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Transmission-blocking interventions can play an important role in combating malaria worldwide. Recently, a highly potent 
Plasmodium falciparum transmission-blocking monoclonal antibody (TB31F) was demonstrated to be safe and efficacious in 
malaria-naive volunteers. Here we predict the potential public health impact of large-scale implementation of TB31F alongside 
existing interventions. We developed a pharmaco-epidemiological model, tailored to 2 settings of differing transmission 
intensity with already established insecticide-treated nets and seasonal malaria chemoprevention interventions. Community- 
wide annual administration (at 80% coverage) of TB31F over a 3-year period was predicted to reduce clinical incidence by 54% 
(381 cases averted per 1000 people per year) in a high-transmission seasonal setting, and 74% (157 cases averted per 1000 
people per year) in a low-transmission seasonal setting. Targeting school-aged children gave the largest reduction in terms of 
cases averted per dose. An annual administration of the transmission-blocking monoclonal antibody TB31F may be an effective 
intervention against malaria in seasonal malaria settings.
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pharmacodynamic modeling.

Received 23 September 2022; editorial decision 05 April 2023; accepted 11 April 2023; pub
lished online 12 April 2023

aJ. D. C., S. W. v. B., T. S. C., and T. B. contributed equally to this work.
Correspondence: Joseph D. Challenger, MPhys (Hons), PhD, School of Public Health, St 

Mary’s Campus, Imperial College London, Norfolk Place, London W2 1PG (j.challenger@ 
imperial.ac.uk).
The Journal of Infectious Diseases® 2023;228:212–23 
© The Author(s) 2023. Published by Oxford University Press on behalf of Infectious Diseases 
Society of America. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution 
License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, dis
tribution, and reproduction in any medium, provided the original work is properly cited.
https://doi.org/10.1093/infdis/jiad101

Malaria remains a major health problem and caused approxi
mately 627 000 deaths in 2020 [1]. Considerable progress has 
been made in reducing the malaria burden [2], and the recent rec
ommendation of the World Health Organization to implement 
vaccination with the first-ever malaria vaccine, RTS,S/AS01, fuels 
optimism for further successes. However, progress has slowed in 
recent years [1] and the emergence and spread of insecticide and 
drug resistance threaten the efficacy of the interventions respon
sible for much of the recent progress in malaria control [3, 4]. 
New interventions that reduce the transmission of malaria are 
high on the priority list of tools for malaria control and eradica
tion [5], as well as in the containment of drug-resistant malaria.

Transmission-blocking vaccines aim to elicit antibodies that 
interfere with the transmission of malaria to mosquitoes by 
preventing fertilization of Plasmodium transmission stages, 

gametes, or later sporogonic development in the mosquito 
gut [6]. The immediate consequence of vaccination is an 
antibody-mediated reduction in the infection (oocyst) burden 
in mosquitoes. The reduction in oocyst density defines the 
transmission-reducing activity (TRA). TRA is closely associat
ed with the reduction in the proportion of mosquitoes that be
come infected (transmission-blocking activity [TBA]) [7]. By 
reducing the number of infected mosquitoes, transmission- 
blocking vaccines reduce malaria incidence at the community 
level. Transmission-blocking vaccines based on prefertilization 
gametocyte antigens Pfs230 and Pfs48/45 are currently in clin
ical trials [6, 8]. These vaccines could be deployed in combina
tion with anti-infection vaccines to increase their community 
impact [9]. Instead of inducing antibodies by active immuniza
tion, monoclonal antibodies (mAbs) targeting the same anti
gens may be directly administered to achieve the same impact.

TB31F is a humanized version of the highly potent 
transmission-blocking rat mAb 85RF45.1 [10–13]. It targets a 
highly conserved epitope on Pfs48/45, expressed on 
Plasmodium falciparum mature gametocytes and gametes. In 
a recent first-in-human study, an intravenous dose up to 
10 mg/kg was well-tolerated in adult study participants with 
minimal to no side effects [14]. In the highest dose group, se
rum from trial participants fully prevented transmission to 
mosquitoes in ex vivo assays throughout 84 days of follow-up. 
Extrapolation from the estimated TB31F half-life suggests that 
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a single administration could span most of the malaria trans
mission season in many regions [15], making it attractive 
from an implementation perspective. It is unclear what dose 
would be required to obtain effective transmission reduction 
throughout the malaria season, what the expected community 
impact would be, and which age groups should be targeted to 
provide maximum impact. Demographically targeted interven
tions are operationally attractive but require an understanding 
of what populations are most important for transmission to 
mosquitoes [16, 17].

We sought to predict the potential public health impact of dif
ferent implementation strategies with this transmission- 
blocking mAb, combining a pharmacological model describing 
the TB31F exposure–response relationship with a dynamic 
model of malaria transmission. This pharmaco-epidemiological 
model allowed us to predict the potential impact of TB31F 
alongside established public health interventions against malar
ia, in 2 highly seasonal settings with differing transmission 
intensity.

METHODS

Data

We used data from a first-in-human, dose-escalation study of 
TB31F that was performed in 25 healthy adult malaria-naive 
volunteers [14]. There were 5 study arms (n = 5 per arm) with 
escalating TB31F dose: 4 groups received intravenous TB31F 
at 0.1 mg/kg, 1 mg/kg, 3 mg/kg, and 10 mg/kg; a fifth group re
ceived 100 mg TB31F subcutaneously. Serum for pharmacoki
netic and pharmacodynamic analysis was collected before 
administration; upon the end of infusion; at 1, 3, and 6 hours 
and on days 1, 2, 7, 14, 21, 28, 56, and 84 after the end of admin
istration. TB31F serum concentrations were quantified by an 
enzyme-linked immunosorbent assay against the recombinant 
protein R0.6C that contains the 6C fragment of the Pfs48/45 an
tigen to which TB31F binds. TRA was determined by standard 
membrane feeding assay (SMFA) with cultured P falciparum 
gametocytes and laboratory-reared Anopheles stephensi mos
quitoes [18, 19]. The SMFA measured the TRA in mosquitoes 
fed on gametocytes in the presence of participants’ serum com
pared to pooled naive serum. One participant in the subcutane
ous group was excluded from all analyses due to implausibly low 
TB31F concentrations, potentially following incorrect 
administration.

Pharmacokinetic/Pharmacodynamic Modeling

Parametric nonlinear mixed-effects modeling was performed 
using NONMEM version 7.4.1 to analyze the pharmacokinetic 
data and the relationship with TRA [20] (Supplementary 
Methods). Weight-based intravenous dosing regimens were ex
plored, aiming to maintain a TRA >80% for a duration similar 

to that estimated from the trial data for a 70-kg adult adminis
tered 10 mg/kg TB31F intravenously.

Predicting Public Health Impact Using Transmission Modeling

To explore the potential epidemiological impact of TB31F, 
we incorporated the results of the pharmacokinetic- 
pharmacodynamic model into a malaria transmission model 
by Griffin et al [21, 22]. The model allows the introduction of 
interventions against malaria, such as insecticide-treated nets 
(ITNs) and seasonal malaria chemoprevention (SMC). This 
model is described in detail elsewhere [21, 22], and is outlined 
in the Supplementary Methods.

In previous work [23], a model of a hypothetical 
transmission-blocking vaccine was added to the transmission 
model to predict the impact such a vaccine could have and to 
identify key age groups to vaccinate. Unlike the previous 
work, the framework used here allows for interindividual var
iation in the pharmacokinetics, as well as weight-dependent 
dosing. In the transmission model, the age of individuals is 
tracked, not their weight; we therefore utilized a weight-for-age 
model (see Wasmann et al [24] and Supplementary Methods) 
to facilitate weight-based dosing. Within the transmission 
model, the TB31F concentration is described by the pharmaco
kinetic model (Supplementary Table 1).

We investigated the impact of introduction of TB31F in 
African settings with seasonal malaria transmission, contrast
ing a low-endemicity (Upper River region in The Gambia) 
and high-endemicity site (Sahel region in Burkina Faso). In 
the Supplementary Materials, we describe the seasonality 
(based on rainfall patterns [25]), transmission intensity (based 
on P falciparum parasite prevalence in 2- to 10-year-olds 
[PfPR2-10] [26]), and coverage and efficacy of ITNs, antimalar
ial treatment [26], and SMC [1]. We then varied the 
mosquito-to-human ratio to obtain the desired level of ende
micity. In the Sahel region of Burkina Faso, the mean 
PfPR2-10 in 2019 was 20%, and as high as 30% in some locations. 
We elected to model a site with a relatively high prevalence for 
the region: We set a baseline entomological inoculation rate 
(EIR) of 60 infectious bites per person per year (ibpppy), result
ing in a modeled PfPR2-10 of 29%. In the Upper River region of 
the Gambia, the observed PfPR2-10 was much lower (average 
value across the region in 2019 was 6%, which we matched us
ing a baseline EIR of 7 ibpppy).

TB31F was administered annually, concurrent with the first 
SMC dose: this time point was chosen to optimize SMC efficacy 
for the seasonality of each region. In our default scenario, 
against which the impact of SMC and TB31F are measured, 
SMC is withdrawn for a 3-year period, leaving ITNs as the 
only public health intervention (other than treatment for symp
tomatic malaria). We measured the impact of SMC and TB31F 
separately and in combination, in terms of the number of clin
ical cases prevented over this period (years 0–3), matching the 
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frequency of mass ITN campaigns in the region. We varied the 
age group targeted: school-aged children (5–15 years of age), all 
children (up to 15 years of age, excluding infants <6 months of 
age), and the whole community (excluding infants <6 months 
of age). For all scenarios, we assumed a coverage of 80% in the 
targeted age group for both SMC and TB31F.

RESULTS

We used data from the first-in-human TB31F trial (Figure 1A) 
to develop a model describing its pharmacokinetics 
(Figure 1B). A pharmacodynamic model was developed, de
scribing the concentration-dependent TRA of TB31F, that is, 
the reduction in mosquito oocyst burden related to mAb con
centration (Figure 1C). The pharmacokinetic model was 

extended to children, and a dosing regimen that obtains effec
tive exposure over a period covering the malaria transmission 
season for most sub-Saharan African settings in both children 
and adults was identified (Figure 1D). TBA was calculated for 
simulated individuals using the predicted TRA (Figure 2A). A 
transmission model was used to explore different implementa
tion strategies with TB31F in 12 epidemiological scenarios 
(Figure 2B and 2C).

Pharmacokinetic/Pharmacodynamic Modeling

Data from 275 pharmacokinetic samples of TB31F (from 24 in
dividuals) and 3358 dissected mosquitoes from SMFA experi
ments were used in the pharmacokinetic/pharmacodynamic 
analyses (Figure 1B). The final parameters and goodness-of-fit 
plots are included in the Supplementary Materials

Data for pharmacokinetic/pharmacodynamic model

− Single-center, first-in-human, dose-escalation study

− 25 healthy malaria-naive volunteers

− Five study arms:

− Intravenous: 0.1, 1, 3, 10 mg/kg

− Subcutaneous: 100 mg

− Pharmacokinetic and transmission-reducing activity

data collected up to day 84 after delivery

  Pharmacokinetic model

  Pharmacodynamic model Weight−based dosing regimen

− Model extension to children
using allometric scaling
− Determining suitable dosing
regimens for children and adults

A B

C D

Figure 1. Overview of the pharmacokinetic/pharmacodynamic modeling workflow. A, We used data from the first-in-human trial of TB31F [14] for pharmacokinetic/phar
macodynamic modeling. B, The final pharmacokinetic model consisted of 3 disposition compartments and an absorption compartment for subcutaneously administered doses. 
C, The pharmacodynamic model described the relationship between TB31F concentrations and transmission-reducing activity (TRA). D, By extrapolating the pharmacokinetic 
model from adults to children by allometric scaling, we proposed a weight-based dosing regimen that is predicted to obtain a similar duration of effective TRA in children 
>6 mo of age compared to adults. Abbreviations: CL, clearance; Conc, TB31F concentration in the central pharmacokinetic compartment; IC50, TB31F concentration obtaining 
50% transmission-reducing activity; IV, intravenous; KA, absorption constant; N, Hill factor; Q, intercompartmental clearance; SC, subcutaneous; TRA, transmission-reducing 
activity; V, volume.
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(Supplementary Figures 1-5, Supplementary Table 1). TB31F 
pharmacokinetics were best described by a linear model with 
3 disposition compartments and an absorption compartment 
for subcutaneous doses. The subcutaneous bioavailability frac
tion was estimated at 0.54 (95% confidence interval [CI], 
.45–.67). The mean absorption time was estimated at 3.2 days 
(95% CI, 2.8–4.2 days), which is in line with previously report
ed values for subcutaneous injection of other mAbs [27]. The 
relationship between TB31F concentration and TRA is shown 
in Figure 3A. The concentration achieving 80% TRA, histori
cally used as threshold for potency [28], was 3.43 mg/L (95% 
CI, 3.34–3.53 mg/L). Given available data on the safety and 

efficacy of intravenous administration [14], we used this route 
of administration for our further analyses. We extrapolated the 
pharmacokinetic model to children and explored weight-based 
dosing, aiming to reach an equivalent duration >80% TRA in 
children as observed with 10 mg/kg in adults. With a single 
dose of 100 mg for individuals with weight ≤10 kg, 300 mg 
for individuals weighing 10–15 kg, and 700 mg for individuals 
weighing >15 kg, the median duration over which a mAb con
centration associated with >80% TRA was sustained was >5 
months (Figure 3B). This effective duration was comparable 
across all weights (Figure 3C); thus, this regimen was used in 
the simulations described from here on.
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Figure 2. Overview of the epidemiological modeling. A, Predicted efficacy of TB31F in blocking malaria transmission events in the field. We use previous modeling work 
[23] to generate an estimated transmission-blocking activity for a given transmission-reducing activity, informed by data on oocyst counts found in naturally infected, wild- 
caught mosquitoes from Burkina Faso. B, Mathematical model of malaria transmission [21]. Individuals transition between 6 states: malaria-susceptible (S), untreated clinical 
disease (D), treated clinical disease (T), asymptomatic microscopy-detectable infection (A), asymptomatic submicroscopic infection (U), protected from malaria due to drug 
prophylaxis (P). Infected humans (outlined in red) can transmit malaria to mosquitoes. Mosquitoes can be susceptible to malaria (SM), infected but not yet infectious (EM), or 
infectious (IM). C, Modeled settings for the introduction of TB31F. We modeled the introduction of TB31F in 2 different seasonal malaria settings: a high-transmission site, 
based on the Sahel region of Burkina Faso, and a low-transmission site, based on the Upper River region of The Gambia. The values of the entomological inoculation rate 
shown are baseline values (ie, no interventions against malaria implemented). We vary the age group targeted with TB31F (the colored area of each rectangle indicates the 
proportion of the community targeted), administering the monoclonal antibody to school-aged children (5–15 y of age), all children aged >6 mo (0.5–15 y of age), and the 
whole community (excluding children <6 mo of age). The intervention is delivered alongside (or instead of) seasonal malaria chemoprevention for children aged 3–59 mo. 
Abbreviations: EIR, entomological inoculation rate; ibpppy, infectious bites per person per year; ITN, insecticide-treated bed nets; SMC, seasonal malaria chemoprevention.
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population. We used these demographics to extrapolate down to children 6 mo of age with weights representative for their age, which is especially important as the allometric 
scaling of clearance based on weight is age dependent.

216 • JID 2023:228 (15 July) • Challenger et al



Predicted Public Health Impact

A standalone implementation of the pharmacokinetic model 
including interindividual variation, a weight-for-age model, 
and weight-based dosing was developed. It was incorporated 
into a model of P falciparum malaria transmission, in order 
to predict the impact that TB31F could have in 2 settings where 

malaria transmission is highly seasonal. These settings were tai
lored to resemble malaria transmission in the high- 
transmission Sahel region in Burkina Faso (Figure 4) and the 
Upper River region of the Gambia, where malaria transmission 
is considerably lower (Figure 5). In both settings, ITNs are dis
tributed every 3 years, and children aged 3–59 months receive 
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Figure 4. Modeling the introduction of TB31F intervention in the Sahel region of Burkina Faso (high-transmission setting). A, Malaria parasite prevalence (by microscopy) 
and changes over time as interventions additional to insecticide-treated nets (ITNs) are introduced. The symbols at the top of the plot indicate the timings of intervention 
delivery. We assume that ITN distribution campaigns (triangles) and seasonal malaria chemoprevention (SMC) delivery (crosses) have occurred regularly prior to the intro
duction of TB31F (diamonds) at time zero. The gray curve indicates malaria prevalence prior to the introduction of control interventions. The colored lines indicate the in
terventions used after time zero. SMC is delivered to children aged 3–59 mo at 80% coverage; in A–C, TB31F is delivered to school-aged children (SAC) (5–15 y of age) at 
80% coverage. B, Model-derived estimates of clinical incidence in the population over time. The impact of TB31F is most apparent in the second and third years of rollout, as 
the new ITNs prevent a high proportion of cases in the first year. C, The changing infectivity of the human population to a blood-feeding mosquito as interventions are 
introduced. This panel shows how the infectious reservoir (not adjusted for age-dependent mosquito biting rates) of malaria is distributed among 3 age groups: children 
<5 y of age, SAC, and adults (>15 y of age). After TB31F is introduced to SAC, the infectiousness of this age group is greatly reduced for several months. D, Cases averted 
due to SMC and TB31F interventions. Over a 3-year period, we measure the reduction in cases on top of those prevented by ITNs. Here we vary the age group targeted with 
TB31F (SAC, all children aged >6 mo, and all age groups aged >6 mo in the community), assuming a coverage of 80% within the target age group. We quantify the clinical 
cases averted in 2 ways: the number of cases averted per 1000 people per year (left y-axis) and the percentage of the total number cases that is averted (right y-axis). In terms 
of cases averted per dose of TB31F administered, targeting children aged 5–15 y proved more efficient than targeting children aged 0.5–15 y, or the whole population aged 
>6 mo (Supplementary Table 2).
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SMC during the transmission season (Figures 4A and 5A). We 
simulated the impact of annual administration of TB31F, with a 
coverage of 80% of the target age group, for 3 consecutive years. 
To compare SMC and TB31F, SMC was withdrawn in our base
line scenario, leaving ITNs as the only active public health in
tervention. Although we are not proposing that TB31F could 

replace SMC in malaria-endemic settings, withdrawing SMC 
in our simulations enables a comparison of the community- 
wide impact of these interventions to be made.

In both malaria-endemic settings (Figures 4 and 5), TB31F 
was predicted to have a pronounced impact on clinical inci
dence across the community. In the high-transmission setting, 
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administering TB31F to school-aged children (5–15 years old) 
has a similar impact as delivering SMC to young children (3–59 
months). However, a much larger impact is seen when the in
terventions are delivered in tandem. In this region of Burkina 
Faso, delivering TB31F to school-aged children in addition to 
delivering SMC to young children (3–59 months) is predicted 
to avert 48% of all clinical cases (462 cases per 1000 people 
per year) over a 3-year period (Figure 4D), compared to the 
counterfactual scenario in which ITNs are the only active inter
vention. This value rises to 66% of cases (641 cases per 1000 
people per year), if TB31F were administered to all age groups 
(Figure 3D). In the low-transmission setting, administering 
TB31F to school-aged children had a larger impact than deliv
ering SMC to children aged 3–59 months. As in the high- 
transmission setting, delivering the 2 interventions in combina
tion had a large impact: Administering TB31F to school-aged 
children and also delivering SMC to children aged 3–59 
months led to 53% of clinical cases (141 cases per 1000 people 
per year) being averted. This value rose to 82% (217 cases per 
1000 people per year) when the TB31F campaign was extended 
to all age groups in the community. In both settings, targeting 

school-aged children with TB31F was the most efficient inter
vention in terms of cases averted per dose administered, but 
broadening the target population to also include other age 
groups substantially increased the overall impact of the inter
vention. The cases averted per dose of TB31F administered 
will vary depending on whether TB31F is delivered instead of 
or alongside SMC (Supplementary Table 2). Moreover, if cov
erage of SMC in children aged <5 years is high, there is little 
additional value in targeting this age group with a 
transmission-blocking intervention, especially in low- 
transmission settings (Figure 5D, Supplementary Table 2).

The composition of the infectious reservoir changes when 
SMC and TB31F are introduced. Figures 4C and 5C show 
how the contribution of different populations to transmission 
changes over time when SMC and SMC plus TB31F are imple
mented. In both the high-transmission (Figure 6) and low- 
transmission (Figure 7) sites, school-aged children make an im
portant contribution to the infectious reservoir (50% in the 
high-transmission site; 47% in the low-transmission site) prior 
to the implementation of SMC and TB31F. Compared to the 
high-transmission setting, children aged <5 years make a 
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Figure 6. The changing infectious reservoir of malaria in a high-transmission setting, as interventions are introduced. Model-derived projections of how different public 
health interventions against malaria influence the magnitude and composition of the human infectious reservoir. We show contributions to the infectious reservoir from 3 age 
groups in a high-transmission setting (based on the Sahel region of Burkina Faso, as used in Figure 4): children <5 years of age, school-aged children (5–15 y of age), and 
adults. These contributions are influenced by the average per-person infectivity (y-axes) and the relative sizes of the 3 subpopulations (x-axes). We first assessed the in
fectious reservoir when the only intervention in use is insecticide-treated nets (A). We then assessed the impact of delivering seasonal malaria chemoprevention (SMC) 
to 80% of children aged 3–59 mo (B). Third, we measured the impact of delivering TB13F to 80% of school-aged children (C ). In this setting, the introduction of TB31F reduces 
the infectivity in all age groups, due to a reduction in malaria transmission. It also results in a shift in the relative importance of age groups for the infectious reservoir, 
increasing the contribution that adults make to malaria transmission. The results in each panel were generated by averaging over a 3-year period. A corresponds to a t
ime period prior to the introduction of SMC. B corresponds to the 3-year period (−3, 0) in Figure 4C; C corresponds to the 3-year period (0, 3) in Figure 4C. The percentages 
above each bar indicate the contribution that each age group makes to the infectious reservoir. The percentage reductions (gray text, top-right corner of B and C ) indicate the 
overall reduction in the infectious reservoir relative to the insecticide-treated net (ITN)–only scenario. To allow a direct comparison between this setting and the low- 
transmission setting (Figure 7), we use a generic demography for sub-Saharan Africa [21]. In Supplementary Figure 6, we repeat the analysis for the case where TB31F 
was administered to all age groups. Note that the results presented here are not adjusted for age-dependent biting of mosquitoes.
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smaller contribution to the infectious reservoir in the low- 
transmission setting. When TB31F is administered to 80% of 
school-aged children alongside standard implementations of 
ITN and SMC, the overall infectious reservoir shrinks (by 
29% in the high-transmission site and by 26% in the low- 
transmission site), and the relative contribution of adults to 
malaria transmission increases. In Supplementary Figure 6, 
we show the impact of delivering TB31F to 80% of the popula
tion in each setting (excluding children <6 months of age), 
causing a larger reduction in community-level infectivity. 
Two sensitivity analyses were performed to assess the robust
ness of our results to changes in the TRA–TBA relationship 
(Supplementary Figure 7), the clearance rate of the mAb 
(Supplementary Figure 8), and the relationship between TRA 
and antibody concentration (Supplementary Figure 9). These 
analyses are discussed in more detail in the Supplementary 
Results. We also outline how the public health impact of 
TB31F could be measured within a cluster-randomized trial. 
Taking malaria prevalence as trial endpoint, we use transmis
sion modeling to estimate the effect size and guide sample 
size calculations for the hypothesized trial (Supplementary 
Figure 10). In the Supplementary Results, we touch upon 

several important factors to consider when aiming to measure 
the impact of a transmission-blocking intervention in field 
settings.

DISCUSSION

In this work, we have combined pharmacokinetic/pharmaco
dynamic modeling with an established malaria transmission 
model. We found that annual administration of a single weight- 
based dose of TB31F at the start of the malaria season resulted 
in a substantial reduction in malaria transmission and clinical 
incidence. Of the 3 age groups considered, targeting 
school-aged children had the largest per-dose impact. 
However, the total impact of the intervention was substantially 
increased when the other age groups were also targeted and 
when the mAb intervention was combined with SMC.

Interventions that specifically target the transmission of ma
laria differ from conventional malaria control measures by pro
viding a delayed, rather than direct, benefit [8]. While they have 
clear and measurable biological endpoints in the reduction in 
mosquito infections, predicting their corresponding public 
health benefit is complex. Furthermore, the eligible population 
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Figure 7. The changing infectious reservoir of malaria in a low-transmission setting, as interventions are introduced. Model-derived projections of how different public 
health interventions against malaria influence the magnitude and composition of the human infectious reservoir. We show contributions to the infectious reservoir from 3 age 
groups in a low-transmission setting (based on the Upper River region of the Gambia, as used in Figure 5): children <5 years of age, school-aged children (5–15 y of age), and 
adults. These contributions are influenced by the average per-person infectivity (y-axes), and the relative sizes of the 3 subpopulations (x-axes). We first assessed the in
fectious reservoir when the only intervention in use is insecticide-treated nets (A). We then assessed the impact of delivering seasonal malaria chemoprevention (SMC) to 
80% of children aged 3–59 mo (B). Third, we measured the impact of delivering TB13F to 80% of school-aged children (C ). In this setting, the introduction of TB31F reduces 
the infectivity in all age groups, due to a reduction in malaria transmission. It also results in a shift in the relative importance of age groups for the infectious reservoir, 
increasing the contribution that adults make to malaria transmission. The results in each panel were generated by averaging over a 3-year period. A corresponds to a t
ime period prior to the introduction of SMC. B corresponds to the 3-year period (−3, 0) in Figure 4C; C corresponds to the 3-year period (0, 3) in Figure 4C. The percentages 
above each bar indicates the contribution that each age group makes to the infectious reservoir. The percentage reductions (gray text, top-right corner of B and C ) indicate the 
overall reduction in the infectious reservoir relative to the insecticide-treated net (ITN)–only scenario. To allow a direct comparison between this setting and the high- 
transmission setting (Figure 6), we use a generic demography for sub-Saharan Africa [21]. In Supplementary Figure 6, we repeat the analysis for the case where TB31F 
was administered to all age groups. Note that the results presented here are not adjusted for age-dependent biting of mosquitoes.
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for transmission-blocking interventions is broader than that of, 
for example, SMC, which primarily reduces malaria incidence 
in young children who are also the intervention recipients. 
Importantly, the age groups that drive malaria transmission 
are not those most at risk of severe disease [17, 29, 30]. 
Recently, TB31F was tested in healthy adult volunteers where 
it had an excellent safety profile, including for the dose consid
ered here. Postinfusion antibody kinetics and potency indicat
ed prolonged transmission-blocking efficacy [14]. We 
translated TB31F’s pharmacokinetic properties in Western 
adult volunteers to a sub-Saharan African population of both 
children and adults, incorporating allometric scaling of phar
macokinetic parameters using body weight. We identified a 
simple dosing regimen to facilitate implementation. With this 
dosing strategy, we predict that >80% TRA for a median dura
tion of 5 months can be achieved.

We next simulated the introduction of TB31F into 
malaria-endemic settings. When targeting the entire popula
tion (excluding children <6 months of age) with TB31F at 
80% coverage on top of ITNs and SMC, a single annual admin
istration reduced clinical malaria incidence by 54% and 74% 
over 3 years in high- and low-transmission settings, respective
ly. While the overall impact of TB31F decreases when only cer
tain age groups are targeted, the uneven contribution of 
different populations to onward transmission [17, 29, 31] al
lows demographic targeting to increase intervention efficiency. 
Choosing age groups to prioritize with a transmission-blocking 
intervention relies on understanding who contributes most to 
malaria transmission in a particular setting. Our work demon
strates that the impact of administering TB31F to a subset of the 
population, namely school-aged children (5–15 years of age), 
may achieve a comparable impact on clinical cases as SMC (giv
en to children aged 3–59 months) in a high-transmission set
ting and that the impact may even exceed that of SMC in a 
low-transmission setting. While we do not suggest that SMC 
be withheld from populations in sub-Saharan African regions, 
where it achieves a very high level of personal protection 
against clinical malaria [32], our findings demonstrate the large 
public health impact a malaria transmission-blocking interven
tion can have. Our findings further indicate that combining 
SMC and TB31F may considerably increase the number of cas
es averted. A recent clinical trial from Mali demonstrated that 
combining the preerythrocytic malaria vaccine RTS,S with 
SMC was superior to either intervention delivered alone [33]. 
Our findings further highlight that interventions against malar
ia will reshape the human infectious reservoir, requiring a pe
riodic review of strategies to maximize intervention impact.

It is significant that only a single dose of TB31F is needed to 
achieve prolonged activity. This facilitates implementation on a 
large scale; a less potent mAb would require multiple doses per 
year or antibody half-life extension to achieve the same effec
tive duration. A potent malaria mAb (CIS43LS) was engineered 

to approximately double the half-life and has induced strong 
anti-infection activity in human volunteers [34, 35]. Similar 
half-life extension technologies could also be of value for 
TB31F [35–37] and would lower the cost of the intervention 
by lowering the administered dose and may extend its effective 
period further. Subcutaneous administration is currently limit
ed by a maximum volume that can be administered at a single 
injection site (100 mg was administered spread over 2 injection 
sites in the TB31F trial), and the currently suggested dosages 
may not yet be practical in subcutaneous administration. By ex
tending the half-life, it would be possible to achieve >80% TRA 
for a longer duration with a similar injection volume. Although 
intravenous administration of a malaria vaccine has been 
achieved at a large scale [38], subcutaneous administration 
would have considerable operational advantages.

Coadministration of a transmission-blocking intervention 
and preerythrocytic vaccine has already shown a synergistic po
tential [39]. Combining the anti-infection mAb CIS43LS with 
the transmission-blocking mAb TB31F holds considerable 
promise. Importantly, TB31F may also prevent the spread of 
mutant parasites that escape CIS43LS. TB31F targets Pfs48/ 
45, which has limited genetic variation, a shared advantage of 
many transmission-blocking vaccine candidates [10]. The po
tency of TB31F has been demonstrated against 2 genetically 
distant parasite lines [14]; the original rat mAb 85RF45.1 that 
formed the basis for TB31F has been tested against genetically 
diverse gametocyte isolates from Cameroon and Burkina Faso, 
with no indications for escape mutants [40].

Our study has a number of limitations. The pharmacokinetic 
extrapolation from healthy Western adults to African popula
tions has a solid mechanistic and empirical foundation [41, 
42], but dedicated studies of TB31F in African populations, in
cluding children, are needed to confirm its safety and could test 
TB31F formulations for either intravenous or subcutaneous ad
ministration. Furthermore, the safety, and risk-benefit ratio of 
administering a transmission-blocking mAb to pregnant wom
en should be carefully assessed. As the transmission model con
tains no spatial structure, the mAb-derived benefit is shared 
equally between those who received the intervention and those 
who did not. This may not always be the case, for example, if 
certain households have very high intervention coverage and 
malaria transmission is highly focal. This could have implica
tions for clinical trials of transmission-blocking interventions 
that measure epidemiological endpoints. It may be that the pre
ferred use case of mAb would be to try and push the disease to 
elimination in low-transmission settings. Predicting this would 
require an understanding of the changing patterns of interven
tion use, the ability of local health systems to treat and diagnose 
cases, and the level of disease importation. These factors should 
be considered in further work.

We have shown that TB31F may be an effective intervention 
against malaria in settings with a well-defined malaria season. 
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Targeting children 5–15 years old proved most efficient for reduc
ing malaria transmission. If TB31F is implemented alongside 
SMC, we predict an even larger impact. A transmission-blocking 
mAb used alongside established interventions could play a crucial 
role in decreasing the global burden of malaria.
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