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Waning and boosting of antibody Fc-effector
functions upon SARS-CoV-2 vaccination

X. Tong1,7, R. P.McNamara1,7, M. J. Avendaño2, E. F. Serrano2, T. García-Salum2,3,4,
C. Pardo-Roa2,3, H. L. Bertera 1, T. M. Chicz 1, J. Levican2, E. Poblete2,
E. Salinas2,3, A. Muñoz2, A. Riquelme3,5, G. Alter 1 & R. A. Medina 2,3,4,6

Since the emergence of SARS-CoV-2, vaccines targeting COVID-19 have been
developed with unprecedented speed and efficiency. CoronaVac, utilising an
inactivated form of the COVID-19 virus and the mRNA26 based Pfizer/
BNT162b2 vaccines are widely distributed. Beyond the ability of vaccines to
induce production of neutralizing antibodies, they might lead to the genera-
tion of antibodies attenuating the disease by recruiting cytotoxic and opso-
nophagocytic functions. However, the Fc-effector functions of vaccine
induced antibodies aremuch less studied than virus neutralization.Here, using
systems serology, we follow the longitudinal Fc-effector profiles induced by
CoronaVac and BNT162b2 up until fivemonths following the two-dose vaccine
regimen. Compared to BNT162b2, CoronaVac responses wane more slowly,
albeit the levels remain lower than that of BNT162b2 recipients throughout the
entire observation period. However, mRNA vaccine boosting of CoronaVac
responses, including response to the Omicron variant, induce significantly
higher peak of antibody functional responseswith increased humoral breadth.
In summary, we show that vaccine platform-induced humoral responses are
not limited to virus neutralization but rather utilise antibody dependent
effector functions.Wedemonstrate that this functionalitywaneswith different
kinetics and can be rescued and expanded via boosting with subsequent
homologous and heterologous vaccination.

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the
causative agent of coronavirus disease-2019 (COVID-19). Since it was
first identified in late 20191–3, 11 COVID-19-specific vaccines, using novel
and diverse platforms, have been granted the emergency use listing by
WHO globally to provide protection against this highly transmissible
pathogen, four of these COVID-19 vaccines are currently approved or
authorized in the United States4. However, despite the remarkable
success of the vaccines in protecting the population from the early

emergent SARS-CoV-2 viral strains, the virus has undergone adapta-
tions that have facilitated transmissionamonghumans,withmutations
selectively accumulating in the receptor-binding domain (RBD), per-
mitting the virus to also escape vaccine-induced neutralizing antibody
responses5–8. In fact, several variants of concern (VOC) have arisen
throughout the world since the onset of the pandemic, causing sub-
sequent waves of transmission9–14, most strikingly observed with the
emergence of theOmicron VOC that led to remarkable global spread15.
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Even though these emerging VOCs can subvert neutralization and
spread with ease, severe disease and death have not increased pro-
portionally to the spread of the disease. Instead, in unvaccinated
populations, it has been documented that all VOCs, including Omi-
cron, have led to severe disease and death16–18, arguing that the
vaccine-induced non-neutralizing immune responses are key to
attenuating disease.

Humoral immunity, including both binding and neutralizing
antibody titers, has been tightly linked to protection against COVID-19
in phase 3 vaccine trials19–22. However, beyond the ability of antibodies
to bind and block infection, binding antibodies also can leverage the
innate immune system to capture, kill, and clear viruses or infected
cells via their ability to interact with Fc-receptors present on all
immune cells23–25. These non-neutralizing antibody functions selec-
tively evolve in individuals that survive severe disease26, and are
associated with the therapeutic activity of convalescent plasma
therapy27, with vaccine-mediatedprotection in thenon-humanprimate
model28, and contribute to the therapeutic activity of the monoclonal
antibodies29. Moreover, recent data suggest that even vaccines using
the same technology (i.e., mRNA) can elicit significantly different
functional humoral immune responses24. Nonetheless, while antibody
titers and neutralization wane significantly across vaccine platforms, it
is unclear whether functional immunity wanes concomitantly to titers
and/or whether the waned immunity can be boosted efficiently.

As of November 2021, approximately 42% of the world’s popula-
tion has received the initial two doses of COVID-19 vaccines30. Among
the vaccines that have been deployed globally, the inactivated Cor-
onaVac (Sinovac) vaccine and the mRNA BNT162b2 (Pfizer/BioNTech)
vaccine have been twoof themost broadly deployed vaccines globally,
having been administered to billions of individuals. In phase 3 clinical
trials, the CoronaVac vaccine exhibited 84% vaccine efficacy against
COVID-19 disease, whereas the BNT162b2 vaccine exhibited 95% vac-
cine efficacy30–33. Both clinical trials were conducted in late 2020 and
early 2021 in which period Alpha and Gamma were the circulating
VOCs in South America, where the study was conducted. Literature
reviews and meta-analyses suggested that full vaccination with Cor-
onaVac or BNT162b2 provided strong protection against the Alpha,
Beta, Gamma, and Delta variants with a vaccine effectiveness ranging
from 70.9% to 96.0% against severe disease. The two vaccines also
providedmoderate protection against theOmicron variant. According
to data published from their respective clinical trials, the most com-
mon adverse effects following COVID-19 vaccination include fatigue,
fever, muscle pain, headache, and joint pain. More serious side effects
were rarely recorded and reported. The clinical trial of the CoronaVac
inactivated vaccine reported frequent injection site pain followed by
fever and other mild and self-limiting conditions, whereas the Pfizer-
BioNTechmRNA vaccine trial reported that themost common adverse
effects were mild to moderate fatigue and headache34. Differences in
antibody and neutralizing titers across the vaccine platforms have
been proposed as critical determinants of different efficacy35. How-
ever, whether these platforms raise distinct overall functional humoral
immune responses, wane at similar rates, and whether CoronaVac
immunity can be augmented, potentially in the setting of an mRNA-
vaccine boost, remains unclear.

Here we deeply profile the functional humoral immune response
induced by CoronaVac and Pfizer/BNT162b2 vaccines. Particularly we
analyze how the vaccine-induced functional responses wane with time
and characterize theboosting capacity of theBNT162b2 vaccine,which
enhances the overall humoral responses of CoronaVac primed vacci-
nees to levels that are higher than the peak responses seen in the
recipients vaccinated with two doses of the CoronaVac or BNT162b2
vaccines. We identify that Fc-receptor binding antibodies wane much
faster than binding IgG1. Moreover, while antibody functions are
induced against Omicron following BNT162b2 vaccination, these
responses wane rapidly over time and are not observed in the setting

of CoronaVac vaccination. Importantly, mRNA boosting of the Cor-
onaVac response yields a striking enhancement of functional humoral
immunity across VOCs, including Omicron. These data collectively
point tomarked vaccine platform-based differences in peak functional
humoral protection, as well as their distinct waning profiles. This
phenotype can be enhanced and, in several cases, functionally
expanded by heterologous boosting.

Results
COVID-19 vaccines induce antibodies that wane with time
Beyond their ability to neutralize infection, antibodies can attenuate
disease via their ability to bind to virus or virally infected cells and then
recruit the innate immune system at the site of infection, via Fc-
receptors24,25,27,28. As a result, the persistence and breadth of binding of
Spike-specific antibodies is a key initial determinant of the non-
neutralizing capacity of vaccines that protect against COVID-19. Thus,
we employed a systems serology approach (Supplementary Figs. 1, 2) to
deeplyprofile thepeak immunogenicity anddecayprofilesof SARS-CoV-
2 and VOC-specific antibodies following CoronaVac and Pfizer/
BNT162b2 vaccination (Fig. 1A and Supplementary Fig. 3). Two doses of
both vaccines elicited detectable IgG1 againstWT SARS-CoV-2 Spike and
Alpha andBetaVOC (Fig. 1B, left) thatwanedover time, resulting inmore
similar titers across the vaccine platforms at 4-5 months following
immunization compared to peak immunogenicity. This dose-dependent
increase and subsequent waning of receptor-binding domain (RBD)
antibodies followed a similar trajectory (Fig. 1B, right). Other VOCs such
as Gamma and Delta displayed similar patterns for IgG1 recognition
against full-length Spike or RBD after vaccination with BNT162b2 or
CoronaVac (Fig. 1C). This phenotype was specific to the SARS-CoV-2
VOCs, as demonstratedwhenwe evaluated the antibodybinding activity
against the spike protein of seasonal human coronaviruses OC43 and
HKU1, a seasonal Influenza HA and the Ebola glycoprotein (Supple-
mentary Fig. 4). As expected, CoronaVacorBNT162b2 vaccinationdrove
specific IgG1 responses against most VOCs, which also waned with time.
Notably, Omicron Spike and RBD IgG1 responses were lower than
responses observed for other VOCs in BNT162b2 and nearly undetect-
able in most CoronaVac recipients (Fig. 1C, bottom row).

Distinct COVID-19 vaccines have unique Fc-receptor waning
To drive antibody-effector functions, antibodiesmust interact with Fc-
receptors found on all innate immune cells25,36,37. Thus we next asses-
sed whether vaccine-induced FcγR binding profiles, specifically the
binding to the 4 human low-affinity Fcγ-receptors (FcγRIIA, FcγRIIB,
FcγRIIIA, FcγRIIIB), wanedwith similar or disparate kinetics to antibody
titers across the vaccine platforms. We observed distinct mRNA vac-
cine induced FcγR binding maturation and decay across the FcγRs.
Specifically, FcγRIIA-binding Spike specific antibodies emerged rapidly
after the first dose, peaking after the second dose, and remained
detectable 4-5 months after vaccination, despite decaying to levels
lower than observed after the first mRNA vaccine dose (Fig. 2A).
Conversely, FcγRIIB, FcγRIIIA, and FcγRIIIB-binding Spike-specific
levels exhibited peak responses after the second dose of the vaccine
(Fig. 2B–D). These responses then declined rapidly over time, with
nearly undetectable levels in most vaccinees 4-5 months following the
completion of the primary mRNA vaccine series of immunization.
Thesedata point, for thefirst time, to differentiatedwaning acrossFcR-
binding antibodies followingmRNA vaccination, with the more robust
persistence of FcγRIIA-binding Spike-specific antibodies over time.

Despite the clear induction of binding IgG antibodies by the
CoronaVac vaccine, FcR binding profiles exhibited significant differ-
ences, both in peak titer and in waning kinetics. FcγRIIA- and FcγRIIIA-
binding antibodies were induced most strongly by this vaccine in a
dose-dependent manner. Strikingly, a single dose of the vaccine-
induced low levels of these FcγR binding antibodies. FcγRIIA-binding
Spike-specific antibodies accumulated after the second dose of the
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vaccine but declined to near background levels 4–5 months following
completion of the primary 2 dose series of immunizations. A subset of
vaccinees further induced FcγRIIIAbinding antibodies after the second
dose of the vaccine, but all waned to undetectable levels. No FcγRIIB or
FcγRIIIB-binding antibodies were induced by the first dose of the
CoronaVac vaccine. Second-dose responses were present, but these
quickly waned to background levels across all vaccinees (Fig. 2B, D)
despite the clear induction of binding IgG antibodies (Fig. 1).

The same profiling was performed for RBD-specific antibodies
across the 2 vaccine platforms. Again, BNT162b2 mRNA vaccination
induced FcγRIIA-binding RBD-specific antibodies after a single dose,
which matured exponentially after a second dose (Fig. 2E, left). How-
ever, these RBD-specific FcγRIIA-binding antibodies decayed rapidly
over 4–5 months. Conversely, very low, although detectable, levels of
RBD-specific FcγRIIA-binding antibodies were induced by the Cor-
onaVac vaccine that fully decayed over 4–5 months (Fig. 2E, right).

Interestingly, 2 doses of BNT162b2 mRNA vaccination were able to
drive RBD-specific antibodies capable to interact with FcγRIIB and
FcγRIIIB binding antibodies, whereas a single dose produced low and
heterogenous responses (Fig. 2F–H). Unlike FcγRIIA-binding anti-
bodies, these waned to low-to-undetectable levels over 4-5 months. In
contrast, the CoronaVac vaccination did not induce any RBD-binding
antibodies able to interact with FcγRIIB or FcγRIIIB and only minimally
produced FcγRIIIA binding antibodies, and these waned after
3months. These data argue thatboth vaccines induced Spike andRBD-
specific IgG1, despite showing distinct functional FcR binding prop-
erties. However, in general these functional properties waned more
rapidly compared to the binding antibodies.

mRNA vaccine boosts antibody and Fc effector functions
Given the comparatively low antibody levels induced by the Cor-
onaVac vaccine against all VOCs, particularly Omicron, we next
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Fig. 1 | COVID-19 vaccines exhibit a pan-variant waning of Spike-binding anti-
bodies. A Scheme for vaccination series and subsequent systems serology analysis.
Participants who received two doses of the inactivated vaccine CoronaVac were
boosted with the mRNA vaccine BNT162b2. As controls, the two-dose mRNA vac-
cine recipients were also analyzed. Sera were collected at various time points and
systems serology assays were conducted (see Table 2 for specific days of sample
collections). B Spike- (left) and receptor binding domain (RBD) (right) specific IgG1
levels for SARS-CoV-2 WT and early VOCs (Alpha and Beta) were quantified in the
baseline (prior to immunization, white, lane 1), 1- and 2-dose BNT162b2 mRNA
(blue, lanes 2 and3,waningperiods in lanes4 and 5), 1- and 2-doseCoronaVac (gray,
lanes 6 and 7, waning periods in lanes 8 and 9) via Luminex systems serology. Y-axis
represents the MFI of binding in arbitrary units (A.U.) of a specific antigen. Shown

are box and whiskers, along with individual data points, which represent the mean
of individual participants from each vaccine group (BNT162b2, n = 15 and Cor-
onaVac, n = 34). The whisker above the box plot extends from the top quartile to
the highest actual value that is within the 75th percentile + 1.5 * interquartile range.
Thewhisker below the boxplot extends from the lower quartile to the lowest actual
value that is within 75th percentile + 1.5 * interquartile range. C Same as (B), but for
latter VOC (Gamma, Delta, and Omicron) of SARS-CoV-2 VOC. All samples were
assayed in technical duplicates. Kruskal–Wallis test was used for all panels
(*p <0.05 and **p <0.01). All Kruskal–Wallis tests were two-sided, and no adjust-
ments weremade for multiple comparisons. See also Supplementary Fig. 3. Source
data are provided as a Source Data file.
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investigated whether mRNA boosting of previous CoronaVac vacci-
nees could augment antibody breadth and Fc-effector function. Upon
mRNA boosting, a sharp and pan-VOC increase in IgG1 levels was
observed for full-length Spike (Fig. 3A) and for the RBD of all VOCs
(Fig. 3B). This was particularly striking for Omicron-specific IgG
responses, which exhibited the lowest cross-reactive IgG1 levels prior
to boosting, yet Omicron-specific immunity was boosted to similar
levels to other VOC Spike-specific responses (Fig. 3A), albeit Omicron
RBD recognitionwas boosted but did not reach the levels of other RBD
VOC responses.

To further examine the overall antibody isotype, subclass, and
FcR binding breadth, we next examined the dynamics of the overall
humoral profile of CoronaVac-induced SARS-CoV-2 specific antibodies
over time and after boosting (Fig. 3C). As expected, WT Spike-specific
responses had the highest and most consistent initial response but
waned over the course of 5 months. This waning effect was not only
rescued but also significantly boosted over peak titers following the
Pfizer/BNT162b2 booster dose. This boost also raised highly functional
IgG3- and IgM-responses to Spike, pointing to the induction of new
responses. IgA responses evolved over time following CoronaVac
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data are provided as a Source Data file.
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immunization and were robustly boosted by the BNT162b2 response.
Conversely, FcR-binding antibodies, key for eliciting antibody effector
functions, were observed after the second CoronaVac dose and then
quickly returned to near undetectable levels. However, following the
BNT162b2 booster, all Spike-specific FcR binding responses were
robustly enhanced against the WT Spike antigen.

Similar trends in subclass and isotype profiles were observed
across VOCs. However, notably, Spike-specific IgA responses were less
significantly induced to the Beta and Gamma-variants, potentially
accounting for some potential mucosal transmission liabilities for this
VOC. Additionally, IgG2 and IgG4 responses were induced weakly to
the Gamma Spike. Omicron Spike-specific binding antibody FcR pro-
files differed most across the VOCs, with limited subclass and isotype
responses to the Omicron Spike, despite robust IgG1 responses
(Fig. 3C). Moreover, weaker FcγRIIA- and FcγRIIIB- Spike-specific
binding antibodies were noted following the BNT162b2 boosting. In
contrast, robust FcγRIIB and FcγRIIIA binding antibodies were
induced, pointing to the selective induction of individual FcR binding
responses to Omicron following boosting.

The cross-VOCRBD-specific response wasmore variable (Fig. 3D).
While RBD-specific IgG1 responses were detected at nearly all time
points following CoronaVac vaccination, BNT162b2 boosting resulted
in a robust augmentation of RBD-specific IgG1 responses, superior to
those observed at peak immunogenicity after the primary doses.
Limited subclass and isotype responses were observed to the wildtype
RBD with CoronaVac immunization alone. However, the addition of
themRNA booster significantly raised RBD-specific IgG3, IgA, IgM, and
all FcR binding responses. A similar profile was observed to the Alpha,
Gamma, andDelta VOCRBDs. However, themRNAvaccine boosts only
induced cross-reactive Beta RBD-specific antibodies with a more lim-
ited FcR binding profile, and a preferential significantly higher FcγRIIIA
binding profile. Interestingly, while cross-reactive Omicron RBD-
specific IgG1 were induced with the BTN162b2 boost, the boost
failed to induce Omicron RBD-specific antibodies of distinct sub-
classes, isotypes or with broad FcR binding profiles. These data sug-
gest that mRNA boosting can broaden the subclass, isotype, and FcR
binding profile across VOCs (Supplementary Fig. 5), but may only
partially rescue FcR binding specifically to more distant VOCs,
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Fig. 3 | COVID-19 mRNA boosters can enhance responses of multiple Spike-
specific antibody-subclasses and -isotypes, and functional Fcγ-receptor com-
plexes. A Spike-specific IgG1 levels were measured at peak immunogenicity fol-
lowing the two-dose CoronaVac vaccination series (lane 1), during waning periods
(lanes 2 and 3), and after mRNA boost (lane 4) for SARS-CoV-2 VOC (color legend
shown on right). The Y-axis represents the MFI of the Spike from the VOC. Shown
are means (solid line) with SEM for each VOC in the corresponding color in the
shaded region.B Same as (A), but for the receptor-binding domains (RBD) of SARS-
CoV-2 VOC.CHeatmap representation of binding for full-length Spike by antibody-

subclasses and -isotypes and Fcγ-receptor complexes. Shown on the left are the
description ofCoronaVacdoses, the subsequentwaning period, andmRNA-vaccine
booster, and on the right are the SARS-CoV-2 VOC orWT. The scale bar is shown to
the right of the heatmap and represents MFI over baseline values. The values in
each region represent the mean of values from individual participants from each
vaccine group (BNT162b2, n = 15 and CoronaVac, n = 34).D Same as (C), but for the
RBDofWTSARS-CoV-2 andVOC.The sampleswere assayed in technical duplicates.
See also Supplementary Fig. 5. Source data are provided as a Source Data file.
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particularly to those that have spread more efficiently and to which
CoronaVac was shown to be slightly less efficient38.

mRNA-Vaccine boosting broadens functional humoral defenses
While FcR binding is required to initiate Fc-effector function, we next
sought to profile the longitudinal functional vaccine-induced humoral
immune responses across the vaccine platforms, focused on the WT
and Omicron SARS-CoV-2 Spike antigens. Although the CoronaVac
vaccine elicited a moderate level of WT Spike-specific complement
deposition (ADCD) (Fig. 4A, gray box plots) after the primary vaccine
series, it quickly waned (64% and 72% reduction from peak activity at
2–3 months and 4–5 months from peak activity, respectively). The
BNT162b2 vaccination elicited highly robust ADCD responses, that
persisted for the first 2–3months following the primary immunization
series, but then the response waned at 4–5 months to a 58% overall
reduction from peak activity (Fig. 4A, left). However, BNT162b2

boosting of CoronaVac vaccinees resulted in a highly significant
expansion of ADCD responses, to levels higher than peak BNT162b2
mRNA-induced responses alone. Conversely, neither vaccine series
elicited comparable immunity to the Omicron Spike (Fig. 4A, right),
although mRNA-vaccine boosting was noted.

Similarly, WT Spike-specific antibody-dependent neutrophil pha-
gocytosis (ADNP) was induced by both vaccines, albeit to lower levels
with CoronaVac, although ADNP activities waned 30% and 36% after
4–5 months in CoronaVac and BNT162b2 recipients, respectively
(Fig. 4B). However, after BNT162b2 boosting, ADNP levels in Cor-
onaVac vaccinees rose to comparable levels to those observed after
the primary series with the BNT162b2 vaccine. Importantly, the low-
level Omicron-specific ADNP activity was noted after the second dose
of the CoronaVac primary series, which declined rapidly. However,
BNT162b2 boosting led to robust induction of Omicron-specific ADNP
activity that was similar to WT Spike.
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Fig. 4 | mRNA-vaccine boosting of CoronaVac recipients broadens humoral
defenses, including towardsOmicron. A (Left) Antibody-dependent complement
deposition (ADCD) activities measured in fluorescent arbitrary units (A.U.) against
the WT SARS-CoV-2 Spike (left) and Omicron Spike were quantified in the baseline
(prior to immunization, white, lane 1), 1- and 2-dose BNT162b2mRNA (blue, lanes 2
and 3, waning periods in lanes 4 and 5), 1- and 2-dose CoronaVac (gray, lanes 6 and
7, waning periods in lanes 8 and 9) and after mRNA-vaccine booster (lane 10).
B Same as (A), but for antibody-dependent neutrophil phagocytosis (ADNP) mea-
sured in phagocytic A.U. C Same as (A) but for antibody-dependent monocytic
cellular phagocytosis (ADCP)measured in phagocyticA.U.D Sameas (A) but for the
Primary natural killer (NK) cells activitiesmeasured for percent expression ofMIP1b
(top) andCD107a (bottom). Shown areboxandwhiskers, alongwith individual data

points, which represent the mean of individual participants from each vaccine
group (BNT162b2, n = 15 and CoronaVac, n = 34). The whisker above the box plot
extends from the top quartile to the highest actual value that is within the 75th
percentile + 1.5 * interquartile range. The whisker below the box plot extends from
the lower quartile to the lowest actual value that is within 75th percentile + 1.5 *
interquartile range. Note that Y-axis scales are not the same. All samples were
assayed in technical quadruplicates with a minimum of three independent donors.
Kruskal-Wallis test was used for all panels (*p <0.05 and **p <0.01). All
Kruskal–Wallis tests were two-sided, and no adjustments were made for multiple
comparisons. See also Supplementary Fig. 5. Source data are provided as a Source
Data file.
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A nearly identical pattern was observed with antibody-dependent
monocyte cellular phagocytosis (ADCP), albeit ADCP did not decline
after the primary series of BNT162b2 vaccination for WT Spike
(Fig. 4C). Again, while low Omicron ADCP was induced by the Cor-
onaVac vaccine that waned, a cross-reactive response was induced
with the BNT162b2 immunization boost, which was comparable to the
WT-specific primary ADCP levels induced by the boost. Finally, WT-
specific NK cell activation measured by NK cell degranulation through
percent macrophage-inflammatory protein 1b (MIP-1b) expression
(Fig. 4D, top) or percent surface expression of CD107a (Fig. 4D, bot-
tom) positivity, was surprisingly elicited to comparable levels across
CoronaVac and BNT162b2 vaccination after the primary series to the
WT Spike antigens. Omicron-specific NK cell activating antibodies
were only minimally observed among CoronaVac vaccinees after the
primary series. However, after the BNT162b2 boost, both WT and
Omicron-specific NK cell activating antibodies were significantly
upregulated despite no activity being detected in the BNT162b2 reci-
pients (Fig. 4D), pointing to a distinct functionalmaturation in the pre-
existing setting of the CoronaVac recipients.

Given the emerging importance of antibody glycosylation as an
important factor affecting the functional activities of vaccine-
induced antibody responses against COVID-1939,40, we next investi-
gated the specific mechanism(s) by which the NK activity-enhancing
antibodies was selectively induced in the boosted samples com-
pared to the other groups. We conducted glycan analysis on samples
from the naïve, at peak immunity, at the lowest decayed, and for the
heterologous boosted timepoints (Supplementary Fig. 6). The rela-
tive abundances of N-glycan modifications were characterized,
including the lack of fucose (afucosylation), bisecting N-acetyl glu-
cosamine (GlcNAc), and galactose. Notably, anti-WT Spike IgG1 from
individuals who received the first regimen of two doses of Cor-
onaVac or BNT162b2 was reduced in core fucosylation when com-
pared with the naïve group. Furthermore, those who received the
third dose of heterologous boosting exhibited a further reduction in
the level of fucosylation after the waning period (Supplementary
Fig. 6A, B), in agreement with previous studies41. In addition, we also
observed significant increases in bisecting glycans and galactosyla-
tion following vaccination and heterologous boosting (Supplemen-
tary Fig. 6C–F). Collectively these results indicate that primary
vaccination and boosting have an impact in antibody glycosylation
that modulates functional activities.

Discussion
Emerging data suggest that distinct COVID-19 vaccination platforms
can establish humoral responses with varying breath and magnitude
towards Spike VOCs4,24,38. However, these responses wane rapidly
across vaccine platforms20,42. Yet in addition to binding and neu-
tralization, vaccine-induced antibodies are also capable of mediating
an array of antibody effector functions23,28, that have been linked to
protection against severe disease and death26 and monoclonal ther-
apeutic activity25,43. However, whether these responses decay at the
same rate as neutralizing antibody activity remains incompletely
understood. A comparison of the 2 most widely distributed global
COVID-19 vaccines, the CoronaVac and Pfizer/BioNTech mRNA vac-
cines revealed striking differences in peak antibody binding titers and
Fc-effector functions across the 2 vaccine platforms, which both
waned with time. Moreover, CoronaVac-induced Fc-effector functions
demonstrated a steep and rapid decline to undetectable levels while
binding to IgGwas still present. These data suggest that the breadth of
antibody binding does not directly translate to the level of circulating
antibody effector function. Yet critically, a Pfizer/BioNTech boost of
CoronaVac immunized recipients expanded the antibody effector
function, in some cases above those observed with mRNA immuniza-
tion alone.While the longitudinal duration of these boosted functional
responses remains unclear, our results clearly show that effector

functions of antibodies are differentially induced and persist to dif-
ferent degrees across vaccine platforms during the primary vaccina-
tion series, and can be further tuned with boosting.

Previous work has shown that nearly all clinically approved
COVID-19 vaccines elicit Spike-specific antibodies and can confer
protection against wildtype virus induced disease31,44–47. The titers and
functionalities of these antibodies vary across vaccine platforms24,28

and wane with time20,32,48,49. We have previously shown that the two-
dose vaccination scheme with CoronaVac induces neutralizing anti-
body titers to similar levels to those observed after a single dose of the
BNT162b2 vaccine, but at significantly lower levels than those induced
after two doses of this mRNA vaccine50. Here we show that this also
extends to the Fc effector functions. We observed that following the
primary series of CoronaVac vaccination, complement deposition,
opsinophagocytic and NK cell activating antibodies were observed.
However, many of these functions were induced to a slightly lower
level thanmRNA vaccination, with limited breadth to Omicron. mRNA
vaccination, conversely, drove robust antibody effector functions.
Nevertheless, many of these functions waned over time, including a
loss of complement deposition, neutrophil phagocytosis, and NK cell
degranulation. In contrast, monocyte phagocytosis remained stable
over 4-5 months following mRNA vaccination, pointing to limited-to-
no waning of this critical antibody effector function. Therefore,
despite the general loss of neutralization and antibody effector func-
tions that may result in a renewed susceptibility to infection, the per-
sistence of some functional antibodies may continue to provide a first
line of defense, potentially providing some level of long-term protec-
tion against the virus months after mRNA vaccination. Thus, similar to
opsinophagocytic mechanisms of protection against other mucosal
pathogens51, it is plausible that persistent protection against severe
disease and death afforded bymRNA vaccinationmay be linked to this
opsinophagocytic activity.

In addition to the CoronaVac and Pfizer/BNT162b2 vaccines,
previous studies have also suggested that heterologous boosting by
other COVID-19 vaccines could potentially enhance the preexisting
immune responses against the virus52–54. A vaccine boosting study
demonstrated that seven different COVID-19 vaccines, including
ChAdOx1 (Oxford-AstraZeneca), NVX-CoV2373 (Novavax), BNT162b2
(Pfizer–BioNTech), VLA2001 (Valneva), Ad26.COV2 (Janssen),
mRNA1273 (Moderna), and CVnCoV (CureVac) are safe and induce
strong immune responses when administered as boosters doses fol-
lowing two doses of either BNT162b2 or ChAdOx1 vaccines. Another
study compared the safety and immunogenicity of a third hetero-
logous booster dose of either the ChAdOx1, BNT162b2, or Ad26.COV2
vaccines in adults in Brazil who previously received two doses of
CoronaVac. These results collectively indicated that a robust ana-
mnestic immune response can be induced by each of these vaccines
when used as a booster regardless of the primary COVID-19 vaccina-
tion regimen55.

Previous meta-analysis have demonstrated that levels of IgG afu-
cosylation, galactosylation, andbisectingGlcNAcdiffered in cohorts of
COVID-1939,40. The level of bisecting GlcNAc was the most prominent
feature distinguishing severe and mild COVID-19, where decreased
bisection was found in severe patients. Higher levels of bisecting
GlcNAc on IgG were reported to indirectly affect affinity for FcγRs and
enhance ADCC by inhibiting fucosylation. Substantial changes in
antibody galactosylation levels in severe COVID-19 infection result in a
higher abundance of galactosylated IgG molecules compared to mild
COVID-19, and such changes have been related to the pro-
inflammatory effects of IgG through activation of the complement
system. Previous studies reported decreased galactosylation both in
anti-S IgG1 and total IgG1 in severe COVID-19 compared to mild, which
is consistent with changes in the total IgG glycome30. Collectively, our
results of glycan analysis are consistent with previous studies focusing
on IgG glycome and COVID-19 infection.
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Despite the nearly complete loss of CoronaVac functional
humoral immunitymonths after primary vaccination, we still observed
a robust rise inCoronaVacprimed immunity following anmRNAboost.
Strikingly, this boostingwas observed even for antibody functions that
were not induced robustly following the primary vaccination series.
Moreover,mRNAboosting also expanded the breadth of the response,
arguing that the heterologous boosting strategy resulted in functional
maturation for both the antigen-binding (Fab)- and constant (Fc)-
domain-associated antibody responses. Whether similar patterns of
functional maturation of the humoral immune responses would be
observed in the presence of alternate mix-and-match strategies
remains unclear, however; the data presented here strongly argue that
combinations of these highly distributed vaccines could potentially be
used in optimal combinations to drive broad pan-VOC functional
immunity.

Analysis across VOCs highlighted significant differences in variant
recognition by the FcR binding antibodies. Specifically, following the
primary CoronaVac series, IgG1 antibodies exhibited some cross-VOC
recognition; however, CoronaVac-induced subclasses/isotypes and
FcR binding antibodies exhibited little-to-no RBD and Spike recogni-
tion across Beta, Gamma, and Omicron. Only the CoronaVac-induced
IgM responses exhibited cross VOC immunity. However, upon mRNA
boosting, all antibody sucblass/isotypes/FcR binding increased to
levels comparable to those against theWT spike, but subclass and FcR
binding elevated to a lesser extent against the Gamma and Omicron
Spike variants. Similarly, boosting drove robust FcR binding to theWT
RBD, butmore limited FcRbinding to theOmicronRBD, despite strong
binding antibodies to this variant antigen. Thus, these data suggest
that binding to the RBDmay not always be proportional to FcRbinding
and that other characteristics, including geometry and stoichemiotry,
may also play an essential role in dictating antibody effector functions.
Hence, further improvements in the quality of immunity may be
achievable with futuremix-and-match strategies, aimed at eliciting the
strongest level of protective immunity against future VOCs. It is
noteworthy that themeasurements shownhere for the IgG subclassing
and receptor binding were independently performed. Therefore, the
antibody Fc-mediated binding activities are not assigned to an IgG
subclass. Future studies on the relationship between the high-affinity
FcγRI and antibody functional responses could potentially further
clarify the overall humoral responses towards COVID-19.

Whether the heterologous nature of the mRNA boost or the tim-
ing of the delayed boosting drove improved CoronaVac Fab and Fc
activity remains unclear. Yet, emerging data suggest that both the
nature of the platform and the timing of immunization play a key role
in the quality of the germinal center response, and thus humoral
immune induction52,55–57. Consequently, future studies arewarranted to
begin toprobe themix-and-matchand interval based effects of vaccine
induced immune programming to help guide future rational vaccine
campaigns aimed at driving the most protective vaccine induced
immunity against SARS-CoV-2 and future variants.

Studies have shown that the neutralizing activity of vaccine-
elicited antibodies could be more focused on the receptor-binding
domain (RBD) as compared to infection-elicited antibodies. However,
within the RBD, the binding of vaccine-elicited antibodies is more
broadly distributed across epitopes than those seen for infection-
elicited antibodies58. The rapid decay of RBD-specific antibodies could
be due to the fact that RBD is a smaller sub-domain of the Spike pro-
tein. Therefore, targeted waning could bemore rapid for RBD than for
the full-length Spike, independent of the vaccine platform. This greater
binding breadth suggests that single RBD mutations might have less
impact on neutralization by vaccine sera than convalescent sera.
Hence, antibody immunity acquired by different means may have
differing susceptibility to erosion by viral evolution59–61. In addition,
the significant variability of individual responses is considered a diffi-
cult confounder in these types of studies. We thus, deliberately
grouped samples together to account for heterogeneity between
individual responses. Therefore, statistical grouping based on this
method should be considered as conservative approach given the
known discrepancy in these responses.

The CoronaVac vaccine is one of the most widely distributed
vaccine globally, with billions of doses administered worldwide33,55,56.
While the vaccine may not induce the most robust neutralizing anti-
body titers, protection against severe disease and death persisted
across several VOCs33. Moreover, similar to other vaccines based on
whole viral particles, this vaccine gives exposure to all viral compo-
nents, whichmay provide additional protection in the setting of future
viral variation.

Methods
Resource availability
Lead contact. Further information and requests for resources and
reagents shouldbedirected to andwill be fulfilledby the leaddatapoint
of contact, Ryan P.McNamara (rpmcnamara@mgh.harvard.edu), or the
corresponding authors, Galit Alter (galter@mgh.harvard.edu), or Rafael
A. Medina (rafael.medina@emory.edu).

Experimental model and participants details
Serum samples were obtained from participants who received the
complete-dosage regimen of the respective vaccines as recommended
by the manufacturers. The cohort contains samples from individuals
who received either BNT162b2 (n = 15) or CoronaVac vaccines (n = 34)
(Tables 1, 2). The BNT162b2 mRNA vaccine group was given 30μg
BNT162b2 (15–53 years old, median: 36 years, 80% female) on days 0
and 21, and serum samples were taken up to 168 days after the second
dose. The CoronaVac group (21–80 years old, median: 33 years old,
70.6% female) received two doses of 600 U CoronaVac four weeks
apart, and individuals were sampled up to 209 days after the second
dose. A subgroup of CoronaVac participants (n = 23, 23–80 years old,
median: 35 years old, 65.2% female) received a booster dose of the
BNT162b2mRNAvaccine andwere sampled 14–31days after themRNA

Table 1 | Demographic characteristics, and identification of SARS-CoV-2 infection cases

Overall (n = 49) BNT162b2 (n = 15) CoronaVac (n = 34) Subgroup of CoronaVac (Booster dose of BNT162b2) (n = 23)

Sex

Male, n (%) 13 (26.5%) 3 (20%) 10 (29.4%) 8 (34.8%)

Female, n (%) 36 (73.5%) 12 (80%) 24 (70.6%) 15 (65.2%)

Age

15–60 years, n (%) 48 (98.0%) 15 (100%) 33 (97.1%) 22 (95.7%)

Over 60 years, n (%) 1 (2.0%) – 1 (2.9%) 1 (4.3%)

Median (range) 33 (15–80) 36 (15–53) 33 (21–80) 35 (23–80)

SARS-CoV-2 infection cases

Participants, n (%) 3 (6.1%) – 3 (8.8%) 2 (8.7%)
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Table 2 | Specific time intervals (days) of samples obtained from individuals vaccinated with either CoronaVac or BNT162b2

Participants
numbera

Vaccine Pre-Vaccine sam-
ple dose 0 (n = 33)

Vaccine sample
dose 1 (n = X)

Vaccine sample
dose 2 (n =X)

Waning period
sample 2–3
months (n = X)

Waning period
sample 4–5
months (n = X)

Vaccine sample
BNT162b2 boos-
ter (n = 23)

1 CoronaVac 0 29 41 104 153 231

1 13 76 125 203

14

2 BNT162b2 0 20 34 105 181

13 84 160

3 BNT162b2 0 20 35 104 181

13 82 159

4 BNT162b2 0 20 35 104 188

14 83 167

5 BNT162b2 0 21 34 113 181

13 92 160

6 BNT162b2 0 20 36 104 188

14 82 166

7 BNT162b2 0 21 34 104 189

13 83 168

8 BNT162b2 0 20 40 104 188

19 83 167

9 BNT162b2 0 20 36 104 179

15 83 158

10 BNT162b2 0 20 36 104 188

15 83 167

11 BNT162b2 0 20 40 104 188

19 83 167

12 BNT162b2 0 20 34 124 180

14 104 160

13 CoronaVac −9 28 47 102 174

0 19 74 146

14 CoronaVac −8 27 42 98 175

13 69 146

15 CoronaVac −7 30 43

2 15

16 CoronaVac −7 28 42 105

0 14 77

17 CoronaVac −8 28 41 105 180 232

0 13 77 152 204

16

18 CoronaVac −6 30 42 99 175 232

2 14 71 147 204

14

19 CoronaVac 0 28 50

0 22

20 CoronaVac 0 29 41 104 174 232

1 13 76 146 204

14

21 CoronaVac −6 28 42 91 181 233

0 14 63 153 205

14

22 CoronaVac −2 27 42 96 180 237

14 68 152 209

14

23 CoronaVac −7 28 43 91 175 231

0 15 63 147 203

15
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Table 2 (continued) | Specific time intervals (days) of samples obtained from individuals vaccinated with either CoronaVac or
BNT162b2

Participants
numbera

Vaccine Pre-Vaccine sam-
ple dose 0 (n = 33)

Vaccine sample
dose 1 (n = X)

Vaccine sample
dose 2 (n =X)

Waning period
sample 2–3
months (n = X)

Waning period
sample 4–5
months (n = X)

Vaccine sample
BNT162b2 boos-
ter (n = 23)

24 CoronaVac 0 28 42 96 173

−1 13 67 144

25 CoronaVac −4 28 43 91 157

0 15 63 129

26 CoronaVac −1 27 42 95 173 229

13 66 144 200

14

27 CoronaVac −4 28 42 87 167 233

0 14 59 139 205

15

28 CoronaVac 0 28 42 90 167

0 14 62 139

29 CoronaVac 0 28 42 89 167 232

0 14 61 139 204

14

30 CoronaVac 0 29 42 91 188

1 14 63 160

31 BNT162b2 0 26 39 112 182

1 14 87 157

32 CoronaVac 54 148 229

26 120 201

14

33 CoronaVac 54 166 231

26 138 203

16

34 CoronaVac 55 149 231

27 121 203

14

35b CoronaVac 52 146

24 118

36 CoronaVac 53 151 230

25 123 202

14

37b CoronaVac 59 153 231

31 125 203

18

38 CoronaVac 59 153 230

31 125 202

15

39 CoronaVac 49 143 224

21 115 196

14

40 CoronaVac 55 149 230

27 121 202

31

41 CoronaVac 56 150 231

28 122 203

14

42 CoronaVac 59 158 235

31 130 207

19
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booster.Wedidnot observe any immunocompromising comorbidities
associated with the cohort. All the individuals included in the study
were naïve at the time of vaccination. Previous exposure to SARS-CoV-
2 was ruled out by a qRT-PCR test at the time of recruitment. Only 3
individuals reported to be exposed to COVID-19 between vaccine dose
1 and 2 (1 individual) or after the second dose (2 individuals). In addi-
tion, we monitored for infection-acquired anti-nucleocapsid anti-
bodies throughout the study. Since CoronaVac contains nucleocapsid,
a noticeable and expected response was observed exclusively within
this group. Moreover, nucleocapsid antibodies waned progressively
over five months within this group, arguing against any exposure to
SARS-CoV2 during this period. No nucleocapsid responses were
observed in the BNT162b2 arm as this mRNA vaccine only encodes for
Spike protein. We thus collectively conclude that, SARS-CoV-2 infec-
tions prior, before and during this study were minimal-to-absent
(Supplementary Fig. 4A).

Method details
Antigens. All antigens used in this study are listed in Table 3. Most
antigens were lyophilized powder and were resuspended in water to
afford a final concentration of 0.5mg/mL. Antigens that required
biotinylation were treated with the NHS-Sulfo-LC-LC kit per the man-
ufacturer’s instruction. Removal of excess biotin and buffer exchange
fromTris-containing antigens was done using the Zebra-Spin desalting
and size exclusion chromatography columns.

Immunoglobulin isotype and Fc receptor binding. Antigen-specific
antibody levels of isotypes and subclasses and levels of Fcγ-receptor
binding were evaluated using a custom multiplexing Luminex-based
assay platform in technical replicates, as previously described36. The
general sensitivity and robustness of the assays used in this study to
quantify the antibody titers and relative FcγR binding capacity and
specifically in the context of SARS-CoV-2 infections and vaccines have
been previously validated24,62–64. The sensitivity of the assays used
specifically to evaluate the antibody isotypes and the receptor binding
was also validated by the dilution curves generated prior to the

analysis of the samples, as shown in Supplementary Fig. 2. The antigens
were directly coupled tomagnetic Luminex beads (Luminex Corp, TX,
USA) by carbodiimide-NHS ester-coupling chemistry, which desig-
nates each region to each antigen. Individual dilution curves for each
antigen were performed to identify an appropriate dilution factor for
each secondary feature that was within the linear range of detection.
The antigen-coupled beads were incubated with different serum
dilutions (1:100 for IgG2, IgG3, IgG4, IgM, and IgA1, 1:500 for IgG1, and
1:750 for Fcγ-receptor binding) overnight at 4 °C in 384 well plates
(Greiner Bio-One, Germany). Unbound antibodies were removed by
washing and subclasses, isotypes were detected using the respective
PE-conjugated antibody listed in Table 3. All detection antibodies were
used at a 1:100 dilution. All samples were assayed in technical
duplicates.

For the analysis of Fcγ-receptor binding PE-Streptavidin (Agilent
Technologies, CA, USA) was coupled to recombinant and biotinylated
human FcγRIIA, FcγRIIB, FcγRIIIA, or FcγRIIIB proteins. Coupled Fcγ-
receptorswere used as a secondary probe at a 1:1000dilution. After 1 h
of incubation, the excessive secondary reagent was removed by
washing, and the relative antibody concentration per antigen was
determined on an IQue Screener PLUS cytometer (IntelliCyt).

Evaluation of antibody-mediated functions. For all the antibody-
mediated functional assays performed in this study, only two antigens,
SARS-CoV-2WTSpike (SinoBiological, 40589-V08H4) andSARS-CoV-2
Omicron Variant S (Sino Biological, 40589-V08H26) were used as dis-
cussed in detail below. All samples were assayed in technical quad-
ruplicates with a minimum of three independent donors.

Antibody-dependent cellular phagocytosis (ADCP) and neu-
trophil phagocytosis (ADNP) were evaluated using a flow cytometry-
based phagocytic assay that requires the usage of fluorescently
labeled microspheres, as described previously36. The WT and Omi-
cron Spike antigens were biotinylated and conjugated to yellow-
green fluorescent neutravidin microspheres. Then diluted serum
samples with the pre-determined concentrations (1:100) were
incubated with the coupled antigens. The pre-formed immune

Table 2 (continued) | Specific time intervals (days) of samples obtained from individuals vaccinated with either CoronaVac or
BNT162b2

Participants
numbera

Vaccine Pre-Vaccine sam-
ple dose 0 (n = 33)

Vaccine sample
dose 1 (n = X)

Vaccine sample
dose 2 (n =X)

Waning period
sample 2–3
months (n = X)

Waning period
sample 4–5
months (n = X)

Vaccine sample
BNT162b2 boos-
ter (n = 23)

43 CoronaVac 59 153 230

31 125 202

15

44 CoronaVac 56 154 233

28 126 205

14

45 BNT162b2 10 42 91 181

14 63 153

46c CoronaVac 33 127

6 100

47 CoronaVac 58 149 232

30 121 204

14

48 BNT162b2 1 27 42 90

14 62

49 BNT162b2 −1 26 40 96

13 69
aAll individuals in this cohort were individuals without prior COVID-19 vaccination.
bSARS-CoV-2 infection after the second dose of vaccine.
cSARS-CoV-2 infection after the first dose of vaccine.
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complexes bound with microspheres were washed and incubated
with a human monocyte cell line (THP-1) for ADCP function or with
neutrophils collected from healthy donors’ blood samples to assess
ADNP activity. Cells studied under ADNP assays were then stained

with anti-CD66b Pac blue antibody to calculate the percentage of
CD66b+ neutrophils. In both ADCP and ADNP assays cells were fixed
with 4% paraformaldehyde (PFA) and identified by gating on single
cells and microsphere-positive cells. Microsphere uptake was
quantified as a phagocytosis score, calculated as the (percentage of
microsphere-positive cells) x (MFI of microsphere-positive cells)
divided by 100,000.

Antibody-dependent complement deposition (ADCD) assessed
the ability of antigen-specific 20 antibodies to bind complement
component C3b, as described. Briefly, SARS-CoV-2 WT and Omicron
Spike proteins were biotinylated, coupled to red fluorescent neu-
travidin microspheres, and then incubated with serum samples (dilu-
tion 1:40). Immune complexes were then washed, incubated with
guinea pig complement, then washed with 15mM EDTA. The level of
complement depositionwasmeasured by fluorescein-conjugated goat
IgG that targets the guinea pig complement C3b and further analyzed
by gating on the single microspheres and C3b+ events.

Antibody-dependent NK Cell activation (ADNKA) assessed the
ability of antigen-specific antibodies to activate human NK cells to up-
regulate the production of CD107a, IFN-γ, and CCL4 (MIP-1β), as
described. Briefly, ELISA plates were coatedwith SARS-CoV-2 antigens.
NK cells were isolated from buffy coats, obtained from healthy blood
donors, using RosetteSep NK enrichment kit, and rested overnight
with IL-15. Antigen-coated ELISA plates were then incubated with
serum samples (dilution 1:10). NK cells were stained with anti-CD107a
and treated with a protein-transport inhibitor and with brefeldin A to
block degranulation. NK cells were then added to the immune com-
plexes, labeled with surface staining antibodies including anti-CD3,
anti-CD16, and anti-CD56, washed, fixed with 4% PFA, and permeabi-
lized with PERM A/B to allow intracellular staining with anti-IFN-γ and
anti-CCL4. NK cellswere identified asCD3- CD56+ cells, and the level of
NK cell activation was evaluated as CD107a+ IIFN-γ +CCL4 + .

Glycosylation analysis. Antigen-specific glycosylation analysis was
performed as described previously65 Briefly, the WT Spike antigen was
biotinylated and coupled to NeutrAvidin magnetic beads at a ratio of
2.5μg of protein to 25μL of beads. Combined serum (200μL) was first
incubated with non-coated NeutrAvidin beads to remove the non-
specific binding and then added to the antigen-coated beads and
incubated for 1 h at 37 °C. Antibodies were eluted by incubation in
50μL of pH 2.9 citrate buffer for 30min at 37 C. Samples were then
spun down and the eluted antibodies, contained in the supernatant,
were neutralized with 30μL pH 8.9 potassium phosphate buffer.
Antibodieswere then coupled to proteinGbeads. After the beadswere
washed, IDEZ protease was used to cleave the Fab (in the supernatant)
from the Fc (remained on the magnetic beads) for 1 h at 37 °C and
collected. The two fragments were deglycosylated and fluorescently
labeled using a GlycanAssure APTS kit. For the Fc fragment, which
remained bound to the protein G beads, an additional magnetic
separation after PNGase glycan cleavage separated the glycans from
the remaining magnetic beads and the protocol then proceeded.
Glycans were analyzed on a 3500xL genetic analyzer. Glycan fucosyl
and afucosyl libraries were used to assign 24 discrete glycan peaks
usingGlycanAssure software. Data are reported as percentages of total
glycans for each of the glycan peaks.

Statistics and reproducibility
All data analysis was done using R Studio V 1.4.1103 or FlowJo. Statis-
tical analysis was done using R studio or GraphPad Prism v 9.3.1. Box
and whisker plots were generated using ggplot, calculating the mean
and standard deviation for each factor. Technical replicates for each
sample were performed and themean between replicates was plotted.
No statistical method was applied to predetermine the size of the
cohort that were evaluated in this study. No data was omitted from the
analysis. The investigators who performed the experiments were

Table 3 | List of reagents and resources used in this study

REAGENT or RESOURCE SOURCE IDENTIFIER

Anti-Human IgG1-PE Southern Biotech HP6001

Anti-human IgG2-PE Southern Biotech 31-7-4

Anti-human IgG3-PE Southern Biotech HP6050

Anti-human IgG4-PE Southern Biotech HP6025

Anti-human IgM-PE Southern Biotech SA-DA4

Anti-human IgA1-PE Southern Biotech HP6025

Anti-CD66b Pac Blue BioLegend 305112

Anti-CD107a BD Biosciences 555802

Anti-CD3 BD Biosciences 558117

Anti-CD16 BD Biosciences 557758

Anti-CD56 BD Biosciences 557747

Anti-IFNγ BD Biosciences 340449

Anti-CCL4 BD Biosciences 550078

Anti-C3b MP Biomed 855385

SARS-CoV-2 WT Spike Sino Biological 40589-V08H4

SARS-CoV-2 WT Receptor Binding
Domain (RBD)

Sino Biological 40592-V08H

SARS-CoV-2 Alpha Variant S Sino Biological 40589-V08B6

SARS-CoV-2 Alpha Variant RBD Sino Biological 40592-V08H82

SARS-CoV-2 Beta Variant S Sino Biological 40589-V08B7

SARS-CoV-2 Beta Variant RBD Sino Biological 40592-V08H59

SARS-CoV-2 Gamma Variant S Sino Biological 40589-V08B10

SARS-CoV-2 Gamma Variant RBD Sino Biological 40592-V08H86

SARS-CoV-2 Delta Variant S Sino Biological 40589-V08B16

SARS-CoV-2 Delta Variant RBD Sino Biological 40592-V08H115

SARS-CoV-2 Omicron Variant S Sino Biological 40589-V08H26

SARS-CoV-2 Nucleocapsid Sino Biological 40588-V08B

SARS-CoV-2 Omicron Variant RBD Sino Biological 40592-V08H121

Human Coronavirus OC43 S Sino Biological 40607-V08B

Human CoV HKU1 S (isolate N5) Sino Biological 40606-V08B

Human Cytomegalovirus (HCMV)
Glycoprotein B (gB)

Sino Biological 10202-V08H1

Ebola Virus Glyoprotein IBT Bioservices 0501-015

PE-Streptavidin Agilent Technologies PB32-10

Guinea Pig Complement Cedarlane CL4051

Protein Transport Inhibitor BD Biosciences 554724

Brefeldin-A Sigma B7651

NHS-Sulfo-LC-LC Kit ThermoFisher 21435

Zebra-Spin Desalting and Chroma-
tography Columns

ThermoFisher 89882

RosetteSep NK Enrichment Kit Stem Cell
Technologies

15065

Fix & Perm Cell Permeabilization Kit ThermoFisher GAS002S-100

R Studio V 1.4.1103 RStudio, PBC Open Source

GraphPad Prism v 9.3.1 GraphPad Soft-
ware, LLC

Ragon Site License

FlowJo V. 10.8 FlowJo, LLC www.flowjo.com/
solutions/flowjo/
downloads

iQue Forecyt 9.1 Sartorius 60028

iQue Screener Plus Intellicyt/Sartorius 11811

384-well HydroSpeed Plate Washer Tecan 30190112

MagPlex Microspheres Luminex MFG MC12001-01 (Cataloged by
region)

Green Fluorescent Neutravidin
Microspheres

ThermoFisher F8776

Red Fluorescent Neutravidin
Microspheres

ThermoFisher F8775
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blinded before and while conducting the reported experiments. The
samples were randomized for all experimental procedures and the
investigators were unblinded only after the data were collected.

Inclusion and ethics statement
Healthy individuals that received their COVID-19 vaccine and booster
immunizations at the UC-Christus Health network in Santiago, Chile,
were invited to participate in the study. Therewas no specific selection
of participants and they represent the overall population vaccinated in
the UC-Christus Health Network between January and September,
2021. An informed written consent form was obtained under protocol
200829003, which was reviewed and approved by the Health Sciences
Scientific Ethics Committee at Pontificia Universidad Católica de Chile
(PUC). This work was supervised and approved by the Mass General
Institutional Review Board (IRB #2020P00955 and #2021P002628).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All the data generated in this study are provided within the article and
the Supplementary data is provided as a Source Data file. The Systems
Serology data generated in this study are availbale in the ImmPort
database under accession code SDY2216. Source data are provided
with this paper.

Code availability
All coding was done using R Studio V 1.4.1103 using ggplot. Individual
groups were analyzed as factors. All codes and scripts are available
upon request to the lead data point of contact. This article does not
report original code. Any additional information required to reanalyze
the data reported in this article is available from the lead contact upon
request.
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