numerical analysis [299] 
After optimizing the shielding flow and laser energy input, pure Zn implants with density over 99.90% have been produced. In addition 
to pure Zn implants, alloying elements or other reinforcement part can be added to improve the mechanical property of the Zn im
plants. For instance, the addition of rare earth cerium (Ce) to Zn using AM technique has significantly improved the ultimate tensile 
strength and creep resistance [300]. Yang et al. have selected the rare earth lanthanum (La) as a compatible interface layer between 
carbon nanofiber (CNF) and Zn matrix. This addition of La has significantly improved both the tensile strength and ductility of the 
CNF–La–Zn composites, and La has also enhanced the antitumor performance of the composites [301]. Notably, however, the Zn-based 
scaffold extracts have significantly reduced the viability of MC3T3-E1 cells [277], exhibiting much lower cytocompatibility than 
Ti6Al4V scaffolds [278]. As such, additional studies to better understand the biocompatibility of Zn-based porous implants are 
essential before clinical applications can occur. 

4.1.2. Quality control 
The exact geometrical structure of 3D printed orthopedic implants is typically determined by CAD models generated from medical 

images. Thus, high resolution medical images are of great importance to ensure the accuracy of 3D printing models. The segmentation, 
processing and printing of these models can directly affect the accuracy and quality of the resulting implants [302]. To achieve more 
precise models, thinner image cross-section slices are typically necessary. Additionally, the reconstruction kernel used must be 
carefully balanced for different applications since it can affect both the spatial resolution and image noise. Anisotropic mechanical 
behaviors are another characteristic of 3D printed components. This results in load-bearing capabilities that are different in the vertical 
and horizontal directions. To minimize this anisotropic behavior, post-processing procedures are applied, even with optimal structure 
design [303]. In certain situations, the printing precision may be insufficient for the printing of some fine structures. Waheed et al. 
[304] have suggested that printing resolutions higher than 10 μm are necessary for fabricating complex components with fine 
structures. While for the printing process, the printing directions and pathways must be designed carefully to minimize the divergence 
from design to execution. 
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4.1.3. Printing efficiency 
To better understand the potential of 3D printing for future orthopedic implant applications, the printing time and cost of the 

implants should be further evaluated. 
It is easy to regenerate 3D models with medical images, however, the segmentation or isolation of ROI is time-consuming and 

requires effort [305]. Although automated extraction algorithms have been developed to accelerate the segmentation and recon
struction speed for surgeons or engineers [306], manual extraction is still necessary for some complex cases with abnormal anatomy 
structures. Therefore, this limitation may restrict the use of 3D printing techniques in time sensitive and emergent cases requiring 
urgent intervention [307,308], and in cases where implant size is large and difficult to print. 3D processing software with a simplified 
and user-friendly interface should be developed. Customized implants can generally be printed in less than 24 h, with only rare cases 
taking longer. However, higher implant accuracy results in longer printing times. The balance between printing time and printing 
precision should be sought. Improving the hardware performance and developing new 3D printing process may shorten the prepa
ration time for the implants. 

For medical institutions, the costs for 3D printing includes hardware, software, printing raw materials, and other services. Despite 
the fact that the price of 3D printing is decreasing due to the fast development of new technology, it still requires a large initial in
vestment. Consumer level 3D printers are now available at a low price, but these printers are less likely to fulfil the clinic requirements. 
To reduce costs, it has been suggested to use free or open-source software. Collaboration with other institutions may also help to share 
the costs. 

4.1.4. Clinic trial 
Up to now, plenty of clinic trails regarding 3D printed implants for different orthopedic applications have been reported [309–311]. 

The majority of the clinic outcomes showed superiority over conventional implants in terms of osteogenesis and complication rates. 
However, most of the reported clinic trails are case studies, and randomized and multi-center trials are lacking, which hinders the 
systematic comparison of the advantages and disadvantages between 3D-printed implants and traditional implants. In the future, more 
clinic trails and long-term follow up studies should be conducted [312]. 

4.1.5. Regulation concerns 
As Class III medical devices, 3D printed implants must be approved by related regulatory authorities prior to commercialization. In 

the United States, the USA Food and Drug Administration (FDA) issued the first document entitled “Technical consideration for ad
ditive manufacture medical devices Guidance for industry and food and drug administration staff” for 3D printed medical devices. 
Currently, 3D printed medical devices should be reviewed and regulated under premarket notification [510(k)] and new drug 
application (NDA) pathways in USA [313,314]. In the early days, there were no such laws or regulations governing 3D-printed medical 
devices in China. However, with the fast-increasing number of reported clinical trials in China, it is of great importance to issue 
relevant regulations or acts to guide these clinic trials. Fortunately, the Chinese government and related regulatory authorities are now 
working together to address these issues and promote the use of 3D printed implants in clinical applications. In 2019, National Medical 
Products Administration (NMPA) issued the “Regulation on the Supervision and Administration of Custom-Made Medical Device”, and 
in 2020, the Center for Medical Device Evaluation in the NMPA issued guidelines for the technical review of the registration of 3D 
printed artificial vertebral bodies and acetabular cups. These regulations and guidelines provide detailed procedures and requirements 
for researchers and medical device companies to improve their products. We believed that these regulations and guidelines will un
doubtedly promote the development of 3D printed implants for orthopedic applications. 

4.2. Future directions 

With its great potential for printing implants with varying and complex structures, 3D printing is now regarded as an advanced and 
versatile manufacturing technique. Moving forward, despite the challenges we are facing currently, there are still improvements that 
can be made to further enhance the clinical usability of implants and the benefits they bring to patients and society. 

In some instances, the clinic image dataset for 3D reconstruction or 3D printing may have a poor resolution, making it difficult to 
meet the basic requirements for further processing. Proper data augmentation algorithm can be applied to enhance the size and quality 
of the raw image datasets. Based on convolutional neural networks (CNNs) and generative adversarial networks (GANs), deep learning 
models have been applied [315]. Despite the fact that 3D printing is playing a vital role in personalized othopedic implant applications, 
optimizing printing parameters for 3D printing remains a challenge. In this regard, machine learning (ML) with artificial neural 
network (ANN) can be adopted to carry out intricate pattern identification and find the correlation between process parameters and 
the final characteristics of the printed component [316]. The combination of ANN models and particle swarm optimization algorithms 
has successfully been applied to minimize the surface roughness with optimized 3D printing process parameters [317]. Additionally, 
artificial intelligence (AI) algorithms and FEA are useful tools for simulating or predicting the mechanical behavior of the implants 
with designed structure [318,319]. 

4.2.1. Smart implants 
The future 3D printed implants will not be limited to inanimate structures as previously printed. Smart materials, which can 

respond to environment stimuli such as heat and force over time have become hot topics in biomaterial scientific research. The 
combination of 3D printing techniques and smart materials may represent a new direction for 3D printing implants. Shape memory 
alloys (SMA) are the most common smart materials, although they can be difficult to fabricate using traditional machining methods. 
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SLM has been reported to be capable to producing complex Nickel–Titanium (Ni–Ti) SMA components [320,321] with favorable 
biocompatibility [322]. Electronic devices such as sensors can also be combined with implants to detect loading forces [323] and the 
physicochemical properties [324–326] of the surrounding body fluids in-suit. Such combinations can help improve our understanding 
of the in vivo performance of implants. 

4.2.2. Bioactive implants 
Improving the biological functions of 3D printed implants is an efficiency way to shorten the healing time and reduce complication 

rate [115,327]. Proper surface treatment may enhance the adhesion and absorbance of the cells and proteins to form a better 
implants-tissues interface. Addition of growth factors [328], functional molecules [329], peptides or proteins [330–332] in the 
coatings can increase the osteogenesis property, promote vessel formation within the implants, and inhibit bacterial proliferation [333, 
334]. Although 3D printed polymers or hydrogels with cells or growth factors have improved the biological activity of the implants, 
their inherent insufficient mechanical property have limited the usage in load bearing applications. Infiltration of these material-cell 
composites into the porous 3D printed implants may further improve the in vitro and in vivo performances [335,336]. The pores within 
the implants also provide an ideal vehicle for drug delivery [337]. By loading chemotherapy or antimicrobial drugs, 3D printed im
plants may be effective in treating tumor recurrences [338] or infections [339]. 

5. Conclusion 

Nowadays, 3D printing is recognized as a revolutionary key technology in personalized medicine due to its ability to provide 
customized orthopedic implants. Since the invention of 3D printing technique, it has had a profound impact on medical implants. By 
combining medical images with 3D printing techniques, the usage of 3D printed implants in orthopedic applications has been 
broadened. With the efforts of surgeons and engineers, several clinic usages of 3D printed implants have been reported in the last few 
decades. These early attempts have clearly proven 3D printing to be an effective choice for orthopedic applications. And it is believed 
that 3D printing has the potential to revolutionize future orthopedic practices. Although, challenges and barriers exist in the current 
state of the technology, the future of 3D printing in orthopedic applications is still relatively bright and 3D printing is a promising 
technique that can help overcome some difficult clinical issues. As more and more professional researchers are recruited into the 3D 
printing field, together with the continuous advances in hardware, software, imaging and regulation, it is likely that 3D printed im
plants will rapidly improve and eventually become widely commercially available on the market in the coming years. 
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