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Abstract
Introduction There is some debate on the relationship between essential tremor with rest tremor (rET) and the classic ET 
syndrome, and only few MRI studies compared ET and rET patients. This study aimed to explore structural cortical differ-
ences between ET and rET, to improve the knowledge of these tremor syndromes.
Methods Thirty-three ET patients, 30 rET patients and 45 control subjects (HC) were enrolled. Several MR morphometric 
variables (thickness, surface area, volume, roughness, mean curvature) of brain cortical regions were extracted using Free-
surfer on T1-weighted images and compared among groups. The performance of a machine learning approach (XGBoost) 
using the extracted morphometric features was tested in discriminating between ET and rET patients.
Results rET patients showed increased roughness and mean curvature in some fronto-temporal areas compared with HC and 
ET, and these metrics significantly correlated with cognitive scores. Cortical volume in the left pars opercularis was also 
lower in rET than in ET patients. No differences were found between ET and HC. XGBoost discriminated between rET and 
ET with mean AUC of 0.86 ± 0.11 in cross-validation analysis, using a model based on cortical volume. Cortical volume in 
the left pars opercularis was the most informative feature for classification between the two ET groups.
Conclusion Our study demonstrated higher cortical involvement in fronto-temporal areas in rET than in ET patients, which 
may be linked to the cognitive status. A machine learning approach based on MR volumetric data demonstrated that these 
two ET subtypes can be distinguished using structural cortical features.

Keywords Essential tremor plus · Rest tremor · Machine learning · Cortical thickness · Roughness

Introduction

Essential tremor (ET) is one of the most common neuro-
logical disorder, with a high prevalence in the general popu-
lation [1]. The core symptom of ET is symmetric action 
tremor in the upper limbs, with possible presence of tremor 

in the head, tongue, torso, jaw, legs or voice [2]. A recent 
consensus statement coined the construct “ET plus” for ET 
patients presenting with additional motor and non-motor fea-
tures, such as impaired tandem gait, cognitive impairment 
or questionable dystonic posturing/parkinsonian features 
[2]. According to the recent tremor consensus, ET patients 
with rest tremor (rET) should be included in the ET plus 
group [2]. The new classification has the main advantage 
of defining the entity of a “pure” ET syndrome, moving 
patients with additional symptoms to the “ET plus” category. 
This change, however, has also found criticism and contro-
versy, since it is not yet clear whether ET plus represents an 
advanced disease stage of ET or a different condition [3–6].

Recent clinical studies provided evidence that ET plus 
may be even more common than the classic ET, and rest 
tremor is one of the most common symptoms in ET plus 
cohorts [7–9]. However, only few MRI studies compared 
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ET and rET patient groups so far. Most of these MRI studies 
focused on the cerebellum [10–12], and data are consistent 
across different reports showing no differences between ET 
and rET in this region [11–13]; on the contrary, some dif-
ferences have been reported in the basal ganglia circuits, 
especially involving the globus pallidus internus [13, 14]. 
A couple of functional MRI (fMRI) studies [13, 15] sug-
gested decreased activation of cortical regions in rET com-
pared with ET patients, but no MRI study deeply investi-
gated structural cortical differences between these two ET 
subtypes.

Moreover, no study explored the possible role of MR 
structural data in supporting the differential diagnosis 
between ET patients with and without rest tremor. The clas-
sification is clinically guided by the presence/absence of 
rest tremor, but this sign may fluctuate over time and be 
not always detectable during clinical assessment, making 
the differential diagnosis at times challenging [9]. Recently, 
machine learning approaches in medicine have gained a 
huge interest as helpful tool in the differential diagnosis and 
to guide clinical decision making [16, 17]. Moreover, ML 
algorithms take in account non-linear and high dimensional 
relationships among variables and are able to identify the 
measures that help most in the classification of patients. Sev-
eral machine learning algorithms, including linear models, 
kernel-based model (SVM), ensemble learning model (i.e., 
random forest and XGBoost), and neural network models 
have been recently applied on structural MRI features in 
the differential diagnosis of various neurological diseases 
[17–21].

In this study, we aimed to explore differences between ET 
with and without rest tremor in multiple MRI-derived corti-
cal morphometric measures (thickness, volume, surface area, 
mean curvature and roughness) and subcortical volumes, to 
improve the knowledge of these tremor syndromes. In addi-
tion, we investigated whether XGBoost, which is a powerful 
machine learning decision-tree-based ensemble algorithm 
using eXtreme Gradient Boosting to maximize the classifi-
cation performance, could help discriminate between these 
two ET subtypes using on structural MRI data.

Methods

Participants

Sixty-three ET patients (30 with and 33 without rest tremor) 
and 45 control subjects were consecutively recruited at the 
Institute of Neurology at the University Magna Graecia 
of Catanzaro, Italy between 2017 and 2021. All patients 
underwent a detailed neurological examination performed 
by a movement disorder specialist, and the clinical diagno-
sis of ET or rET (now included in the “ET plus” category) 

was performed according to the recent consensus state-
ment of the Movement Disorder Society task force [2]. In 
addition, all patients underwent surface electromyographic 
tremor analysis as previously described [22, 23] to confirm 
or exclude the presence of rest tremor, and all rET and ET 
patients had normal tracer uptake on single photon emis-
sion computed tomography with 123I-ioflupane (DaTs-
can), performed as previously described [24]. A battery of 
neuropsychiatric tests was administered by an experienced 
neuropsychologist, including: Mini Mental State Examina-
tions (MMSE) for general cognitive impairment; the Rey 
Auditory Verbal Learning Test immediate (RAVLT_I) and 
delayed recalls (RAVLT_D), used to assess verbal learning 
and memory; the Controlled Oral Word Association Test 
(COWAT), used as a measure of lexical stock; the Digit Span 
Forwards (Digit Span_F) and Backwards (Digit Span_B) 
used to assess the short-term verbal memory. No patients 
had dysmetabolic causes of tremor such as thyroid dysfunc-
tion, other degenerative neurological diseases, or intracra-
nial lesions. No patients were on medications with potential 
tremor-enhancing properties (e.g., amiodarone, ampheta-
mines, beta-adrenergic agonists, antipsychotics, prednisone, 
lithium, and valproate). None of the control subjects had a 
history of neurological, psychiatric, or other major medical 
illnesses. According to the Helsinki Declaration, all partici-
pants gave written informed consent, which was approved 
by the local institutional ethical committee.

MRI acquisition

All MRI scans were performed with the same 3-T MR750 
General Electric scanner with a 8-channel head coil (Dis-
covery MR- 750, GE, Milwaukee, WI, USA) and a recently 
described protocol [25].

Image processing and feature extraction

The automated neuroanatomical segmentation was performed 
with FreeSurfer 6.0 software, (Massachusetts General Hospi-
tal, Harvard Medical School; http:// surfer. nmr. mgh. harva rd. 
edu) in all study participants. The following morphometric 
metrics were calculated using surface-based and volume-based 
methodologies into 34 cortical regions of interest (ROIs) per 
hemisphere according to the Desikan–Killiany atlas: cortical 
thickness (CT), surface area (SA), cortical volume (CV), mean 
curvature (MC) and roughness (RG; the standard deviation of 
cortical thickness) [21, 26]. Subcortical structures (cerebellum, 
thalamus, caudate, putamen, globus pallidus, hippocampus, 
amygdala and nucleus accumbens) were also segmented to 
obtain volumetric data. A total of 358 structural features were 
extracted from each subject. The reconstruction and surface 
extraction results obtained using the freesurfer pipeline were 
validated by visual inspection performed independently by two 
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trained raters to exclude the presence of artifact and inaccurate 
segmentation.

Statistical analysis

Statistical analyses were performed using R statistical 
sofware (R for Unix/Linux, version 4.1.2, the R Foundation 
for Statistical Computing, 2014). Normality of data distribu-
tion was checked with Shapiro–Wilk test. Fisher’s exact test 
was employed to assess differences in sex distribution. Age 
at examination and education level were compared among 
subjects using an analysis of variance (ANOVA), followed 
by post-hoc test. Mann Whitney Wilcoxon Test was used to 
test differences of age at disease onset and disease duration 
between the two groups of patients. An analysis of covari-
ance (ANCOVA) was applied to compare cognitive scores and 
imaging data among groups with age, sex and education level 
as covariates of no interest. Further analysis of covariance was 
applied on structural MRI using MMSE as covariates since 
it was significant among groups. Partial linear correlations 
between cognitive performance and structural imaging met-
rics with age and education level as covariates were evaluated 
with Spearman's test. All statistical analyses were corrected 
for multiple comparisons (Bonferroni’s correction) and a 
p-level < 0.05 was considered as significant.

Classification using XGBOOST model

The multivariate XGBoost classifier (https:// xgboo st. readt 
hedocs. io/ en/ stable/) was used to discriminate among groups 
using the structural features extracted from T1-weighted MR 
images [27]. The framework was implemented in Python 3.9 
and scikit-learn 1.0.1. For each comparison (rET versus ET, 
rET versus controls, ET versus controls), we trained 55 models 
resulting from different combination of structural metrics. For 
each model, the hyperparameter tuning with Random Search 
(100 iterations) was performed on a fivefold cross-validation 
dataset to optimize the classifier parameters. Subsequently, 
permutation feature importance procedure was applied to 
provide information about the most informative features. 
Finally, repeated stratified fivefold cross-validation (repeated 
5 times) was used to get an even more robust estimation of 
machine learning models’ performance. The classification per-
formances of XGBoost models were evaluated with receiver 
operating characteristic (ROC) analysis, and the area under 
the curve (AUC), accuracy, sensitivity and specificity of the 
model were calculated.

Results

Demographic and clinical features

Demographic, clinical, and neuropsychological data of 
patients and controls are shown in Table 1. No differences 
were found between ET and rET patients in age, sex and 
disease duration. rET patients had lower education level than 
the other groups, thus all the analyses were corrected for 
this variable. rET group showed a slightly lower MMSE 
score than controls, without marked involvement of other 
neuropsychological tests.

Cortical and subcortical morphometric features

ET patients with rest tremor (rET) showed increased rough-
ness and mean curvature in some temporal and frontal areas 
in comparison with control subjects (increased roughness in 
the left entorhinal cortex and increased mean curvature in 
the right fusiform and left paracentral cortex) (Fig. 1A and 
supplementary table 1). These metrics showed significant 
negative linear correlations with cognitive scores in the rET 
group. More in detail, the bilateral parahippocampal rough-
ness, the left paracentral and the entorhinal mean curvature 
showed significant negative correlations, correcting for age 
and education level, with COWAT/FAS test in the rET group 
(supplementary table 2). On the contrary, no significant cor-
relations were found between imaging data and rest tremor 
features (supplementary table 3).

Differently from patients with rET, those with classic ET 
syndrome showed no differences in the considered metrics 
(cortical thickness, surface area, cortical volume, roughness 
and mean curvature) in any cortical region compared with 
control subjects. By directly comparing the two ET syn-
dromes, rET patients showed increased mean curvature in 
the left entorhinal cortex, confirming the involvement of this 
region in rET (Fig. 2A and supplementary table 1). In addi-
tion, rET patients had higher roughness and mean curvature 
in parahippocampal cortex and lower cortical volume in the 
left pars opercularis in comparison with ET patients. Dif-
ferently from cortical regions, no differences were found in 
subcortical structures volume among groups.

eXtreme gradient boosting (XGBoost)

Numerous different XGBoost models (55 models for each 
comparison) using alternative combinations of MRI struc-
tural metrics were tested to differentiate among groups (Sup-
plementary table 4 and 5). The model obtaining the best 
performance in discriminating between rET and controls 
was based on cortical roughness metrics, showing mean 
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AUC of 0.850 ± 0.09 (Accuracy: 0.81 ± 0.09, Sensibility: 
0.69 ± 0.20, Specificity: 0.89 ± 0.11) in cross-validation 
analysis (Fig. 1B). On the other hand, the best model in 
distinguishing between rET and ET patients was based on 
cortical volume metrics, showing mean AUC of 0.865 ± 0.11 
(Accuracy: 0.81 ± 0.11, Sensibility: 0.78 ± 0.19, Specificity: 
0.834 ± 0.13) in cross-validation analysis (Fig. 2B). Feature 
importance analysis identified the cortical volume in the left 
pars opercularis as the most informative feature for clas-
sification between the two ET syndromes (Fig. 2C). This 
result was in line with the statistical univariate approach 
which identified significantly lower cortical volume in this 
cortical region in rET than in ET patients. None of the mod-
els showed acceptable (> 80%) accuracy in distinguishing 
between ET patients and controls, in agreement with the 
lack of differences between these groups in the statistical 
univariate approach.

Discussion

In this study, we investigated many structural MRI morpho-
metric measures in ET patients with and without rest tremor 
and healthy controls, and we found higher cortical involve-
ment (increased roughness and mean curvature) in some 

fronto-temporal areas in rET compared with ET and control 
subjects, correlating with cognitive scores. In addition, rET 
patients had lower cortical volume in left pars opercularis 
in comparison with ET patients. A machine learning model 
using MR morphometric metrics demonstrated that these 
two ET subtypes can be distinguished based on cortical 
structural features.

A high percentage of patients fulfilling clinical crite-
ria for ET also show rest tremor in addition to the bilat-
eral action tremor and are classified as “ET plus” [2]. 
The distinction of rET from ET, however, is considered 
arbitrary by some authors due to the lack of pathological 
or prognostic differences between these two tremor syn-
dromes, making it possible to hypothesize that ET plus is 
an advanced stage of ET [3–6]. To date, the exact nature 
of ET with rest tremor and its relationship with classic 
ET are extremely controversial concepts. From the elec-
trophysiological perspective, rET patients show enhanced 
R2 component of the recovery cycle of the blink reflex 
(R2BRrc), which is normal in ET patients without rest 
tremor [28]. This finding, together with the synchronous 
contraction pattern of rest tremor observed in rET patients 
[24] suggested that the rest tremor in ET plus might have 
some dystonic features [28], and supported the distinc-
tion of rET from “pure” ET. From the neuroimaging 

Table 1  Demographic, clinical 
and imaging data of patients 
with essential tremor with and 
without rest tremor, and control 
subjects

All rET patients had rest tremor; regarding other soft signs, 12 patients had subtle parkinsonian signs, 7 
patients had mild memory deficits, 6 patients had impaired tandem gait and 2 patients had questionable 
dystonic posturing. The full cognitive battery was available in 23 rET, 22 ET and 35 control subjects
rET essential tremor with rest tremor, ET essential tremor
a Fishers exact test
b Data are expressed as mean ± standard deviation
c ANOVA followed by Bonferroni post-hoc test
d Mann Whitney Wilcoxon Test
e ANCOVA followed by Bonferroni post-hoc test (covariates: age, sex, education)
* ET vs CTRL p-value < 0.05
+ rET vs CTRL p-value < 0.05

Data ET with rest tremor
(N = 30)

ET without rest tremor
(N = 33)

Control subjects
(N = 45)

p-value

Sex (M/F) 15/15 17/16 27/18 0.6a

Age at examination (years)b 65.5 ± 10.2 62.7 ± 11.4* 68.5 ± 6.92 0.03c

Age at disease onset (years)b 48.7 ± 16.4 50.7 ± 16.4 - 0.6d

Education (years)b 8.03 ± 3.02+ 10.5 ± 4.56 10.9 ± 4.29 0.01c

Disease duration (years)b 16.4 ± 12.9 12.4 ± 10.4 - 0.2d

MMSE 25.6 ± 2.57+ 26.6 ± 2.4 27.6 ± 2.1 0.01e

COWAT/FAS 22.7 ± 6.75 25.5 ± 6.01 26.1 ± 10.2 0.6e

RAVLT R.I 36.1 ± 8.50 37.6 ± 7.17 34.8 ± 8.59 0.6e

RAVLT R.D 6.86 ± 2.78 7.18 ± 2.53 6.25 ± 2.41 0.5e

DIGIT-FW 4.95 ± 0.79 4.93 ± 0.83 5.04 ± 0.88 0.8e

DIGIT-BW 3.07 ± 0.70 3.15 ± 0.98 3.25 ± 0.84 0.8e

BECK-II 11.4 ± 6.09 10.2 ± 6.28 8.50 ± 6.06 0.6e
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point of view, a few studies investigated the presence of 
structural and functional differences between ET patients 
with and without rest tremor. Most studies agreed on a 
similar involvement of cerebellum in ET and rET patients 
[10–13], and on the involvement of basal ganglia circuits 
in rET [13, 14] but not in classic ET syndrome, thus lead-
ing to the hypothesis that the rest tremor may be linked 
to these latter structures [3, 13, 14]. In the current study, 
we evaluated subcortical structures’ volume, and we did 
not find any difference between rET and ET patients in 
basal ganglia or cerebellar volume. This result, considered 
together with previous findings, suggests that a network 

dysfunction rather than macroscopic atrophy of basal gan-
glia may be involved in the pathophysiology of rest tremor 
in ET syndrome.

A couple of functional MRI studies found differences 
between ET and rET in cortical structures, with one rest-
ing-state MRI study [15] showing decreased neural activi-
ties in secondary motor cortex (right superior and middle 
frontal gyri, right precentral gyrus and right Supplemen-
tary motor area) and another one [13] showing decreased 
activation in parietal areas in rET compared to ET patients. 
No study, however, specifically focused on structural differ-
ences between rET and ET patients in cortical regions. In 

Fig. 1  Comparison between Essential Tremor patients with rest 
tremor and control subjects. A Cortical regions showing statistically 
significant differences (p < 0.05, Bonferroni corrected) in MRI struc-
tural metrics between the two groups are highlighted in the figure. 
B Classification performance of the best XGBoost model, trained 
on MR metrics of cortical roughness, ranked by the permutation 

approach. C Feature importance assessed via permutation methods in 
distinguishing between the two groups. Data are shown in descending 
order from the most to the less important feature. HC healthy control 
subjects, rET essential tremor with rest tremor, mc mean curvature, 
rg roughness, AUC  area under the curve
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this study, we used modern surface-based methods allow-
ing estimation of multiple morphometric aspects of cortical 
structures. These metrics provide complementary informa-
tion on the brain structure and allow to detect also minimal 
cortical alterations [21, 29–32]. We investigated several 
cortical metrics, including not only the well-known cortical 
thickness, volume and surface area, but also roughness and 
mean curvature. Roughness is a recently introduced metric 
calculated as the standard deviation of the cortical thick-
ness, and an increase of this feature implies some degree 

of cortical atrophy [33]. Mean curvature values provide 
a quantitative measure of the cortical folding. Increased 
mean curvature indicates sharper cortical folds, which may 
reflect cortical atrophy or subcortical white matter atrophy 
[34]. In our study, rET patients showed increased roughness 
and mean curvature with normal thickness values in some 
fronto-temporal areas compared with HC and ET patients, 
suggesting that roughness and mean curvature may be more 
sensitive than classic metrics such as thickness in detect-
ing cortical atrophy, a finding in agreement with a previous 

Fig. 2  Comparison between Essential Tremor patients with and with-
out rest tremor. A Cortical regions showing statistically significant 
differences (p < 0.05, Bonferroni corrected) in MRI structural metrics 
between the two groups are highlighted in the figure. B Classifica-
tion performance of the best XGBoost model, trained on MR met-
rics of cortical volume, ranked by the permutation approach. C Fea-

ture importance assessed via permutation methods in distinguishing 
between the two groups. Data are shown in descending order from the 
most to the less important feature. ET essential tremor, rET essential 
tremor with rest tremor, mc mean curvature, rg roughness, cv cortical 
volume, AUC  area under the curve
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report [33]. A possible explanation for the higher cortical 
involvement we found in fronto-temporal areas in rET than 
in ET patients may be the cognitive status, as suggested by 
the lower cognitive scores in rET than controls and the sig-
nificant correlations between imaging and cognitive data. 
More in detail, the COWAT score correlated with metrics 
of the parahippocampal and fusiform cortex, which is in 
line with previous studies [35, 36]. The parahippocampal, 
entorhinal and fusiform cortex, which showed increased 
roughness and mean curvature in rET patients, constitute a 
large part of the medial temporal lobe and play an important 
role in memory formation and language, since the parahip-
pocampal gyrus provides a major source of input streams to 
the entorhinal cortex, and then directly into the hippocam-
pus [36, 37]. The left pars opercularis, which showed sig-
nificantly lower volume in rET compared to ET patients, is 
also involved in the language domain is part the interplay 
between temporal and frontal regions necessary for verbal 
fluency [38, 39]. Less clear is the correlation of COWAT 
with the paracentral cortex, which is mainly concerned with 
motor and sensory functions [40].

Differently from rET, we did not find differences in any 
cortical metric between ET and control subjects. This result 
is in line with the existing literature [41, 42] and may well 
reflect the lack of cognitive issues in “pure” ET patients. 
According to the second consensus on tremors, the presence 
of memory issues is considered as a soft neurological sign 
which makes the diagnosis change from ET to ET plus [2].

After demonstrating the presence of group differences 
between rET and ET patients in cortical metrics with the 
classic statistical univariate approach, we hypothesized 
that these two ET syndromes could be distinguished at the 
individual level using a machine learning approach based 
on structural metrics extracted from T1-weighted MR 
images. Recent advances in artificial intelligence technol-
ogy applied on brain morphometric metrics have allowed to 
improve the classification of neurological disorders [16–21]. 
In the ET field, some authors demonstrated that machine 
learning models using cortical structural metrics (cortical 
thickness and roughness) yielded excellent performances in 
distinguishing ET from orthostatic tremor [21]. This previ-
ous study [21], however, did not include ET patients with 
rest tremor. In our study, the multivariate XGBoost classi-
fier was able to discriminate between rET and ET patients 
with a good performance. Numerous models using differ-
ent combinations of MRI structural metrics were compared 
and the model obtaining the best performance was based 
on cortical volume, showing mean AUC of 0.86 ± 0.11 in 
cross-validation analysis. Feature importance analysis iden-
tified the cortical volume in the left pars opercularis as the 
most informative feature for classification between the two 
ET syndromes. This result was in line with the statistical 

univariate approach which identified significantly lower 
cortical volume in this cortical region in rET than in ET 
patients.

These results, after validation in independent patient 
cohorts, may be useful to improve the differential diagnosis 
between these two tremor syndromes. The clinical classi-
fication into “ET” or “ET with rest tremor” is obviously 
guided by the presence or absence of tremor at rest. In these 
patients, however, the rest tremor may be not constant and 
often of low amplitude, and in our practice we also found 
some ET patients who had a rest tremor not clinically vis-
ible but detectable using surface electromyography. A recent 
study [9] showed in a large cohort of 200 ET patients that a 
significant percentage of patient changed diagnosis multiple 
times from ET to ET plus and vice versa over time, with rest 
tremor being the most unstable clinical feature. In this previ-
ous study [9], nearly 40% of patients who received a clinical 
diagnosis of “ET with rest tremor” were classified as “ET” 
in one or more follow-up visits and some of them back again 
to “ET with rest tremor” later on, providing evidence that an 
accurate clinical differential diagnosis between ET and rET 
may be challenging since rest tremor can fluctuate over time.

Our results should be interpreted within the context of 
some limitations. First, ET and rET patients had no post-
mortem pathological examination, thus a misdiagnosis may 
have occurred in some cases; all patients, however, were 
diagnosed according to recent international diagnostic crite-
ria [2], all rET patients had rest tremor confirmed by surface 
electromyography showing a synchronous contraction pat-
tern, and all ET and rET patients had a normal DaTscan, thus 
ruling out Parkinson’s disease, which is the most common 
cause of rest tremor. Second, rET patients were slightly older 
and had lower education level than ET patients. However, we 
included these variables as covariates in all the analyses to 
minimize the possible bias in the results. Another possible 
limitation of our study, like most studies on essential tremor, 
is linked to the syndromic nature of ET and rET. According 
to the second consensus on the classification of tremor [2], 
ET and rET are indeed considered clinical syndromes rather 
than diseases, with multiple possible etiologies including 
genetic, acquired, and idiopathic disorders. This etiological 
heterogeneity may potentially lead to interindividual vari-
ability and thus reduce the significance of findings.

In conclusion, our study provides evidence of higher 
cortical atrophy in fronto-temporal regions in ET patients 
with rest tremor compared to those with classic ET, possi-
bly reflecting higher cognitive deficits. A machine learning 
model combining cortical volumetric measures accurately 
discriminated between these two ET syndromes, helping 
the clinical differential diagnosis and further supporting the 
existence of different cortical involvement in ET patients 
with and without rest tremor.
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