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Clot waveform analysis (CWA) observes changes in transparency in a plasma sample based 
on clotting tests such as activated partial thromboplastin time (APTT), prothrombin time 
(PT), and thrombin time (TT). Evidence indicates that not only an abnormal waveform but 
also peak times and heights in derivative curves of CWA are useful for the evaluation of 
hemostatic abnormalities. Modified CWA, including the PT with APTT reagent, dilute PT 
(small amount of tissue factor [TF]-induced clotting factor IX [FIX] activation; sTF/FIXa), 
and dilute TT, has been proposed to evaluate physiological or pathological hemostasis. We 
review routine and modified CWA and their clinical applications. In CWA-sTF/FIXa, elevated 
peak heights indicate hypercoagulability in patients with cancer or thrombosis, whereas 
prolonged peak times indicate hypocoagulability in several conditions, including clotting 
factor deficiency and thrombocytopenia. CWA-dilute TT reflects the thrombin burst, whereas 
clot-fibrinolysis waveform analysis reflects both hemostasis and fibrinolysis. The relevance 
and usefulness of CWA-APTT and modified CWA should be further investigated in various 
diseases.
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INTRODUCTION

Clot waveform analysis (CWA) [1-5] is based on the activated 

partial thromboplastin time (APTT) [1-3], prothrombin time (PT) 

[4], or thrombin time (TT) [5] (CWA-APTT, CWA-PT, and CWA-

TT, respectively) (Table 1). Although conventional clotting as-

says such as the APTT, PT, and TT are inexpensive, easy, and 

automated, enabling the measurement of multiple samples, they 

cannot visualize the clotting process. A thrombin generation test 

(TGT) [6] and thromboelastogram (TEG) [7] can help visualize 

the clotting process and provide more information than conven-

tional clotting assays; however, these assays are expensive and 

are generally used only in research. Compared to the TGT and 

TEG [6, 7], the recently developed CWA using a fully automated 

optical coagulation analyzer can easily analyze hemostatic ab-

normalities.

  CWA-APTT is most frequently used in the diagnosis of hemo-

static abnormalities, such as hemophilia [8], inhibition of clot-

ting factor [9], disseminated intravascular coagulation (DIC) [10], 

and lupus anticoagulant (LA) [7, 11]. There is still little evidence 

to support the clinical usefulness of CWA-PT and CWA-TT, as 

their short peak times make them more difficult to visualize and 

analyze. Therefore, CWA-dilute PT and CWA-dilute TT have been 

developed to evaluate physiological or pathological hemostasis 

[1, 6].
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HISTORY OF CWA

The first CWA using an MDA automated coagulation analyzer 

was reported in 2002, and a biphasic waveform was frequently 

observed in DIC or severely critically ill patients [10, 12]. The bi-

phasic clot reaction curve reportedly was caused by a complex 

of C-reactive protein, very low-density lipoprotein, and calcium 

ions [13]. In addition, CWA-APTT can measure small amounts 

of clotting factor VIII (FVIII) activity [14], detect FVIII inhibitors 

[9], and evaluate the bleeding risk in patients undergoing major 

hepatobiliary and pancreatic surgery [15].

  After visual evaluation of the fibrin formation curve (FFC) of 

blood coagulation on computer imaging by CWA, specific soft-

ware programs can show the first derivative curve (1st DC) from 

the derivative of the FFC termed “velocity curve” and the 2nd 

DC from the derivative of the 1st DC termed “acceleration curve” 

[1]. There are three main mechanisms in hemostasis: the cas-

cade system [16], thrombin burst [17, 18], and enhanced clot-

ting factor activity on phospholipids of the platelet membrane 

[19], which are reflected by the FFC, 1st DC, and 2nd DC, re-

spectively (Fig. 1). The peaks of the 1st and 2nd DCs of CWA-

APTT continue from 28 seconds to 60 seconds (peak width); 

the peak width of the 1st and 2nd DCs reflects the thrombin 

Table 1. Original and modified CWA

Method Mechanism Role

Original CWA-APTT
CWA-PT
CWA-TT

Intrinsic pathway
Extrinsic pathway

Fibrinogen

Modified CWA-PT with APTT
CWA-dPT using PRP

(sTF/FIXa)
CWA-dTT

CFWA

Intrinsic and extrinsic pathways
Intrinsic and extrinsic pathways, 

thrombin burst
Fibrinogen, thrombin burst

Coagulation and fibrinolysis

Abbreviations: CWA, clot waveform analysis; APTT, activated partial throm-
boplastin time; PT, prothrombin time; TT, thrombin time, dPT, dilute PT; 
dTT, dilute TT; PRP, platelet-rich plasma; sTF/FIXa, small amount of tissue 
factor-induced clotting factor IX activation; CFWA, clot-fibrinolysis waveform 
analysis.
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Fig. 1. Normal CWA-APTT with a FFC, 1st DC, and 2nd DC and three mechanisms of hemostasis. The horizontal double-headed arrow in-
dicates peak width (period of thrombin burst).
Abbreviations: FFC, fibrin formation curve; 1st DC, first derivative curve; 2nd DC, second derivative curve; TF, tissue factor; PLs, phospholipids; FXI, clotting 
factor XI; FXIa, activated FXI. 
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burst, which has been investigated using the TGT [6] (Fig. 1).

MERITS OF CWA

Abnormal waveforms
A fully automated optical coagulation analyzer generally auto-

matically enlarges the waveform to clear abnormal waveforms in 

CWA-APTT. For samples from patients with clotting factor defi-

ciency or clotting factor inhibition [20, 21], DIC [10], liver dys-

function, or anticoagulant therapy [1], several abnormal wave-

forms (Fig. 2) still appear, suggesting that further examination 

for hemostatic abnormalities is required (Table 2). While the bi-

phasic waveform, an abnormal waveform, first drew attention 

[10-12], a few specific abnormal waveforms have been identi-

fied for diseases associated with hemostatic abnormalities [10-

12]. In addition, automatic waveform enlargement may cause 

peak time prolongation or peak height reduction to be missed, 

as many technicians and physicians may consider an abnormal 

peak time or height to be normal based on the automatic en-

largement. Therefore, the analysis of peak times and heights is 

considered more useful for the evaluation of hemostatic abnor-

malities (Fig. 2 and Table 2).

Peak time and height in three CWA curves
Peak time, height, and width are associated with hemostatic ab-

normalities [15, 22]. A prolongation of the peak time, which re-

flects the cascade system, is useful for the detection of clotting 

factor deficiency or inhibition [20, 21], LA [11], or liver dysfunc-

tion, or the monitoring of patients undergoing anticoagulant ther-

apy [23]. A decreased peak height indicates clotting factor defi-

ciency or inhibition [20, 21] and reflects an increased risk of 

major bleeding [15]. A shortening of the peak time or an increased 

peak height may suggest hypercoagulability (Fig. 3). The detec-

tion of hypercoagulability in critically ill patients with coronavirus 

disease using CWA-APTT has been reported [24] (Fig. 3).

  With CWA, the three abovementioned hemostatic mechanisms 

can be easily visualized. After the development of CWA-APTT, 

the mechanism of thrombin burst was recognized. That is, a 

Fig. 2. Abnormal waveform in CWA-APTT. The fibrin formation curve 
is indicated in blue, the 1st DC in red, and the 2nd DC in green. The 
1st and 2nd DCs show a bpw.
Abbreviations: CWA, clot waveform analysis; APTT, activated partial throm-
boplastin time; bpw, biphasic waveform; DC, derivative curve.
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Table 2. Usefulness of CWA-APTT or sTF/FIXa for the evaluation of 
hemostatic abnormalities

Parameter Result Diseases or physiological state

Abnormal  
   waveform

Positive Deficiency of clotting factor, inhibition of clotting 
factor, DIC, liver dysfunction, or anticoagulant 

therapy

Peak time Prolongation Hypocoagulability

Shortening Hypercoagulability

Peak height Decrease Hypocoagulability

Increase Hypercoagulability

Peak width Enlargement Hypocoagulability

Shortening Hypercoagulability

Abbreviations: CWA, clot waveform analysis; APTT, activated partial throm-
boplastin time; sTF/FIXa, small amount of tissue factor-induced clotting fac-
tor IX activation; DIC, disseminated intravascular coagulation.

Fig. 3. Abnormal APTT and peak height in CWA-APTT. The solid 
line represents a patient sample, and the dotted line represents a 
sample from a healthy volunteer. A decreased peak height indicates 
a major bleeding risk, whereas an increased peak height indicates 
hypercoagulability.
Abbreviations: APTT, activated partial thromboplastin time; CWA, clot wave-
form analysis.
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small amount of thrombin activates not only fibrinogen but also 

FXI, FVIII, and FV. Activated FXI, FVIII, and FV activate down-

stream coagulation factors. The abovementioned activation cy-

cle from thrombin to FXI continues for 10–30 seconds in the 

normal hemostatic system [22] (Fig. 3). However, in platelet-rich 

plasma (PRP), the thrombin burst is enhanced [25, 26]. CWA-

APTT is performed using platelet-poor plasma (PPP). The 2nd 

DC reflects enhanced activity of clotting factors, particularly 

FVIII, on phospholipids, and is useful for the evaluation of he-

mophilia and diagnosis of LA [1].

  Regarding the use of the CWA-APTT for monitoring anticoag-

ulation therapy, an anti-Xa agent has been used as a prophy-

laxis against venous thromboembolism in orthopedic patients 

[23]. In addition, CWA-APTT has been used in enzyme kinetic 

analyses for anti-Xa agents, heparin, hirudin, and other drugs 

[27, 28].

WHY SEVERAL MODIFICATIONS ARE NEEDED

As artificial phospholipids massively exist in APTT and PT re-

agents and most APTT reagents activate the contact pathway of 

coagulation, routine APTT or PT cannot evaluate a physiological 

coagulation reaction [22]. Furthermore, the various commer-

cially available APTT reagents give different clotting times, sug-

gesting the need for standardization of APTT reagents in the de-

velopment of CWA [29]. In addition, platelets play important roles 

in hemostasis, the concentration of clotting factors on phospho-

lipids of the platelet cell membrane [30], and the thrombin burst 

[17-19]. Routine APTT or PT using PPP cannot evaluate the ef-

fect of platelets on the coagulation system. When APTT is mea-

sured using PRP, the large amount of artificial phospholipids in 

the APTT reagent cancels out the effect of platelets on the co-

agulation reaction [22, 31].

Fig. 4. CWA-sTF/FIXa of a patient with a neoplasm and acute cerebral infarction (A) and a patient with thrombocytopenia due to aplastic 
anemia (B). The fibrin formation curve is indicated in dark blue, the 1st DC (velocity) in pink, and the 2nd DC (acceleration) in light blue. 
The solid line represents a patient sample, and the dotted line represents a sample from a healthy volunteer. The peak heights of the three 
curves were significantly higher for patient (A) than for the healthy volunteer and significantly lower for patient (B) than for the healthy vol-
unteer.
Abbreviations: CWA, clot waveform analysis; DC, derivative curve; sTF/FIXa, small amount of tissue factor-induced clotting factor IX activation. 
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  The APTT test is carried out in two steps. In the first step, the 

large amount of artificial phospholipids activate FXII and finally 

generate activated FXI, FX, and FIX (FXIa, FXa, and FIXa, re-

spectively). In the second step, upon the addition of Ca2+ solu-

tion, all coagulation reactions start simultaneously. These reac-

tions are not physiological. For example, APTT is markedly short-

ened in hemophilic patients treated with emicizumab [32], and 

hemostatic ability and FVIII activity cannot be evaluated in these 

patients without an anti-neutral antibody for emicizumab [33]. 

In addition, CWA-APTT results are affected by the sampling con-

dition, whereas the PT test shows a short clotting time and is 

difficult to use for thrombin burst evaluation. Therefore, dilute 

PT is used to evaluate the efficacy of oral anticoagulants [34].

MODIFIED CWA

Modified CWA is based on CWA-dilute PT [32, 35], dilute TT [5], 

and clot-fibrinolysis waveform analysis (CFWA) [36, 37]. CWA-

dilute PT shows both the extrinsic and intrinsic pathways. CWA-

dilute TT reflects not only fibrinogen activity but also the throm-

bin burst, and CFWA shows fibrinolytic activity as well as clotting 

activity.

CWA-dilute PT
CWA-dilute PT requires phospholipids to enlarge the waveform 

to facilitate a detailed analysis. CWA-PT with APTT [32] uses 

APTT reagent as a source of phospholipids, whereas the small 

amount of tissue factor (TF)-induced FIX activation (sTF/FIXa) 

assay uses PRP as a source of phospholipids [1, 35]. The use 

of dilute PT reagent as a source of TF prolongs the waveform. In 

particular, sTF/FIXa uses the concentration of dilute recombi-

nant TF, which activates FIX but not FX [1, 35]; this assay shows 

physiological coagulation [22]. A small amount of TF activates 

FIX and finally generates a small amount of thrombin. The small 

amount of thrombin generated is not sufficient to induce fibrin 

formation, but it activates FXI, FVIII, and FV and initiates the ac-

tivation cycle of clotting factors from FXIa to thrombin, leading 

to a thrombin burst.

Fig. 5. CWA-TT using PPP (A and C) or PRP (B and D) from a healthy volunteer (A and B) and a patient with cancer (C and D). The fibrin 
formation curve is indicated in dark blue, the 1st DC (velocity) in pink, and the 2nd DC (acceleration) in light blue. The second peak of the 
1st DC is significantly higher for PRP than for PPP and for the patient with cancer than for the healthy volunteer.
Abbreviations: CWA, clot waveform analysis; DC, derivative curve; TT, thrombin time; PPP, platelet-poor plasma; PRP, platelet-rich plasma.
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  CWA-PT with APTT is useful for evaluating small amounts of 

FVIII and FVIII inhibitors [3, 32, 37], whereas sTF/FIXa can mea-

sure FVIII activity [29] and evaluate hypercoagulability in patients 

with neoplasms [38]. As sTF/FIXa uses PRP, it has been used 

to evaluate hemostatic abnormalities in idiopathic thrombocyto-

penic purpura [31]. Finally, CWA-sTF/FIXa diagnoses hyperco-

agulability, which shortens the peak time and increases the peak 

height in patients with cancer or acute cerebral infarction, and 

hypocoagulability, which prolongs the peak time or decreases 

the peak height in patients with thrombocytopenia or clotting 

factor deficiency [31, 38] (Fig. 4).

  Further investigations are needed to determine the optimal 

cutoff value of the peak height in CWA-sTF/FIXa for initiating an-

ticoagulant therapy in patients with hypercoagulability. In PRP 

from patients with thrombocytopenia, decreased platelet mem-

brane phospholipid concentrations may prolong the peak time 

and reduce the peak height in CWA-sTF/FIXa, suggesting that 

antiplatelet agents may not cause CWA abnormalities [1, 31].

CWA-dilute TT
CWA-dilute TT is conducted using 0.5 unit/mL thrombin [5]. A 

high concentration of thrombin activates fibrinogen to fibrin, sug-

gesting that this assay is useful for the diagnosis of fibrinogen 

abnormalities [39], whereas a low concentration of thrombin ac-

tivates FXI, FVIII, and FV, causing fibrin formation via the throm-

bin burst [5, 19]. Although evidence is limited, CWA-dilute TT 

may be able to evaluate upstream abnormalities in the clotting 

system as well as fibrinogen abnormalities. In addition, CWA-di-

lute TT visualizes the enhancement of the thrombin burst by 

platelets; the second peak of the velocity curve in CWA-TT is 

considered to show the enhancement of the thrombin burst by 

platelets [38] (Fig. 5). In patients with cancer, CWA-dilute TT re-

flects the enhancement of the thrombin burst by platelets [38], 

which may be the main cause of hypercoagulability in these pa-

tients. Therefore, over-enhancement of the thrombin burst may 

be a risk factor for thrombosis, which can be detected by CWA-

dilute TT (Fig. 5).

  The measurement of FVIII activity by APTT is difficult in pa-

tients with hemophilia A treated with emicizumab [40]; however, 

CWA-dilute TT can measure FVIII activity in plasma independent 

of the presence of emicizumab [41] (Fig. 6). Therefore, CWA-di-

lute TT may be useful for monitoring hemostasis in patients with 

hemophilia treated with emicizumab (Fig. 6).

CFWA
CFWA combines CWA-APTT and a low concentration of tissue-

type plasminogen activator (t-PA) to examine both coagulation 

and the fibrinolysis system [36, 37]. This assay can reveal a hy-

perfibrinolytic state in patients with DIC [42]. It shows two peaks: 

a positive fibrin formation peak caused by APTT and a negative 

peak caused by t-PA-induced fibrinolysis. Although a shortened 

or increased second peak reflects increased hyperfibrinolysis, 

the second peak may be affected by the first peak, which shows 

coagulability. Because of the addition of t-PA, this assay cannot 

show intrinsic fibrinolysis.

FUTURE PROSPECTIVES OF CWA

Hypercoagulability based on CWA-APTT and sTF/FIXa has been 

reported in patients with acute cerebral infarction [43] and ma-

lignant neoplasms [38], which has led to the establishment of a 

CWA cutoff value for thrombosis. A CWA cutoff value for major 

bleeding is being established. Thrombosis or major bleeding 

can be prevented using CWA-APTT or sTF/FIXa. CWA-TT and 

sTF/FIXa allow easy monitoring of hemophilia A treated with emi-

cizumab, which is difficult to monitor using conventional APTT.

CONCLUSIONS

CWA can show abnormal waveforms, peak times, and peak hei

ghts and increases the ability to diagnose various hemostatic 

abnormalities. Modified CWA improves the routine clotting time 

assay to allow the examination of complex hemostatic abnormali-

ties, such as hypercoagulability, major bleeding risk, and fibrino-

Fig. 6. Standard curves for the FVIII assay by CWA-TT and CWA-
APTT in the presence or absence of Emi. The standard curve for 
CWA-TT is similar between Emi (+) and Emi (–), whereas that for 
CWA-APTT differs between Emi (+) and Emi (–).
Abbreviations: FFC, fibrin formation curve; PH, peak height; CWA, clot 
waveform analysis; TT, thrombin time; DC, derivative curve; PT, peak time; 
APTT, activated partial thromboplastin time; Emi, emicizumab.
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lysis, as well as the monitoring of various anticoagulant agents.
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