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1  |  INTRODUC TION

With the increase in people's income and living standard, consum-
ers put forward higher requirements for the health, nutrition, safety, 
and function of food, resulting in the continuous growth of market 
demand for healthy food with biologically active compounds. It has 
received wide attention that berries with high content of bioactive 

substances such as different kinds of polyphenols (anthocyanins and 
proanthocyanidins), organic acid, and polysaccharides are associated 
with a lower risk of arteriosclerosis, anti-diabetic effects, obesity 
(Gironés-Vilaplana et al., 2014), etc.

Among the functional berries, greatly increased research inter-
ests have been put on A. melanocarpa (Michx.) Ell. with a high con-
tent of polyphenols (including anthocyanins, flavonols, flavanols, 
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Abstract
Aronia melanocarpa (Michx.) Ell. is a rich source of anthocyanins and proanthocyanidins 
with confirmed health benefits. Individual cyanidin glucosides (cyanidin 3-galactoside, 
cyanidin 3-arabinoside, cyanidin 3-xyloside, and cyanidin 3-glucoside) of anthocya-
nins (calculated by individual cyanin glycoside fractions was 419.9 mg/100 g FW) were 
isolated by Sephadex LH-20 column and different parts of proanthocyanidins with a 
different mean degree of polymerization (mDP) were fractionated by the solubility 
differences in different solvents. The composition of different mDP of proanthocya-
nidins was as follows: monomers (1.51%), oligomer (mDP of 4.2 ± 0.9, 20.57%), CPP-
50 (mDP of 78.9 ± 4.1, 22.17%), CPP-60 (mDP of 66.1 ± 1.2, 27.94%), CPP-70 (mDP 
of 36.8 ± 3.9, 36.8%), CPP-75 (mDP of 25.2 ± 1.3, 6.14%), CPP-L (mDP of 10.2 ± 2.6, 
6.95%), and there were recycling loss of 0.34%. Cyanidin 3-glucoside showed the 
strongest inhibition effects on α-amylase and lipase and cyanidin 3-arabinoside 
showed the strongest inhibition effect on α-glucosidase, while cyanidin 3-xyloside 
has no inhibition effect on the α-amylase, and cyanidin 3-galactoside, cyanidin 
3-arabinoside, and cyanidin 3-xyloside have no inhibition effects on lipase. The inhibi-
tion effect of proanthocyanidins with different mDP to the enzymes all showed high 
negative correlations between the mDP and IC50 (half-maximal inhibitory concentra-
tion). This study suggests that A. melanocarpa (Michx.) Ell. can have beneficial effects 
due to inhibition of the digestion enzyme.
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proanthocyanidins, phenolic acids, etc.) (Sidor et al.,  2019) and 
possess one of the highest antioxidant activities among plant spe-
cies (Denev et al.,  2012). Anthocyanins are mainly composed of 
cyanidin 3-glucoside, 3-galactoside, 3-xyloside, and 3-arabinoside, 
which are the main source of black color (Veberic et al.,  2015). 
Flavonols present in A. melanocarpa (Michx.) Ell. belong to a di-
verse group of compounds, which mainly consist of quercetin 
derivatives (quercetin-3-glucoside, 3-galactoside, 3-rutinoside, 
3-robinobioside, and 3-vicianoside), isorhamnetin 3-galactoside, 
3-glucoside, 3-neohesperidoside, 3-rutinoside, myricetin and kae-
mpherol 3-galactoside, and 3-glucoside. Proanthocyanidin of A. 
melanocarpa (Michx.) Ell. is mainly composed of (−)-epicatechin and 
trace amounts of (+)-catechin with different mean degree of polym-
erization (mDP). A. melanocarpa (Michx.) Ell. also contain phenolic 
acids, among which dominating are chlorogenic and neochlorogenic 
acids (Sidor et al., 2019). These bioactive compounds contributing 
to the antioxidative potential and alleviation of the related diseases 
were confirmed in vitro, in vivo, and clinically. They were reported to 
have the effects of regulating the expression of genes critical for in-
testinal cholesterol flux in Caco-2 cells, antiatherogenic, cardiopro-
tective, gastroprotective, antioxidant, anti-inflammation, anti-aging, 
anti-cancer, etc. (Bräunlich et al.,  2013; Sosnowska et al.,  2018). 
Thus, generous consumption of A. melanocarpa (Michx.) Ell. is rec-
ommended in dietary guidelines worldwide (Vázquez-Espinosa 
et al.,  2019). However, due to the bitterness or astringency taste, 
they are not usually consumed as fresh fruits, but processed as jams, 
jellies, fruit syrups, juice, energy drinks (Jurikova et al., 2017), or con-
centrated extracts (Jurgoński et al., 2008).

Extraction is the crucial step for isolation, identification, and use 
of phenolic compounds. However, there is no general extraction 
method, and different methods will be used according to differ-
ent raw materials. Pretreatment may be a good choice to release 
the polyphenol compounds, such as fermentation, enzyme lysis, 

grinding, and freeze-thawing. The most commonly used techniques 
for the isolation of phenolic compounds are solvent extraction (with 
or without assistance of microwave and ultrasound) and supercriti-
cal fluid extraction. This method has the advantages of being a sim-
ple process, low cost, and high purity. Different adsorbents were 
tested, such as Amberlite XAD7HP absorption and acidified ethanol 
elution (Galván D'Alessandro et al., 2013), Sep-Pak C-18 cartridges 
absorption, 1% acetic acid acidified water (Jing et al., 2008) or meth-
anol (Sosnowska et al., 2018) elution for anthocyanin, and Sephadex 
LH-20 for the purification of anthocyanins (Bräunlich et al., 2013) 
and proanthocyanidins (Fan et al., 2007) in order to remove the con-
comitant substances such as sugars, amino acids, and proteins from 
anthocyanin and/or proanthocyanidin-containing extracts. For the 
fractionation of different mDP of proanthocyanidins, a rapid method 
based on liquid/liquid extraction and relative solubility of these 
compounds in different solvents (water, ethyl acetate, methanol, and 
chloroform) was established (Saucier et al., 2001).

The prevalence of diabetes and obesity is alarmingly increas-
ing in the last few decades, leading to many serious public health 
concerns worldwide. α-Glucosidase, α-amylase, and lipase are the 
key enzymes that affect the digestion and absorption of major car-
bohydrates and lipids in diet (Türkan et al., 2020). Thus, inhibiting 
α-glucosidase, α-amylase, and pancreatic lipase would prevent the 
breakdown of carbohydrates and triglyceride and delay the ab-
sorption of glucose and fatty acids into the systemic circulation 
and adipocytes (Rajan et al.,  2020). However, the conventional α-
glucosidase, α-amylase, and lipase inhibitor available in clinics are all 
chemicals (side effects often occurred), and identifying safe clinical 
alternatives from plants to inhibit these enzymes have been consid-
ered a significant advancement (Rajan et al., 2020).

Reports indicated that phenolic in Aronia can inactivate α-
amylase, α-glucosidase, and lipase through non-specific binding to 
enzymes (Bräunlich et al.,  2013). However, crude polyphenol was 

F I G U R E  1  Flow chart of extraction, 
fractionation, characterization, and 
enzyme inhibition.
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studied and the individual effects of pure chemicals have not been 
considered, which will be important for the studying of the mech-
anism of the inhibition. Therefore, the individual cyanidin glyco-
sides of anthocyanins and proanthocyanidins with different mDP 
were fractionated and the enzyme inhibition effects were studied 
(Figure 1). This study will be useful to elucidate the inhibition effects 
of polyphenol from A. melanocarpa (Michx.) Ell. for obesity and dia-
betes and helpful for product development.

2  |  MATERIAL S AND METHODS

2.1  |  Chemicals and materials

All the chemicals used for analyses were of analytical grade and high-
performance liquid chromatography (HPLC) chemicals were of HPLC 
purity and were all purchased from Sinopharm Chemical Reagent Co., 
Ltd (Shanghai, China). Lipase from human porcine pancreas (EC 3.1.1.3), 
α-amylase from human pancreas (EC 3.2.1.1), and α-glucosidase from 
Bacillus stearothermophilus (EC 3.2.1.20) were obtained from Sigma-
Aldrich, Inc (Shanghai, China). Standards of cyanidin 3-galactoside, 
cyanidin 3-arabinoside, cyanidin 3-xyloside, cyanidin 3-glucoside, 
catechin, and epicatechin were obtained from Sigma-Aldrich, Inc. 
(Shanghai, China). Amberlite XAD7HP, Sephadex LH-20, and ENVI 18 
DSK SPE were obtained from Sigma-Aldrich, Inc (Shanghai, China).

Aronia melanocarpa (Michx.) Ell. were manually harvested at techno-
logical maturity by Liaoning Fukangyuan Black Chokeberry Technology 
Co., Ltd. (September 18, 2018) and was freeze stored until use.

2.2  |  Isolation of anthocyanins from A. melanocarpa 
(Michx.) Ell.

The pre-grounded slurry of A. melanocarpa (Michx.) Ell. (4 kg) was sub-
jected to n-hexane (6:1, v/m) to remove lipophilic substances, after 
which was divided into two parts (part 1 for anthocyanins isolation and 
the other part for proanthocyanidins extraction) as pre-treated slurry. 
Then, the slurry was extracted twice by ethanol solution (60% etha-
nol with 0.1% HCl, v/v) for 2 h at ambient temperature bubbled with 
nitrogen, and was centrifuged at 9090 g for 6 min and the supernatant 
was collected and combined. Then, the ethanol was removed from the 
supernatant and the retained solution was concentrated through ro-
tatory evaporation under vacuum at 40°C to give the crude extract 
of anthocyanins (CEA). The CEA was subjected to a bed of Amberlite 
XAD-7HP (5 × 50 cm column) until the eluate has no more anthocya-
nins detected by pH differential method (Jing et al., 2008), followed 
by elution with methanol (0.1% HCl) to give the anthocyanin-enriched 
extract (AEE). The AEE was then purified by a Sephadex LH-20 column 
(5 × 150 cm) by a step gradient of 15% and 30% methanol (0.1% HCl 
v/v), the fractionation steps follow Bräunlich et al. (2013), and was de-
tected with HPLC at 520 and 280 nm for purity. Then, the individual of 
the cyanidin glycosides (cyanidin 3-galactoside, cyanidin 3-arabinoside, 
cyanidin 3-xyloside, and cyanidin 3-glucoside) were obtained.

2.3  |  Fractionation of proanthocyanidins from  
A. melanocarpa (Michx.) Ell.

2.3.1  |  Crude proanthocyanidins extract

The pre-treated slurry of A. melanocarpa (Michx.) Ell. was extracted 
two times successively with 7 L of acetone:water (70:30, v/v) bub-
bled with nitrogen with mechanical agitation for 6 h. All the slurries 
were centrifuged at 8000 rpm for 6 min and the supernatants were 
combined and evaporated at 40°C using a vacuum rotary evaporator 
to remove acetone. And the aqueous solution was freeze-dried to 
give the crude proanthocyanidins extract (CPE) powder.

2.3.2  |  Isolation of crude oligomer fraction 
(COF) and crude polymerized proanthocyanidins (CPP)
from CPE

The CPE powder was dissolved in redistilled water to 5 g/L followed 
by ethyl acetate extraction two times with 1:1 (v/v) of the organic 
and aqueous phase. The ethyl acetate extract was evaporated at 
40°C using a vacuum rotary evaporator to dry for crude oligomer 
fraction from CPE (COF). And the CPP was retained in the aqueous 
followed by freeze drying for the powder of CPP.

2.3.3  |  Removal of monomer from COF

The COF powder was dissolved to 150 mL by redistilled water. 
Then solid-phase extraction (SPE) with column (ENVI 18, Supelco) 
was conducted by applying the dissolved COF on each column. 
The monomers were then removed by eluting diethyl ether until 
no monomers (epicatechin) were detected in the eluent by HPLC 
(Saito et al., 2006). Then, the remained oligomers were eluted with 
methanol until no more oligomers were detected by Folin–Ciocalteu 
method (Tan et al., 2017). Then, the methanol was evaporated, the 
residue was dissolved in minimum water, and freeze-dried to obtain 
oligomers without monomers (OWM).

2.3.4  |  Fractionation of the polymer with different 
mDP from CPP

CPP powder was prepared by freeze drying the aqueous solution, 
followed by dissolving it with methanol. The same volume of chlo-
roform (1:1, v/v) was added to the CPP–methanol solution. Then, 
the precipitate was harvested by filtration and recovered by metha-
nol washing. Then, this methanol solution was evaporated and the 
residue was dissolved in water and freeze-dried as a fraction of CPP 
fractionated by 50% chloroform (CPP-50). The retained filtrate was 
repeatedly precipitated by adding more chloroform successively to 
the volume ratio of 1.5:1, 2.33:1, and 3:1 (v/v, chloroform:methanol), 
and the corresponding precipitate was harvested by filtration, 
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washed in methanol, dissolved in water, and freeze-dried to make 
the fraction of CPP-60, CPP-70, and CPP-75. And the last filtrate 
was also evaporated, redissolved in water, and freeze-dried to make 
CPP-L fraction. All these samples were kept at −80°C until further 
studies (Saucier et al., 2001; Sosnowska et al., 2018).

2.4  |  Thiolysis of partially purified 
proanthocyanidins

Different kinds of partially purified A. melanocarpa (Michx.) Ell. 
proanthocyanidins (10 mg) were dissolved in 1.0 mL of 95% ethanol 
to prepare a 10 mg/mL proanthocyanidins solution. The thiolysis 
method was carried out according to Gao et al. (2018).

2.5  |  Determination of total phenolic contents

The total phenolic content was measured by the Folin–Ciocalteu 
method after adjustments (Vázquez-Espinosa et al.,  2019) with 60% 
ethanol (with 0.1% HCl) A. melanocarpa (Michx.) Ell. extracts. Gallic 
acid was used as a calibration standard, and results were expressed 
as gallic acid equivalents (GAE) per 100 g of fresh weight (FW) (mg of 
GAE/100 g FW).

2.6  |  Determination of total anthocyanins

Total anthocyanin contents of A. melanocarpa (Michx.) Ell. extracts 
were measured using the pH differential method (Lee et al., 2005) 
with 60% ethanol (with 0.1% HCl). Results are expressed as milli-
grams of cyanidin 3-glucoside equivalents per 100 g of fresh weight 
(mg of cyanidin 3-glucoside/100 g FW).

2.7  |  Determination of total proanthocyanidins

Proanthocyanidins were depolymerized into anthocyanidins by 
use of an n-BuOH–HCl–ferric ammonium sulfate mixture and 
HPLC was used to determine the content as stated in Skupien and 
Oszmianski (2007). (−) Epicatechin was used as a calibration stand-
ard and results were expressed as mg (−)epicatechin equivalents (EE) 
per 100 g of FW (mg of EE/100 g FW).

2.8  |  HPLC and mass spectra determination of the 
cyanidin glycosides, proanthocyanidins, and 
thiolytic products

An Agilent 1260 Infinity HPLC (Agilent Technologies, Santa Clara, 
CA, USA) was used for the purity check of the cyanidin glycosides, 
(−)epicatechin, catechin, and thiolysis products by an Eclipse XDB-
C8 (4.6 × 150 mm, 5 μm) column (Agilent Technologies, Santa Clara, 
CA, USA) according to the method of Bräunlich et al. (2013) with a 
diode array detector (DAD). Anthocyanin standard stock solutions 
were prepared in methanol containing 0.1% formic acid and were 
used to identify the compounds. Wavelengths of (−)epicatechin at 
280 nm and anthocyanin glycosides at 520 nm were determined. The 
mass spectra of thiolytic products were acquired in positive mode 
using electrospray ionization on an Agilent 6220 ESI-TOF mass 
spectrometer. The mDP was calculated by the following formula (Ci 
et al., 2018):

2.9  |  Enzyme inhibition essays

2.9.1  |  α-Amylase inhibition studies

α-Amylase inhibitory activity was determined using the method 
from Tan et al.  (2017), with a slight modification as Table  1 in-
dicates. One hundred microliters of different concentrations of 
the fractionated compounds and 100 μL of the enzyme solution 
(5 mg/L) were mixed in a centrifuge tube at ambient temperature 
for 10 min. After adding 200 μL, 0.5% soluble starch with phos-
phate solution as a buffer (25 mmol/L, pH = 6.8), the tube was 
incubated at 37°C for 5 min. Then, 1 mL of DNS color reagent so-
lution (96 mM 3,5-dinitrosalicylic acid and 5.31 M sodium potas-
sium tartrate in 2 M NaOH) was added into the tube. The tube 
was placed into a boiling water bath for 5 min to inactivate the 
enzyme. Then, the solution was diluted by adding 3 mL of dis-
tilled water. Then, 200 μL of the mixture was taken and added to 
a 96-well plate and the absorption at 540 nm was determined. To 
eliminate the background absorbance produced by the fraction-
ated compounds, an appropriate extract control without enzyme 
was included. α-Amylase inhibitory activity was measured at five 
different concentrations, and a logarithmic regression curve was 

(1)mDP =

[

1 +

(

area of catechin and epicatechin derivatives

area of catechin and epicatechin

)]

Treatments
Fractionated 
compounds

Starch 
solution α-Amylase

DNS 
solution A540nm

Samples √ √ √ √ As

Enzyme blank √ √ X √ Ab

Sample blank B √ √ √ At

Blank B √ X √ Ac

Note: √ Indicates that included in the reaction mixture; X indicates that not included in the reaction 
mixture; and B indicates only buffer.

TA B L E  1  The mixture solution for α-
amylase inhibitory activity determination.



    |  3915CHEN et al.

established to calculate IC50 values (mg/mL) (Tan et al., 2017). The 
α-amylase inhibitory activity was expressed as function 2 and the 
As, Ab, At, and Ac indicated the absorbance in different solutions 
as shown in Table 1. The inhibitory activity was measured at five 
different concentrations, and a logarithmic regression curve was 
established to calculate IC50 values.

2.9.2  |  α-Glucosidase inhibition studies

α-Glucosidase inhibitory activity was determined according to Gong 
et al. (2020) and Tan et al. (2017) with modifications (Table 2). Ten 
μL of each fractionated compound with appropriate concentration 
were mixed with 20 μL of 2.4 mM 4-nitrophenyl-β-D-glucuronide 
(pNPG) solution (dissolved in 0.1 M, pH 6.8 phosphate buffer), and 
10 μL of 3 U/mL enzyme solution was added into a 96-well plate 
to start the reaction at 37°C for 10 min. Then, 40 μL of Na2CO3 
(1 mol/L) was added to the reaction mixture to terminate the reac-
tion followed by determining the absorbance at 405 nm by a micro-
titer plate reader. The percentage of inhibition was calculated using 
Equation 3. α-Glucosidase inhibitory activity was measured at five 
different concentrations, and a logarithmic regression curve was es-
tablished to calculate IC50 values (Gong et al., 2020; Tan et al., 2017).

2.9.3  |  Lipase inhibition assay

The lipase inhibitory activity was determined according to the 
method described by Tan et al. (2017) with modifications (Table 3). 
Three hundred and fifty μL phosphate buffer (0.05 M, pH 7.6), 150 μL 
of porcine lipase enzyme solution (50 mg/mL), and 50 μL of fraction-
ated compounds were added in a centrifuge tube (1.5 mL size) and 
incubated at 37°C for exactly 10 min. Then, 450 μL pNP laurate 
substrate was added to the reaction mixture and blended, followed 
by incubation at 37°C for 120 min without light. The reaction mix-
ture was centrifuged for 10 min at 8000 g and the supernatant of 
200 μL was taken into a 96-well plate to determine the absorbance at 
405 nm. The percentage inhibition was calculated using Equation 4. 

Lipase inhibitory activity was measured at five different concentra-
tions, and a logarithmic regression curve was established to calcu-
late IC50 values (Tan et al., 2017).

2.10  |  Statistics

All measurements were performed in triplicate and the results were 
presented as mean ± standard deviation (SD). The data and figures 
were processed with Origin 9.0 and Adobe Photoshop CC 2018. And 
SPSS 26.0 was used to evaluate whether the data of mDP and IC50 
of different enzymes conform to normal distribution.

3  |  RESULTS AND DISCUSSION

3.1  |  Characterization of the A. melanocarpa 
(Michx.) Ell. Fruits

The contents of total polyphenol, proanthocyanidins, and antho-
cyanin of A. melanocarpa (Michx.) Ell. are indicated in Table  4 and 
were also compared with several studies. It indicates that A. mel-
anocarpa (Michx.) Ell. also is a good source of phenol, anthocyanin, 
and proanthocyanidins planted in China. However, different sources 
of the Aronia fruits showed different contents of these compounds, 
which probably depend on variety, cultivation conditions, and har-
vest date (Kokotkiewicz et al., 2010). Proanthocyanidins accounted 
for 42.20%, while anthocyanins contributed only 17.28% of the total 
phenolic content for A. melanocarpa (Michx.) Ell.

(2)α − Amylase inhibitory activity(%) =

[

1 −

(

As − Ab

At − Ac

)]

× 100%

(3)

α − Glucosidase inhibitory activity(%) =

[

1 −

(

As − Ab

At − Ac

)]

× 100%

(4)Lipase inhibitory activity(%) =

[

1 −

(

As − Ab

At − Ac

)]

× 100%

Treatments
Fractionated 
compounds

pNPG 
solution α-Glucosidase A540nm

Samples √ √ √ As

Enzyme blank √ √ X Ab

Sample blank B √ √ At

Blank B √ X Ac

Note: √ Indicates that included in the reaction mixture; X indicates that not included in the reaction 
mixture; and B indicates only buffer.

TA B L E  2  The mixture solution 
for α- glucosidase inhibitory activity 
determination.

TA B L E  3  The mixture solution with different compositions for 
lipase inhibitory activity determination.

Treatments
Fractionated 
compounds

pNPP 
solution Lipase A405nm

Samples √ √ √ As

Enzyme blank √ √ X Ab

Sample blank B √ √ At

Blank B √ X Ac

Note: √ Indicates that included in the reaction mixture; X indicates that 
not included in the reaction mixture; and B indicates only buffer.
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3.2  |  Extraction, fractionation, and 
characterization of the phenolic compounds

3.2.1  |  Extraction, fractionation, and 
characterization of anthocyanins

Two-thousand-gram A. melanocarpa (Michx.) Ell. was used to ex-
tract and purify the crude anthocyanins and its cyanidin glycosides. 
The results are shown in Table 5 and Figure 2. For crude extract 
of anthocyanins (CEA), there were not only anthocyanins but also 
water-soluble compounds such as protein, sugar, and vitamin. 
Thus, more compounds were obtained at this stage. Followed by 
the absorbance of anthocyanins using Amberlite XAD7HP, most of 
the water-soluble compounds have been washed off and methanol 
was used to get the high-purity anthocyanin complex. There were 
mainly four cyanidin glycosides found in A. melanocarpa (Michx.) 
Ell. such as cyanidin 3-galactoside, cyanidin 3-arabinoside, cyani-
din 3-xyloside, and cyanidin 3-glucoside, which were purified and 
showed the same migration time compared with the standard in-
dividual anthocyanins (Figure 2). Their chromatographic spectrum 
was in agreement with previous studies (Bräunlich et al.,  2013). 
Unlike other berries, A. melanocarpa (Michx.) Ell. anthocyanin is 
very simple, consisting almost exclusively of the cyanidin glycoside 
as shown in our results in Table 5. However, Wu et al. (2004) found 
that there were minor amounts of pelargonidin-3-arabinoside and 

traces of pelargonidin-3-galactoside in A. melanocarpa (Michx.) Ell. 
(Wu et al., 2004).

Cyanidin 3-galactoside was the highest content individual 
anthocyanin with 60.42% content in AEE, followed by cyanidin 
3-arabinoside with 22.15% content, cyanidin 3-xyloside with 
5.37% content, and cyanidin 3-glucoside with 0.98% content. 
Also, there still was an 11.08% loss of AEE which was ascribed to 

TA B L E  4  Content of total polyphenol, proanthocyanidins, and anthocyanin of A. melanocarpa (Michx.) Ell.

Total polyphenol (mg 
of GAE/100 g FW)

Total proanthocyanidins 
(mg of EE/100 g FW)

Total anthocyanin (mg of 
cyanidin 3-glucoside/100 g 
FW) References

A. melanocarpa (Michx.) Ell. 3414.1 ± 12.2 1440.7 ± 15.1 590.0 ± 13.6 This study

A. prunifolia 2996.0 ± 172 4790.0 497.0 ± 20 Wangensteen et al. (2014)

A. melanocarpa 2556.0 – 429.0 Zheng and Wang (2003)

A. melanocarpa 2010.0 663.7 1480.0 Wu et al. (2004)

TA B L E  5  Extracts and fractions of anthocyanins from 
A. melanocarpa (Michx.) Ell.

Samples Yields (mg)
Contents 
(mg/100 g FW)

Crude extract of 
anthocyanins (CEA)

67543.0 ± 505 3377.2

Anthocyanin-enriched 
extract (AEE)

9442.3 ± 30 472.1

Cyanidin 3-galactoside 5705.0 ± 23 285.3

Cyanidin 3-arabinoside 2091.5 ± 11 104.6

Cyanidin 3-xyloside 507.1 ± 5 25.4

Cyanidin 3-glucoside 92.5 ± 2 4.6

Total anthocyanins content 
calculated by individual 
cyanin glycoside 
fractions

– 419.9

F I G U R E  2  HPLC profile of different individual anthocyanins. 
Profile a–d are the solutions fractionated by a Sephadex LH-20 
column. (a) for cyanidin 3-xyloside, (b) for cyanidin 3-arabinoside, 
(c) for cyanidin 3-glucoside, and (d) for cyanidin 3-galactoside, (e) is 
the standard individual anthocyanins as the reference compounds 
to identify the different fractions, I for cyanidin 3-galactoside, II 
for cyanidin 3-glucoside, III for cyanidin 3-arabinoside, and IV for 
cyanidin 3-xyloside.
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the impurity substances in AEE, and elute and recycle loss during 
the fractionation process. Cyanidin 3-galactoside and cyanidin 
3-arabinoside are the predominant representatives of 82.57%, 
although this was lower than Oszmiański and Wojdylo  (2005) 
reported with a cumulative content of >90% in the berries 
(Oszmiański & Wojdylo, 2005).

The total anthocyanins content calculated by individual cyanin 
glycoside fractions was 419.9 mg/100 g FW, which was lower than 
that determined by pH differentiation method as shown in Table 5. 
This error may have come from the recycle loss of the fractionation 
method, and impurities were calculated as anthocyanins during pH 
differentiation determination.

3.3  |  Extraction, fractionation, and 
characterization of proanthocyanidins

Two thousand gram of A. melanocarpa (Michx.) Ell. was used to 
fractionate the proanthocyanidins and found that polymeric 
proanthocyanidins constitute the major class of phenolics in A. 
melanocarpa (Michx.) Ell. Proanthocyanidins of A. melanocarpa 
(Michx.) Ell. are mainly composed of (−) epicatechin with trace 
amounts of catechin (Figure 3 and Table 6). The chain extension 
units and chain-terminating units in proanthocyanidins were 
predominant as (−) epicatechin trace catechin (Figure 3), and the 
small peak 1 may be catechin. The mDP value has been calculated 
according to the thiolysis of proanthocyanidins as indicated in 
Table 7.

The crude proanthocyanidins extract (CPE) was fractionated into 
six parts with different mDP. The mDP of the CPE was 49.3 ± 3.8, 
almost as reported by Skupien and Oszmianski  (2007). After frac-
tionation of the CPE, the proanthocyanidins were nicely fraction-
ated with different mDP from 4.2 to 78.9, which will be ready for 
the studying of the enzyme inhibition with different mDP of proan-
thocyanidins as indicated in Table 7. The sum of OWM and CPP con-
tents were the total proanthocyanidins, which was a little bit high 
than Table 4 indicated which was caused by different determination 
methods.

The mDP fractions of A. melanocarpa (Michx.) Ell. ranged from 
1.8 ± 0.5 of COF to 78.9 ± 4.1 of CPP-50 and that of the whole A. 
melanocarpa (Michx.) Ell. was 49.3 ± 3.8. The mDP of proanthocy-
anidins from A. melanocarpa (Michx.) Ell. was 12–70 in most of the 
reports and also has reported an exceptionally high mDP > 100 
(Skupien & Oszmianski, 2007), differences may be caused by the dif-
ferent processing, storage, cultivation, determination methods, etc. 
Labarbe et al.  (1999) also found that the proanthocyanidins from 
the seed and skin of grape also can be fractionated with different 
mDP, ranging increasingly from 4.7 to 17.4 in seed (8.1 for total ex-
tract) and from 9.3 to 73.8 in skin (34.9 for total extract). The mono-
mer content of proanthocyanidins was the highest compared with 
several reports with content of 5.89 mg ECE/100 g FW (Dudonné 
et al., 2015), 5.17 mg/100 g FW (Wu et al., 2004), 0.01–0.02 μg CE/g 
DM (Taheri et al., 2013).

The composition of different mDP of proanthocyanidins 
was as follows: monomers (1.51%), oligomer (mDP of 4.2 ± 0.9, 
20.57%), CPP-50 (mDP of 78.9 ± 4.1, 22.17%), CPP-60 (mDP of 
66.1 ± 1.2, 27.94%), CPP-70 (mDP of 36.8 ± 3.9, 36.8%), CPP-75 
(mDP of 25.2 ± 1.3, 6.14%), CPP-L (mDP of 10.2 ± 2.6, 6.95%), and 
there were recycling loss of 0.34%. Wu et al. (2004) reported that 
the proanthocyanidins composition in Aronia is as follows: mono-
mers (0.78%), dimers (1.88%), trimers (1.55%), 4–6-mers (6.07%), 
7–10-mers (7.96%), and >10-mers (81.72%) (Wu et al., 2004). This 
confirmed the conclusion that there was much more tannin in A. 
melanocarpa (Michx.) Ell., although there were 22.08% of mono-
mer and oligomer higher than Wu et al. (2004) studies and 77.58% 
of mDP > 10 proanthocyanidins which are lower than that of other 
studies (Wu et al., 2004).

Proanthocyanidins' tendency to link with proteins is respon-
sible for the astringency of A. melanocarpa (Michx.) Ell. (Tomar 

F I G U R E  3  HPLC analysis of thiolysis solution of PP-50 detected 
at 280 nm.

TA B L E  6  MS spectrum of thiolysis solution of PP-50.

Peak 
number RT (min) [M-H]−(m/z) Compounds

1 13.30 289 Catechin

2 14.91 289 (−) epicatechin

3 22.30 413 heterocyclic ring cleavage 
products of epicatechin

4 24.60 412 Epicatechin benzyl 
thioether

5 27.71 535 Heterocyclic ring cleavage 
products of epicatechin 
benzyl thioether

6 29.60 535 Heterocyclic ring cleavage 
products of epicatechin 
benzyl thioether

7 37.11 123 Benzyl mercaptan
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et al.,  2022). Also, their pharmaceutical effects are interesting 
because they act beneficially on the circulatory system and are 
efficient free radical scavengers (Rigaud et al.,  1993). Several 
studies found that proanthocyanidins with high mDP are more 
potent antioxidants than simple phenolics, and the increasing 
mDP may enhance the antioxidant power and lipase inhibition of 
proanthocyanidins (condensed tannins) (Sosnowska et al., 2016), 
which will influence its organoleptic or pharmacological proper-
ties. However, the high mDP feature should limit their absorption 
through the gut barrier; oligomers larger than trimers are unlikely 
to be absorbed in the small intestine in their native forms (Denev 
et al., 2012).

These studies established a rapid method to fractionate different 
mDP proanthocyanidins by different solvents only, which avoid the 
poor resolution and irreversible adsorption during chromatographic 
separations of the highly polymerized fraction (Labarbe et al., 1999).

3.4  |  Inhibition of the enzyme

The effects of crude extractions of anthocyanins and proanthocyani-
dins, the individual cyanin glycoside and proanthocyanidins with dif-
ferent mDP on the α-amylase, α-glucosidase and lipase are studied to 
identify the fractions of anthocyanins and proanthocyanidins that are 
responsible for the anti-diabetes and obesity functions in A. melano-
carpa (Michx.) Ell., The results were showed in Figure 4 and Table 7.

Among the individual cyanidin glycoside and crude anthocya-
nins extracts, cyanidin 3-glucoside showed the strongest inhibi-
tion effects on α-amylase and lipase and cyanidin 3-arabinoside 

TA B L E  7  Extracts and fractions of proanthocyanidins with different IC50 from A. melanocarpa (Michx.) Ell.

Yield (mg)
Content 
(mg/100 g FW) mDP

IC50 values (μg/mL)

α-Amylase 
(Worsztynowicz 
et al., 2014)

α-Glucosidase 
(Bräunlich et 
al., 2013) Lipase

Crude Proanthocyanidins 
extract (CPE)

29678.6 ± 30.5 1483.9 ± 1.5 49.3 ± 3.8 1.16 ± 0.12 0.81 ± 0.15 1.79 ± 0.06

Crude oligomer fraction 
from CPE (COF)

6618.5 ± 36.6 330.9 ± 1.8 1.8 ± 0.5 – – –

Monomers 446.1 ± 26.0 22.3 ± 1.3 – – – –

Oligomers without 
monomers (OWM)

6072.0 ± 22.1 303.6 ± 3.1 4.2 ± 0.9 4.32 ± 0.21 3.99 ± 0.42 5.03 ± 0.55

Crude polymerized 
proanthocyanidins (CPP)

22906.4 ± 28.9 1145.3 ± 1.4 56.9 ± 2.5 1.01 ± 0.06 0.75 ± 0.03 1.61 ± 0.02

CPP-50 6546.8 ± 24.5 327.3 ± 1.2 78.9 ± 4.1 0.23 ± 0.01 0.15 ± 0.06 0.31 ± 0.13

CPP-60 8248.0 ± 21.6 412.4 ± 1.1 66.1 ± 1.2 0.83 ± 0.05 0.72 ± 0.02 1.57 ± 0.06

CPP-70 3956.0 ± 30.1 197.8 ± 1.5 36.8 ± 3.9 1.39 ± 0.02 0.98 ± 0.03 2.05 ± 0.20

CPP-75 1814.2 ± 27.3 90.7 ± 1.4 25.2 ± 1.3 2.46 ± 0.05 1.41 ± 0.04 3.03 ± 0.11

CPP-L 2052.1 ± 24.4 102.6 ± 1.2 10.2 ± 2.6 3.01 ± 0.01 2.56 ± 0.05 4.56 ± 0.31

Abbreviation: – not determined.

F I G U R E  4  IC50 of enzyme inhibition effects by different 
individual cyanidin glycosides. NI indicates no inhibition.
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showed the strongest inhibition effect on α-glucosidase, while 
cyanidin 3-xyloside has no effect for the inhibition of α-amylase. 
And cyanidin 3-galactoside, cyanidin 3-arabinoside, and cyani-
din 3-xyloside have no inhibition effects for the lipase. Cyanidin 
3-arabinoside showed the strongest inhibition effect on the three 
enzymes of the anthocyanins studied. These results showed 
the same tendency as indicated in Table 8. Considering the data 
obtained from our investigations (Figure  4) and the reports in 
Table 8, cyanidin glycosides may be one of the reasons for the di-
abetes treatment effect of A. melanocarpa (Michx.) Ell. (Chrubasik 
et al.,  2010), and studies suggested that intake of cyanidin and 
glycosides-enriched plant foods together with acarbose may lead 
to the development of a novel combined therapy in type 2 diabetic 
patients (Akkarachiyasit et al., 2010).

This was the first study to investigate all the individual cyanidins 
and glycoside interactions on the enzyme inhibition effects from A. 
melanocarpa (Michx.) Ell. It indicated that the structural difference 
between glycoside at the 3-O-position of cyanidin was an important 
factor for modulating the inhibition of the three enzymes. The glyco-
sides (glucose and galactose, arabinose, and xylose) of the individual 
anthocyanins have the same formulas but different structural for-
mulas with different positions of the hydroxyl (-OH) group on C-4 for 
cyanidin 3-galactoside and cyanidin 3-glucoside and c-3 for cyanidin 
3-arabinoside and cyanidin 3-xyloside as indicated in Figure 5 with 
arrows, which suggests that the structural difference in the sugar 
at the 3-O-position may be an important factor for modulating the 
inhibition of the enzyme studied (Akkarachiyasit et al., 2010). Also, 

the B-ring increases the hydrophobic characteristics of the com-
pounds, thus enhancing higher affinity toward the enzyme (Vijayaraj 
et al., 2019). However, it is still difficult to tell the reasons why these 

TA B L E  8  IC50 values of individual cyanidin glycosides in different references.

Individual cyanidin 
glycoside/mDP

IC50 values

α-Amylase α-Glucosidase Lipase

Cyanidin 3-galactoside >1.00 mM (Akkarachiyasit et al., 2010)
5.16 ± 0.06 mg/mL (Worsztynowicz 

et al., 2014)

224.5 ± 22.45 μg/mL for sucrose 
(Adisakwattana et al., 2009)

1.54 ± 0.1 μg/mL (Bräunlich et al., 2013)

nf (Worsztynowicz 
et al., 2014)

Cyanidin 3-arabinoside 3.98 ± 0.10 mg/mL (Worsztynowicz 
et al., 2014)

0.37 ± 0.08 μg/mL (Bräunlich et al., 2013) nf (Worsztynowicz 
et al., 2014)

Cyanidin 3-xyloside nf (Worsztynowicz et al., 2014) 5.5 ± 1.6 μg/mL (Bräunlich et al., 2013) nf (Worsztynowicz 
et al., 2014)

Cyanidin 3-glucoside 134.7 ± 4.49 μg/mL (Akkarachiyasit 
et al., 2010)

1.74 ± 0.04 mg/mL (Worsztynowicz 
et al., 2014)

435.53 ± 22.45 μg/mL for sucrose 
(Akkarachiyasit et al., 2010); 0.87 ± 0.2 μg/
mL (Bräunlich et al., 2013)

84.54 ± 2.94 μg/mL 
(Vijayaraj et al., 2019)

1.17 ± 0.04 mg/mL 
(Worsztynowicz 
et al., 2014)

Proanthocyanidins with 
different mDP (Data 
shown as mDP-IC50)

3.3-(0.075 ± 0.003) mg/mL (Fu et al., 2015)
(11.8 ± 0.1)-1.7 μg/mL (Kato et al., 2017)
32.6–2.9 μg/mL (Kato, 2019)
9.0–4.2 μg/mL (Kato, 2019)
(4–8)-38 μg/mL (Kato, 2019)
(7.54 ± 0.22)–(1022.84 ± 31.50) μg/mL (Li 

et al., 2015)
11.69 ± (0.23–541.26) ± 20.30 μg/mL (Li 

et al., 2015)

(3.2–14.0)–(1–0.015) μg/mL (Hsu et al., 2018)
(7.54 ± 0.22)-(4.08 ± 0.56) μg/mL (Li 

et al., 2015)
(11.69 ± 0.23)-(3.12 ± 0.79) μg/mL (Li 

et al., 2015)
(7.3 ± 0.1)-(0.037 ± 0.001) mg/mL (Wang 

et al., 2019)

3.8-(3.88 ± 0.35) μg/mL 
(Ci et al., 2018)

9.6-(1.84 ± 0.46) μg/mL 
(Ci et al., 2018)

One more study for mDP and IC50 with figure is Zhou et al. (2018)

Abbreviation: nf, not found.

F I G U R E  5  Different molecule structures of cyanidin glycosides.
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other three anthocyanins have no inhibition effects on lipase, and 
more studies such as the interaction between the enzyme and an-
thocyanins molecules are needed.

Table 8 also indicated the inhibition effects of the proanthocyan-
idins with different mDP, which are normally distributed. According 
to the results, inhibition of α-glucosidase is more specific than in-
hibition of lipase and α-amylase. And PP-50 showed the strongest 
inhibition effects on the three enzymes. However, the effects of the 
three enzymes showed high negative correlations between the mDP 
and IC50 (Figure 6). Thus, it indicated that the enzyme inhibition ef-
fect of proanthocyanidins from A. melanocarpa (Michx.) Ell. was mDP 
correlated and the presence of epicatechin as the extension unit may 
play an important role (Kato et al., 2017). The main inhibitory mech-
anism of proanthocyanidins on the enzyme studied may be due to 
the insertion of proanthocyanidins into the pocket of the enzyme 
altering the catalytic configuration of the active site in a manner, 
thus reducing substrate-binding affinity (Wei et al.,  2017). All the 
proanthocyanidins fractions with different mDP showed strongest 
inhibition effects than anthocyanins individuals on α-amylase. And 
CPP-50 showed stronger α-glucosidase and lipase inhibition than 
that of all the anthocyanins. This may be ascribed to the most ef-
fective protein-precipitating effect of large molecules of proantho-
cyanidins (Hofmann et al., 2006), which is of particular importance, 
as bioavailability is not needed for proanthocyanidins of any size to 
exert activity by inhibiting the digestion of lipids or carbohydrates in 
the gastrointestinal lumen (Neilson et al., 2016).

4  |  CONCLUSIONS

A. melanocarpa (Michx.) Ell. has been transplanted to China for about 
12 years, and it has only been allowed to be sold as food in China for 
not more than 4 years. Therefore, the functional components and 
functions of the fruit planted in China still need further study. The 

results showed that the content, composition, and enzyme inhibi-
tion activity of anthocyanin and proanthocyanidins of A. melano-
carpa (Michx.) Ell. from China were similar to those in the United 
States and Europe. Anthocyanin and proanthocyanidins inhibited 
the activity of the digestion enzyme, which is one of the important 
physiological functions of A. melanocarpa (Michx.) Ell. However, the 
interaction and mechanism between anthocyanin and proanthocya-
nidins and enzymes need to be further studied for the development 
of functional foods.
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